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Abstract 

 
It is well known, especially with the prevalence of compensation for geometric 

errors, that thermal error represents the most significant proportion of the total 

volumetric error of the machine tool. Thermal error in machine tools originates 

from changes to internal and external heat sources that vary the structural 

temperature of the machine tool resulting in the non-linear deformation of the 

machine structure. The ambient conditions inside and around the machine 

vicinity are varied not only by the external heat sources but, equally importantly 

but less well understood, by the machine itself when local air pockets are 

warmed inside the voids of the machine during the machining process. Air 

pockets are areas within the machine structure where the localized heat 

convection rate is reduced by the heat confined within them causing the 

temperature to vary slowly relative to the other places of the machine. This 

results in a relatively slower response of the associated structure. Consideration 

for this effect is an important, yet often ignored element of thermal modelling 

which deteriorates the prediction capability of many thermal models.  

     This paper presents a case study where FEA (Finite Element Analysis) is 

used for the thermal modelling of a machine tool and the issue of air pockets is 

addressed by measuring and considering the temperature in voids. It was found 

that the consideration of the most significant air pockets improved the prediction 

capability of the FEA thermal model in the Z-axis direction from 50% to 62% 

when compared with the experimental results Z-axis. This paper highlights the 

significance of air pockets with regard to the thermal modelling and it is 

believed that the consideration of the temperature measurement inside voids of 

the machine structure and inclusion of their effect may significantly improve the 

performance of any thermal model.         
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1 Introduction 

 
Thermal errors in machine tools are caused by temperature changes in the 

structure, which arise from internal and external heat sources. Non-uniform 

distribution of the temperature gradients leads to non-linear thermal expansion 

of structural elements, deteriorating the relation between the tool and workpiece 

positioning. There has been significant focus towards the development of error 

compensation models for thermal errors due to internal heat sources but 

relatively little on compensating for the effect of environmental temperature 

variations, although these are known to be significant, perhaps due in part to the 

associated machine downtime to measure the machine response. Predictive 

methods, such as finite element modelling (FEM) can be used to simulate such 

effects, but inaccuracy occurs with simplifications and uncertainties in the 

boundary conditions. This paper focuses on the effect of the localised heat 

confinement inside non-continuum solid areas i.e. structural voids within the 

machine tool containing pockets of air where the flow of heat to the surrounding 

environment is restricted. The surrounding structure typically responds slower to 

natural cooling relative to other assembly structures exacerbating the complexity 

of the machine distortion. 

