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ABSTRACT 

The start-up transient signals have been widely used for fault diagnosis of induction motor 

because they can reveal early defects in the development process, which are not easily detected 

with the signals in the steady state operation. However, transient signals are non-linear and 

contain multi components which need a suitable technique to process and identify the fault 

pattern. In this paper, the fault diagnosis problem of induction motor is conducted by a data 

driven framework where the Fourier-Bessel (FB) expansion is used as a tool to decompose 

transient current signal into series of single components. For each component, the statistical 

features in the time and the frequency domains are extracted to represent the characteristics of 

motor condition. The high dimensionality of the feature set is solved by generalized 

discriminant analysis (GDA) implementation to decrease the computational complexity of 

classification. In the meantime, with the aid of GDA, the separation of the feature clusters is 

increased, which enables the more classification accuracy to be achieved. Finally, the reduced 

dimensional features are used for classifier to perform the fault diagnosis results. The classifier 

used in this framework is the simplified fuzzy ARTMAP (SFAM) which belongs to a special 

class of neural networks (NNs) and provides a lower training time in comparison to other 

traditional NNs. The proposed framework is validated with transient current signals from an 

induction motor under different conditions including bowed rotor, broken rotor bar, eccentricity, 

faulty bearing, mass unbalance and phase unbalance. Additionally, this paper provides the 

comparative performance of (i) SFAM and support vector machine (SVM), (ii) SVM in the 

framework and SVM combined with wavelet transform in previous studies, (iii) the use of FB 

decomposition and Hilbert transform decomposition. The results show that the proposed 

diagnosis framework is capable of significantly improving the classification accuracy. 

 

Keywords: Fault diagnosis; Transient current signal; Induction motor; Fourier-Bessel expansion; 

Simplified fuzzy ARTMAP. 
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1. Introduction 

Induction motors are one of the most widely used electrical machines in industry due to their 

ruggedness and versatility. However, they are susceptible to many types of fault sourced from 

mechanical and electrical stresses which permanently exist in motor’s operation. The 

mechanical stresses caused by overloads and abrupt load changes can lead to bearing faults and 

rotor bar breakage. Meanwhile, the electrical stresses may produce stator winding short circuits 

and cause a complete motor failure. According to motor reliability studies (Bonnett, 1992), the 

faults in induction motor are typically related to bearings, stator, rotor, and the remainder that 

are a consequence of a great variety of other faults. These faults are often sources of increasing 

the maintenance costs, disturbances in production activity, and the main reason for stoppage of 

operation. Therefore, reliable diagnostic methodologies are of necessity to enable effective 

maintenance and operational costs. 

In order to detect and identify these faults, several approaches using combinations of 

mechanical and electrical monitoring have been used. Among these, electrical monitoring with 

emphasis on inspecting the stator current has gradually become one of the most important 

approaches and received special interest from researchers. The widely used scheme in this area 

is motor current signature analysis (MCSA). Many studies have been developed based on 

MCSA under steady state operating conditions (Elkasabgy et al., 1992; Kliman et al., 1988; 

Schoen et al., 1995a; Schoen et al., 1995b; Nandi et al., 1998; Thomson & Fenger, 2001; 

Benbouzid, 2000). However, MCSA depends not only on the accuracy of measurements, but 

also on the ability to differentiate between normal and faulty conditions (Henry et al., 2002). 

Furthermore, the techniques using steady state conditions are effectively used only when the 

machines are almost fully loaded and running at a constant speed. Conversely, they result in less 

accuracy when applied to machines that are lightly loaded or operated predominantly under 

transient conditions (Douglas & Pillay, 2005). For example, if the load torque varies with 

rotational speeds, then the motor current spectral harmonics produced by the load overlap the 

harmonics caused by broken bars, making the fault detection task difficult.  

Researches on transient signals of induction motors have been attracted attention in recent 

times due to the fact that the machine is subjected to stresses above normal condition during the 

start-up. These stresses could highlight machine defects that are early in their development and 

not easily detected at steady state conditions (Niu et al., 2008). However, transient signals are 

usually non-linear, non-stationary, and contain several components with different amplitudes 

and frequencies. These lead to difficulty in using common methods such as fast Fourier 

transform (FFT) to analyze the fault symptom and diagnose the faults in the induction motor. 

