

University of Huddersfield Repository

Waters, Laura J., Dennis, Laura, Bibi, Aisha and Mitchell, John C.

Surfactant and temperature effects on paraben transport through silicone membranes

Original Citation

Waters, Laura J., Dennis, Laura, Bibi, Aisha and Mitchell, John C. (2013) Surfactant and temperature effects on paraben transport through silicone membranes. Colloids and Surfaces B: Biointerfaces, 108. pp. 23-28. ISSN 0927-7765

This version is available at http://eprints.hud.ac.uk/id/eprint/16920/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Highlights

- The presence of an anionic surfactant (sodium dodecyl sulphate), reduced the permeation of two model compounds, methylparaben and ethylparaben, through silicone membrane over a period of 24 hours.
- The degree of permeation reduction was proportional to the concentration of surfactant with a maximum effect observed at the highest surfactant concentration.
- Differences were seen around the critical micelle concentration (CMC) of SDS implying the effect was partially connected with the favoured formation of micelles.
- In contrast, the presence of a non-ionic surfactant (Brij 35) had no effect on the permeation of methylparaben or ethylparaben at any of the concentrations investigated, both above and below the CMC of the surfactant.
- An increase in experimental temperature appeared to enhance permeation, a finding that is in agreement with previously reported data. Interestingly, in the majority of cases this effect was optimum at the second highest temperature studied (45 °C) which suggests that permeation is a temperature-dependent phenomenon.