     Several methods have been introduced to control thermal errors in machine 

tools from which the electronic compensation method can be considered as a 

cost effective and simple-to-implement solution which uses analytical, empirical 

and numerical approaches to create a relationship between the induced overall 

displacement between the tool and workpiece and the temperature change in 

order to compensate the error. Thermal error due to internally generated heat in 

machine tools has been the major focus among researchers. Hao [1] used a 

genetic algorithm-based back propagation neural network (GA-BPN) method 

using 16 thermistors placed at various location of a turning machine tool. The 

spindle, headstock, axis leadscrew and the bed were selected for temperature 

measurement to compensate dynamic and highly nonlinear thermal error, but 

only one ambient temperature sensor was used. The reported thermal error 

compensation improvement was 63% Du et al [2] applied an orthogonal 

regression technique to more than 100 turning centres of the same type and 

specifications. It was found that the technique was able to reduce the cutting 

diameter thermal error from 35µm to 12µm. The technique was stated as robust 

due to its year-round repeatable improvement in accuracy. The accuracy is 

expected to increase if long term shop floor environmental temperatures 

fluctuations were considered. Kim et al [3] analysed a ballscrew system for two 

dimensional temperature distributions both in real time and steady state using 

FEM. The proposed FEM model was based on the assumption that the screw 

shaft and the nut are solid and hollow cylinders respectively. The convective 

coefficient was also assumed to be constant. Huo et al [4] carried out an FEM 

analysis on a grinding machine aimed to integrate the effects of thermal 

deformation of the machine structure and the heat produced by the machining 

process. At first, the temperature distribution was simulated followed by 

validations by the on-machine measurements. The temperature information was 



then used to estimate the thermal deformation. The machining process was also 

simulated to obtain the temperature distribution within the cutting zone and its 

effect on the machine. This temperature information was used as an input heat 

source to the FEM. The preliminary results for simulated temperature 

distribution and displacements in the Z-axis direction are shown for 3.6 minutes 

and quoted as, “promising”. Environmental effects around the machine were not 

considered. A review conducted by Mayr et al [5] details the importance of 

measuring the effect of thermal errors in machine tools where, besides other 

important thermal error contributors such as coefficients of thermal expansions 

and conductivity of associated materials, attention is drawn towards the 

importance of taking into account the varying ambient conditions. Similarly, 

research from Longstaff et al [6] and Fletcher et al [7] also drew attention 

towards the effect of environmental fluctuations by conducting case studies on a 

variety of machines. In an attempt to monitor the environmental thermal error on 

machine tools, Mian et al [8] conducted research on a small 3 axis Vertical 

Machining Centre (VMC) production machine tool in order to model thermal 

errors using FEA. Two environmental thermal error tests, conducted in summer 

and winter, were reported to show variable overall temperature fluctuations. In 

summer the overall temperature fluctuated by 4°C, resulting in a deflection of 

12µm in the Y axis and 28µm in the Z-axis whereas 5°C fluctuation in winter 

revealed 18µm in the Y axis and 35µm in the Z axis. The correlation between 

the measured and simulated results was shown to be better than 60% for both 

tests. Mian et al [9] analysed the machine deformation due to the effect of 

internal heat sources during spindle heating tests while the ambient conditions 

were measured. Comparison with simulated results using FEA showed that the 

correlations had an improvement from 50% to 62% by considering the effect of 

a few observed air pockets inside the machine structure. 

     FEA has therefore been shown to be an important tool for model 

development and error compensation. However, improvement in accuracy can 

be gained by reducing assumptions and including in the model important 

aspects. This paper seeks to include in the model, with justification, 

consideration of the thermal behaviour of air pockets, which may be categorized 

as internal ambient sources. Air pockets are common due to the many structural 

voids required to make the structure both rigid and lightweight. The size and 

location of these air pockets may result in a varying influence producing 

asymmetry and non-linearity in the overall thermal behaviour of the machine 

tool.  

     This paper provides a case study which highlights the significance of air 

pockets with regard to their nature of existence and their contribution towards 

the overall performance of the machine. The paper is structured in two stages. 

The first stage provides the modelling and experimental methods required to 

include the thermal behaviour of air pockets in the thermal model and cites the 

accuracy improvement achievable presented by Mian [9] of the Z-axis 

displacement with when considering air pockets in the thermal model. In the 

second stage, these air pockets are simulated and analysed individually and 

compared with the measured results in essence to relate their nature of existence 



such as their geometry, location and size with their significance on the overall 

thermal performance of the machine. All simulations include the analysis of the 

full machine and the improvements in the correlation with the vertical Z 

direction, being the most significant [9] are presented. 

 

2 Case Study 
 

Mian et al [9] showed a method of using FEA for the thermal modelling of 

machine tools. The work revealed that consideration of air pockets is required to 

improve accuracy. The test comprised of 1 hour stabilization period, to attempt 

to provide a stable initial condition, followed by one hour heating and one hour 

cooling phases.  

 

2.1 Air pockets 

 

Air pockets are voids and gaps either inside the structure or in the immediate 

vicinity of the machine where the heat from either the machining process or 

external sources is confined due to restricted air flow, which consequently 

reduce the natural cooling rate of the associated structure. The location, size and 

geometry of an air pocket can be critical to the overall thermal performance of 

the machine. In this case study, three air pockets were analysed individually to 

observe their significance on the overall thermal performance of the machine:  

 One side of the column was very close to the attached electrical cabinet 

(termed as column/elect) and is an “open” air pocket 

 The front of the column was close to the carrier head (termed as 

column/carrier) 

 The column itself is a hollow structure used to route machine cables 

which also generate a localized heat source (termed as 

column/hollow).  