Owing to limitations of the FFT which only provides the spectral content of the signal but gives 

no information regarding where in time those spectral components appear (Ramesh Babu et al., 

2008), other techniques were proposed to deal with non-stationary signal such as short-time 
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Fourier transform (STFT) and Hilbert-Huang transform (HHT). However, STFT also has 

limitation which is its fixed time-frequency resolution whilst the limitations of HHT were 

reported in (Peng et al., 2005; Qin et al., 2006; Rato et al., 2008). Another outstanding technique 

implemented for transient current signals is the wavelet transform. Niu et al. (Niu et al., 2008) 

applied a smoothing technique to the motor transient current signal and subtracted the smoothed 

signal from the original one to obtain the residual. Then, a discrete wavelet transforms (DWT) 

and decision-level fusion model were implemented to decompose the residual into different 

details and classify the faults based on these decomposed details, respectively. Similarly, 

Widodo et al. (Widodo et al., 2009) combined DWT for signal decomposition, independent 

component analysis (ICA) and principle component analysis (PCA) for feature extraction, and 

support vector machine (SVM) for classification to diagnose the faults of induction motors 

using the transient signal. Other studies used wavelet transforms and transient current signal for 

fault diagnosis could be found in (Widodo & Yang, 2008; Cabal-Yepez et al., 2012; Ebrahimi et 

al., 2012). Obviously, smoothing the original transient signal could eliminate the valuable 

information which leads to a reduction in the diagnosis accuracy. Furthermore, the wavelet 

transform has a drawback where the basis function has to be defined a priori and this choice 

may influence the final results. 

Recently, Fourier-Bessel (FB) expansion has been introduced as a suitable technique for 

non-stationary signal analysis because of that it has unique coefficients for a given signal and 

the Bessel functions are aperiodic and decay over time (Pachori & Sircar, 2008). FB expansion 

has been widely used for performing speech-related applications such as speech enhancement, 

speaker identification, speech recognition and synthesis, etc. (Schroeder, 1993; Gopalan, 2001; 

Gopalan et al., 1997; Chen & Gurgen, 1990). In the fault diagnosis area, FB expansion in 

association with the Wigner-Ville distribution has been used for gear fault study (D’Elia et al., 

2012). 

In this paper, a new framework of data driven approach as shown in Fig. 1 is proposed for 

fault diagnosis of induction motor. This framework involves three stages which are signal 

decomposition, feature representation and reduction, and fault diagnosis. The FB expansion is 

introduced to the framework in the first stage to decompose the transient current signals 

acquired from different induction motor conditions into the FB series. Each single component in 

the signal is isolated by a non-overlapping cluster of FB coefficients. By using FB 

decomposition, the shortcoming of wavelet transform and the removal of useful information due 

to smoothing and subtracting are eliminated. In the meanwhile, the component which can 

characterize the difference among motor conditions is selected in this stage. In the second stage, 

statistical features in the time domain and the frequency domain are extracted for each single 

component. Normally, these features can cure problems of dimensionality and peaking 

phenomenon that greatly degrade the classification accuracy. Therefore, the dimensionality 
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reduction is necessarily performed to reduce the dimension of a feature set. In fault diagnosis, 

there have been numerous approaches for feature reduction such as ICA, PCA, and genetic 

algorithms, etc. In this study, the generalized discriminant analysis (GDA) (Baudat & Anouar, 

2000) based feature reduction is investigated with the aim of improving the classification 

performance. In the last stage, the reduced dimensional feature set is split into training set and 

test set to build the classifier and validate it, respectively. The classifier used herein is simplified 

fuzzy ARTMAP (SFAM) (Kasuba, 1993) which was derived from the fuzzy ARTMAP 

(Carpenter et al., 1992) network. SFAM provides a lower training time and higher recognition 

accuracy in comparison to other traditional neural networks (Palaniappan & Eswaran, 2009; 

Jervis et al., 1999); therefore, it has been applied in numerous classification problems 

(Palaniappan & Eswaran, 2009; Rajasekaran & Pai, 2000a; Rajasekaran & Pai, 2000b; Vuskovic 

& Du, 2002). 

 
Fig. 1 The proposed framework for fault diagnosis 

 

In order to appraise the effect of the proposed framework, three comparative studies of 

classification accuracy are conducted in this paper: (i) the use SFAM and SVM as classifiers in 

the framework, (ii) SVM in this framework and SVM combined with DWT in previous works, 

(iii) the use of FB decomposition and another decomposition method which was derived from 

Hilbert transform and called Hilbert vibration decomposition (HVD) (Feldman, 2006; Feldman, 

2011). Theoretically, HVD primarily estimates the global instantaneous frequency (IF) via low-

pass filtering; then the corresponding envelope is calculated on the basis of the global IF via 

synchronous detection. As a result, HVD is able to decompose both wideband and narrowband 

signals and is suitable for multicomponent non-stationary signals or motion of non-linear 

dynamic system (Feldman, 2008). A comparison of HVD and the well-known empirical mode 

decomposition method (Huang et al., 1998) could be found in (Feldman, 2008) for interested 

readers who need more explanation. 

 

2. Background knowledge 

2.1. Fourier-Bessel (FB) expansion 

Let ( )x t be a discrete-time signal considered over an arbitrary interval (0, a), the zero-order 

FB expansion is expressed as 

0

1

( ) ( )
M

m m

m

x t C J t aλ
=

=∑         (1) 

where 0 ( )J ⋅ are the zero-order Bessel functions (Schroeder, 1993), which are the solution of the 

Bessel’s differential equation. The FB coefficients Cm are computed via the relation 
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where 1( )J ⋅ are the first-order Bessel functions, , 1,...,m m Mλ = ,are the ascending order positive 

roots of J0(t) = 0.  

The order and range of non-zero coefficients of the FB expansion of the signal are changed 

as the center frequency and the bandwidth of the signal are varied. There is a one-to-one 

correspondence between the frequency content of the signal and the order m where the 

coefficient attains peak magnitude (Pachori & Sircar, 2008). Note that the FB series coefficients 

Cm are unique for a given signal x(t), similar to the Fourier coefficients. The integral in the 

numerator of Eq. (2) is the finite Hankel transform (FHT). Many numerical computation 

methods have been proposed for calculating the FHT and the corresponding FB coefficients in 

(Oppenheim et al., 1978; Cavanagh & Cook, 1979; Candel, 1981a; Candel, 1981b; Oppenheim 

et al., 1980). In this paper, the FHT and the corresponding FB coefficients are calculated by 

using numerical method proposed in (Guizar-Sicairos & Gutierrez-Vega, 2004) due to fast 

computation.  

Since the Fourier transform of the Bessel function 

0( ) ( )ms t J t aλ=         (3) 

is given by 

2 2

1
( )

( / )m

S
a

ω
λ ω

=
−

 for /m aω λ<       (4) 

in the spectral domain, each term 0 ( )m mC J t aλ of Eq. (1) has an approximate bandwidth 

B m aω λ≅ . Therefore, the reconstruction of x(t) using the first M terms has a maximum band 

width of max m aω λ≅ (Arfken, 1996; Pachori & Sircar, 2007). 

For multi-component signal, i.e. a signal x(t) that is the sum of N signal xi(t), where xi(t) can 

be expanded in FB series via Eq. (1). A multi-component signal can be written as: 

0 0

1 1 1 1 1

( ) ( ) ( ) ( )
i i

N N M M N

i m m m m

i i m m i

x t x t C J t a C J t aλ λ
= = = = =

 
= = =  

 
∑ ∑∑ ∑ ∑    (5) 

By interchanging the summations, the FB series coefficients of a multicomponent signal can 

be obtained as: 

1
i

N

m m

i

C C
=

=∑          (6) 

Eq. (6) implies that the resulting set of coefficients {Cm} is obtained by summing the 

coefficients { }
imC  of the component signals. If the components of the composite signal are 

well separated in the frequency domain, then the signal components will be associated with 

various distinct clusters of non-overlapping FB coefficients. Therefore, each component of the 
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signal can be generated separately by identifying and separating the corresponding FB 

coefficients.  

 

2.2. Generalized discriminant analysis  

The generalized discriminant analysis (GDA) (Baudat & Anouar, 2000; Kim & Kittler, 2005) 

deals with a nonlinear classification using a kernel function Φ which maps the original space X 

into a new high-dimensional features space Z. The within-class scatter and between-class scatter 

matrix of the nonlinearly mapped data is 

1 1

( ) , ( ) ( )
c

C C
T T

c c c

c c x X

B M m m W x x
φ φ φ φ φ φ

= = ∈

= =∑ ∑∑      (7) 

where 
c

m
φ is the mean of class Xc and Z, Mc is the number of samples belonging to Xc. The aim 

of the GDA is to find such projection matrix U
φ
 that maximizes the ratio 

1 2

| ( ) |
arg max [ , ,..., ]

| ( ) |

T

opt NT
U

U B U
U u u u

U W Uφ

φ φ φ
φ φ φ φ

φ φ φ= =      (8) 

The vectors u
φ
 can be found as the solution of the generalized eigenvalue problem i.e., 

i i i
B u W u

φ φ φ φλ= . The training vectors are supposed to be centered (zero mean, unit variance) in 

the feature space Z. From the theory of reproducing kernels, any solution u
φ∈ Z must lie in the 

span of all training samples, i.e. 

1 1

( )
cMC

ci ci

c i

u x
φ α φ

= =

=∑∑         (9) 

where αci are some real weights and xci is the ith sample of the class c. The solution is obtained 

by solving 

T

T

KDK

KK

α α
λ

α α
=         (10) 

where ( ), 1,...,
c

c Cα α= = is a vector of weights with ( ), 1,...,
c ci c

i Mα α= = . The kernel matrix 

K(M × M) is composed of the dot products of nonlinearly mapped data, i.e. 

( ); 1,..., ; 1,...,
kl

K K k C l C= = =        (11) 

where ( ( , )); 1,..., ; 1,...,kl ki lj k lK k x x i M j M= = = . The matrix D(M × M) is a block diagonal 

matrix such that 

( ); 1,...,
c

D D c C= =         (12) 

where the cth on the diagonal has all elements equal to 1 /
c

M . Solving the eigenvalue problem 

yields the coefficient vector α that defines the projection vectors u
φ∈ Z. A projection of a testing 

vector xtest is computed as  

1 1

( ) ( ) ( , )
cMC

T

test ci ci test

c i

u x k x x
φ φ α

= =

=∑∑       (13) 

The procedure of the proposed algorithm could be summarized as follows: 
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(i) Compute the matrices K and D by solving the Eq. (11) and Eq. (12). 

(ii) Decompose K using eigenvector decomposition 

(iii) Compute eigenvectors α and eigenvalues of Eq. (8) 

(iv) Compute u
φ
 using αci from Eq. (9) and normalize them 

(v) Compute projections of the test points onto the eigenvectors u
φ
 using Eq. (13) 

 

2.3. Simplified fuzzy ARTMAP network  

The architecture of simplified fuzzy ARTMAP (SFAM) is show in Fig. 2 (Rajasekaran & Pai, 

2000a; Rajasekaran & Pai, 2000b). The input into the network flows through the complement 

coder where it is normalized to a range from 0 to 1 and stretched to double size by providing the 

fuzzy compliment. This expanded input is then passed to the input layer. Each node in the 

output category layer is linked through a set of top-down weights to each node in the input layer. 

The N nodes in category layer hold the names of the M categories or classes that the SFAM has 

to learn to recognize. When active during testing, an output category node indicates the class by 

pointing to the corresponding category classification node. The vigilance parameter (VP) ρ, 

which ranges from 0 to 1, has to be chosen to determine the number of classes found. Match 

tracking portion of the network lets itself adjust ρ if classification errors are found during 

training. 

 

Fig. 2 The architecture of SFAM network 

 

The training procedure is described as follows. For a given input vector a of d features, the 

complement coded vector a′ represents the absence of each feature, where a′ is defined as 

aa −=′ 1          (14) 

The complement coded input vector I internal to SFAM is given by two-dimensional vector: 

),...,,,,...,,() 2121 dd aaaaaaa(a,I ′′′=′=       (15) 

The normalization of input vector is expressed as 

)a(da)a(a,I
d

i

i

d

i

i ∑∑
==

−+=′=
11

       (16) 

where the norm | ·  | is defined as ∑ =
=

d

i ipp
1

 

When SFAM is presented an input pattern whose complement coded representation is I, all 

output nodes become active to some degree. This output activation is denoted by Tj for the jth 

output node: 

j

j

j
wα

wI
(I)T

+

∧
=         (17) 
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where  α is kept as a small value close to 0 usually about 0.001 (Carpenter et al., 1992), ∧ is the 

fuzzy AND operator defined by ),min()( iii baba =∧  where a and b are fuzzy vector, wj is the 

corresponding weight vector which the initial condition is 1)0(...)0( 2,1 === djj ww . The 

winning output node is the node with the highest activation function Tj. If more than Tj is 

maximal, the output node j with the smallest index is arbitrarily chosen to break the tie. The 

category associated with the winning output node is described as the network’s classification of 

the current input pattern. 

The degree of match between the output category node and an input vector is given by the 

match function (MF) defined as 

I

wI
wIMF

j

j

∧
=),(         (18) 

When used in conjunction with VP, MF value states whether the current input is a good 

enough match to a particular output node to be encoded by that output node, or instead, whether 

a new output node should be formed to encode the input pattern. If MF value is greater than the 

VP, the network is said to be in a state of resonance. Resonance means that output node j is 

good enough to encode the input I, provided that output node j represents the same category as 

input I. A network state called “mismatch reset” occurs if MF is less than VP. This state 

indicates that the current output node does not meet the encoding granularity represented by VP 

and therefore cannot update its weights even if the input patterns’ category is equal to the 

category of the winning output node. 

Once a winning output node j has been selected to learn a particular input pattern I, the top-

down weight vector wj from the output node is updated according to the equation: 

old
j

old
j

new
j wwIw )1()( ββ −+∧=        (19) 

where β )10( ≤≤ β is the learning rate. Once SFAM has been trained, the equivalent of a “feed 

forward” pass for an unknown pattern classification consists of passing the input pattern 

through the complement coder and into the input layer. The output node activation function is 

evaluated and the winner is the one with the highest value. The category of the input pattern is 

the one with which the winning output node is associated. 

 

3. Application of the proposed framework and discussion 

3.1. Experiment and data acquisition 

To validate the proposed framework, an experiment was carried out using a test-rig which 

consists of a motor, pulleys, belt, shaft, and fan with changeable blade pitch angle that 

represents the load, as shown in Fig. 3. The load can be changed by adjusting the blade pitch 

angle or the number of blades. Seven three-phase induction motors of 0.5 kW, 60 Hz, 4-pole 
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were used to generate data. One of these motors is in normal condition (NOR) whilst the others 

are faulty motors involving bowed rotor (BR), broken rotor bar (BRB), eccentricity (ECC), 

faulty bearing (outer race) (FBO), mass unbalance (MUN), and phase unbalance (PUN). The 

conditions of these motors are described in Table 1. For acquiring data from test rig, three AC 

current probes were used to measure the transient stator current of the three-phase power supply. 

The data sample was 16,384 measurements under a fixed load condition. For each condition, 20 

samples were taken. 

 

Fig. 3 Test rig for experiment 

Table 1 The description of motor conditions 

 

3.2. FB expansion based signal decomposition  

Due to the existence of the line frequency, the current signals obtained from different motor 

conditions are similar. For instance, the similarity of NOR, BR, ECC, and MUN conditions is 

shown in Fig. 4. This similarity leads to increasing difficulty in recognizing the fault patterns. 

To solve this issue, some previous works (Niu et al., 2008; Widodo et al., 2009) used smoothing 

in association with subtracting techniques to reduce/remove the line frequency. However, 

smoothing the signal could also eliminate useful information which reduces classification 

accuracy. In this paper, FB decomposition is directly applied to transient current signals to 

separate them into single component signals so that elimination of useful information is avoided. 

 

Fig. 4 The similarity of transient current signals 

 

Fig. 5 correspondingly shows the original transient current signal in phase A of the BR fault, 

its spectrum, and its FB coefficients. It can be seen in Fig. 5(c) that there are three abrupt 

changes and a distinct cluster of non-overlapping FB coefficients approximately located at the 

order 380, 1150, and 1900 respectively. These indicate that the original signal is constituted 

from three single components. By choosing proper coefficient bands and substituting to Eq. (1), 

the single components are obtained as shown in Fig. 6. As observed, the first and the last 

components are identical in shape with the original signal, especially the first component which 

has nearly same the amplitude, while the second component is significantly different. The 

reason for these phenomena is that the single components depend on the values of the FB 

coefficients. As shown in Fig. 5(c), the abrupt changes of FB coefficients for the first 

component are high while those of the remainders are very low. Fig. 7 shows a comparison of 

the original bowed rotor signal, the reconstructed signal from the three components and the 

residual. As observed from this figure, the original signal could be reconstructed with a high 

degree of accuracy in shape and amplitude from its single components. However, the residual is 
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still large enough to contain useful information for fault diagnosis; therefore, this residual is 

used as the last component of the decomposition process for fault diagnosis. 

 

Fig. 5 a) Transient current signal of the bowed rotor in phase A, b) Current spectrum, c) FB 

coefficients 

Fig. 6 Single components of the bowed rotor signal in phase A  

Fig. 7 The bowed rotor signal in phase A: a) Original, b) Reconstructed, c) Residual 

 

Similarly, the process of identifying the components based on FB coefficients is repeated for 

the remaining phases (B and C) as well as all the remaining conditions. In total, 1680 

(3×4×140) components are obtained and used for the next stage. Fig. 8 shows the obtained 

components of all motor conditions in phase A. As observed in Figs. 8(a) and 8(b) which 

respectively present the first and the second components, the differences between each 

component are not clearly identified except the components of the bowed rotor. The most 

obvious difference among these conditions could be recognized as the differences in the time 

durations reaching to the steady state. However, it is easy to distinguish the differences from the 

conditions of the third and the fourth components, as shown in Figs. 8(c) and (d). The 

differences observed from these figures are not only the duration reaching steady state but also 

the amplitude variations of the motor conditions. Therefore, the component 3 and 4 are chosen 

as the signals inputted into the next stages of diagnosis framework. 

 

Fig. 8 The components of the motor conditions: a) Component 1, b) Component 2, c) 

Component 3, and d) Residual 

 

3.3. Feature extraction and reduction 

Normally, raw signals are rarely usable in their forms due to the redundancy and huge 

dimensionality which leads to difficulties of storage and inaccuracy in analysis. Thus, feature 

extraction is an essential signal preprocessing technique and plays a crucial role in fault 

diagnosis problem. Extracting features from raw signal is a process of drawing the useful 

information to remove artifacts and reduce the dimensionality. However, this process must 

preserve as much as possible the characteristics which indicate the fault pattern. In this study, 

feature extraction using statistical feature parameters from the time domain and the frequency 

domain is utilized for the chosen components of the previous stage. For each component, sixty-

three features consisting of ten features in the time domain, three features in the frequency 

domain, and eight features of regression estimation are extracted from the three current phases. 

The descriptions of these features are as shown from Table 2 to Table 4.  

 
Table 2 The statistical features in the time domain 

Table 3 The statistical features in the frequency domain 

Table 4 The statistical features of regression estimation 
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In order to observe the feature distribution of each single component, three features can be 

arbitrarily selected from the feature set. This visualization only provides the information to 

understand how the features distribute in same machine condition and how the clusters of the 

features separate in the different conditions. From this visualization, the reason of 

misclassification, if any, can be estimated based on the overlap of the features. Fig. 9 shows the 

distribution of the three-first features involving mean, RMS, and SF of the components 3 and 4. 

It can be seen that only the features of BR are slightly well clustered in the component 3, as 

depicted in Fig. 9(a), the remaining features are disorder and overlap with each other which 

significantly makes difficulty in classification. 

 
Fig. 9 The structure of the three-first features: a) Component 3, b) Component 4 (residual) 

 

To increase the separation among the feature clusters and reduce the feature dimensionality 

for effective computation, GDA is continuously applied to the original feature set of each 

component. Theoretically, GDA attempts to maximize the Fisher criterion in the high-

dimensional space that is constructed using the kernel function. In this way, GDA allows for the 

construction of nonlinear mappings that maximize the class separability in the data. The 

sufficient amount of necessary features to characterize the machine condition can be gained 

based on the eigenvalue of the covariance matrix (Yang & Widodo, 2009). As a result shown in 

Fig. 10, sixty-three features in the feature space are reduced to fifteen where the non-zero 

eigenvalues of covariance matrix are retained in the GDA space. The other features are 

discarded due to their very small eigenvalue. Furthermore, the structures of patterns related to 

the different conditions are reconstructed as shown in Fig. 11. It can be seen that the features of 

the same condition in new space are located close to each other and are well separated from the 

other conditions. This makes the classification process easier and more accurate. Thus, the new 

reduced feature set not only increases the classification performance but also provides an 

appropriate tool for a better discrimination of different motor conditions. As observed in Fig. 11, 

although the disorder of features is eliminated and the cluster is well carried out, overlap still 

exists in some group features, which can cause the inaccuracy in the diagnosis process. In Fig. 

11(a), BR, BRB, and PUN are well clustered; the remaining features of the component 3 are still 

overlapped. The same problem occurs in the features of the component 4, as illustrated in Fig. 

11(b). However, the separation is better than that of the component 3, in which the overlap 

happens only between the features of ECC and PUN while the others are well discriminated.  

 

Fig. 10 Eigenvalue of covariance matrix for feature reduction 

Fig. 11 The feature structure in the GDA space: a) Component 3, b) Component 4 
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3.4. Classification results of SFAM and the comparative studies 

The data sets of the features from previous stage have 140 samples obtained for 7 conditions 

for each component. This set is randomly partitioned by holdout validation method into a 

training set with 10 samples for each condition and a test set with the remaining samples. In the 

training mode, SFAM is trained by basic network setting, i. e. fast learning β = 1 and 

conservative mode α = 0.001. The value of VP varies from 0 to 0.9 with an increment step of 

0.1 to investigate the performance. The accuracy of classification in this mode achieves 100% 

for all values of VP. In the testing mode, the classifier is applied to the test data to validate the 

accuracy of the diagnosis, where the classification results are presented in Fig. 12. It can be seen 

that, the accuracy for the chosen component signals (the component 3 and 4) is very high, which 

the average values are respectively of 99.14% and 100%. Obviously, the residual gives a better 

result than that of the other component. The reason is that the components obtained from the 

decomposition process have eliminated the similarity caused by the line frequency in the 

transient signal; hence, the residual can retain useful information characterizing the difference 

of the machine conditions so that it can attain a higher result.  

 

Fig. 12 Classification results of SFAM 

Additionally, in order to emphasize the improvement of the proposed framework where FB 

expansion is used as a pre-processing tool, SVM using one-against-all strategy is also 

implemented as a classifier to compare the performance with SFAM and the previous studies 

(Niu et al., 2008; Widodo et al., 2009). The kernel parameter γ and the regularization C in SVM 

are similarly chosen. The classification results are presented in Table 5. As observed, the 

training accuracy obtained from this study is similar to the previous works and achieves the 

highest value (100%). However, in the testing process, the proposed framework with SVM 

classifier provides a significantly higher result in comparison with those of the previous studies. 

Consequently, the proposed framework using FB expansion for signal preprocessing has 

considerably improved the accuracy of classification. Meanwhile, SVM classifier has a lower 

accuracy (98.57%) in comparison with SFAM (100%) due to the overlaps mentioned in 

previous section. This indicates that SFAM is a worth classifier which is not only fast in 

learning but also accurate in diagnosing. 

 

Table 5 The comparison of classification results using SVM 

 

3.5. Comparison with the use of HVD to the framework 

In this section, a comparative study of using FB and HVD decompositions to the framework 

is carried out. According to the characteristics of HVD, the component signals decomposed 

from the original is gradually reduced amplitude, i. e. the first component contains the highest 

amplitude and the residual signal contains information of other lower amplitude components. 
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Hence, the similarity could occur in the first decomposed components of all machine conditions. 

For instance, as shown in Fig. 13 which depicts the results of HVD decomposition process of 

BR and ECC, the first components are very indistinguishable whilst the second and the third are 

easy to recognize the differences. Accordingly, the second and the third components are selected 

for fault diagnosis. The process of the feature extraction, feature reduction, and training 

classifier are similarly carried out. The accuracy of all values of VP in training mode achieves 

100% while the testing results of classification are presented in Fig. 14. It can be seen that, the 

accuracy of the component 3 is higher than that of the component 2 and reaches the maximum 

of 98.57% for the values of VP from 0.2 to 0.6. However, it is still lower than that of using FB 

to the framework. This indicates that FB is better than HVD in preprocessing signal for fault 

diagnosis of induction motor using transient signal. 

 

Fig. 13 HVD decomposition of a) BR condition, b) ECC condition 

Fig. 14 Classification results of using HVD to the proposed framework 

  

4. Summary and conclusions 

This paper has presented the novel data driven-based fault diagnosis framework for 

induction motors using the transient current signal. Its implementation follows three consecutive 

stages. Firstly, the transient current signals of motor conditions are decomposed into the single 

component signals using Fourier-Bessel expansion. As a result, four single components are 

separated from each phase of the original motor current. In the second stage, statistical features 

in the time domain and the frequency domain are extracted from each component. The 

generalized discriminant analysis (GDA) is then used as the feature manipulation tool to reduce 

the high dimensionality of the original features and increase the separation between the motor 

conditions. Finally, the SFAM classifier is applied to the extracted features to accurately identify 

the conditions of the motors.  

The accuracy of the SFAM classifier achieves the highest result where is of 100% in training 

and testing. A comparative study of the performance of this framework where SVM has been 

used as a classifier and those of the previous studies has been carried out. The results show that 

the proposed framework not only eliminates the smoothing and subtracting process used in 

previous works but also significantly improves the classification accuracy. Furthermore, SFAM 

provides a better performance in comparison with SVM. Additionally, HVD has been 

introduced to the framework as a preprocessing tool in order that the effectiveness of FB and 

HVD is appraised. The results illustrates that the accuracy obtained from FB is higher than that 

of HVD. It is eminently suitable to use for real fault diagnosis applications. 
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Fig. 1 The proposed framework for fault diagnosis 
 

 

 

 
Fig. 2 The architecture of SFAM network 
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Fig. 3 Test rig for experiment 
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Fig. 4 The similarity of transient current signals 
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Fig. 5 a) Transient current signal of the bowed rotor in phase A, b) Current spectrum, c) FB 

coefficients 
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Fig. 6 Single components of the bowed rotor signal in phase A 
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Fig. 7 The bowed rotor signal in phase A: a) Original, b) Reconstructed, c) Residual 
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Fig. 8 The components of the motor conditions: a) Component 1, b) Component 2, and c) 

Component 3, and d) Component 4 (Residual) 
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Fig. 9 The structure of the three-first features: a) Component 3, b) Component 4 (residual) 

 

 

 



 26

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of features

E
ig

e
n
v
a
lu

e

 
Fig. 10 Eigenvalue of covariance matrix for feature reduction  
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Fig. 11 The feature structure in the GDA space: a) Component 3, b) Component 4 
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Fig. 12 Classification results of SFAM 
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Fig. 13 HVD decomposition of a) BR condition, b) ECC condition 
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Fig. 14 Classification results of using HVD to the proposed framework 
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Table 1  
The description of motor conditions 

Fault condition Fault description Notes 

Normal Healthy condition - 

Bowed rotor Maximum bowed shaft deflection: 

0.075mm 

Air-gap: 0.25mm 

Broken rotor bar Number of broken bars: 12 Total number of 34 bars 

Eccentricity Parallel and angular misalignments Adjusting the bearing pedestal 

Faulty bearing spall on the outer raceway #6203 

Mass unbalance Unbalance mass on the rotor - 

Phase unbalance Add resistance on one phase 8.4% 

 

Table 2  
The statistical features in the time domain 

Features Expression Notes 
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Table 3  
The statistical features in the frequency domain 

Features Expression Notes 

Frequency center ∑∑ ==
=

N

i i

N

i ii xxxFC
1

2

2
2π&  ∆−= − )( 1ii xxx&  

RMS variance frequency ∑∑ ==
=

N

i i

N

i i xxRMSF
1

22

2

2 4π&   

Root variance frequency 2

1

22

2

2 )4( FCxxRVF
N

i i

N

i i −= ∑∑ ==
π&   

 

 

Table 4  
The statistical features of regression estimation 

Features Expression Notes 

Auto-regression 

coefficients: a1-a8 ∑ = − +=
n

i titit yay
1

ε  

yt is the signal under investigation, n is 

the order of auto-regression model, 

and εt is Gaussian white noise 

 

 

 

Table 5 
The comparison of classification results using SVM 

 Classification accuracy (%) 

Training Testing 

SVM applies for the component 4 100 98.57 

SVM applied for the detail d2 (Niu et al., 2008) 100 90.0 

SVM + PCA (Widodo et al., 2009) 100 76.19 

SVM + ICA (Widodo et al., 2009) 100 83.33 

 

 

  

 

 

 