     Each air pocket analysed had a different nature and geometry such as the 

column/elect air pocket which is outside the machine i.e. it is a gap between the 

electrical cabinet and the column with the size of 140mm x 461mm x 1537mm. 

This gap behaves, thermally, as an air pocket due to restricted airflow, which 

traps the radiation from the electrical cabinet and from the heat of electrical 

cables passing from the cabinet into the column. The column/hollow air pocket 

is a tall hollow geometrical air pocket inside the column with the size of 236mm 

x 418mm x 1198mm having a relatively small aperture size of 236mm x 210mm 

which restricts the air flow. The column/carrier air pocket is a gap between the 

carrier head of the machine and the column to house the ball screw with the size 

of 289mm x 125mm x 960mm. The exterior ballscrew guard is a flexible, 

hinged metal plate, whose nature and therefore effect on the airflow, changes 

with axis position.   

  

 

 

 



2.1.1 Application of ambient temperatures to the FEA model 

 

Figure 1 show the temperature measured by the base ambient sensor, column 

ambient sensor, and internal ambient sensor. These three sensors were originally 

placed on the machine prior to the experimentation with air pockets. The result 

shows that the internal sensor is affected by being inside the enclosed machine 

guarding.  

   

 
Figure 1: Ambient temperature measured around the machine (8000rpm – By 

originally placed sensors) 

 

In the first stage simulation, ambient temperatures from the three temperature 

sensors were applied in the FEA model. Since the variations in the ambient 

temperatures measured were not significant, it was decided to use single 

averaged values to define sink temperatures (Abaqus film condition) in the 

software. This simplifies simulation setup and helps reduce simulation times. 

The temperature data from the inside ambient sensor was applied to the 

column/carrier face with 25.5°C. The temperature data from the column ambient 

sensor was applied to the column with 24.25°C. The temperature data from the 

base ambient sensor was applied to the base/table face with 24.5°C.  The 

obtained convection value of 6W/m
2
/C was applied to the full machine 

structure during simulations apart from the test mandrel which was applied with 

92W/m
2
/°C during the 8000rpm heating cycle and 6W/m

2
/°C during the cooling 

cycle [9].  

      The correlation between FEA and experimental testing, shown in Figure 7 

(where a comparison can be made between the profiles with and without 

considerations to air pockets), Z-axis was be around 45%. The low correlation 

and lack of profile convergence in the Z-axis direction was examined. The 

experimental results show a faster Z-axis response, especially in the cooling 

phase, which could be a result of additional carrier and column bending caused 

by non-uniform ambient temperatures due to the aforementioned air pockets. 

 

2.1.2 Re-testing the machine 

 
The number of ambient temperature sensors was increased and placed in 

proximity to the main identified air pockets. Figure 2 shows the positions of six 

temperature sensors placed around the machine, three ambient sensors (in bold) 

placed originally and the additional three ambient sensors which were placed 



later inside the suspected air pockets (in italics). Figure 3, Figure 4 and Figure 5 

show, in blue, the local ambient changes detected by these new temperature 

sensors. The original measured column ambient temperature is also plotted, in 

red, to show the differences between ambient temperatures. 

 

 
Figure 2: Position of the ambient sensors around the machine 

 

 
Figure 3: Ambient temperature 

inside column/carrier air pocket 

 
Figure 4: Ambient temperature 

inside column/hollow air pocket

 

 
Figure 5: Ambient temperature inside column/elect air pocket 

 

The column/carrier air pocket showed a linear temperature increase during the 

heating cycle whereas the column/hollow air pocket showed a gradual 

temperature increase throughout the test span which is suspected to be due to the 

heating of cabling inside. Relatively, a rapid and significant temperature 



increase can be observed inside the column/elect air pocket during the 

stabilization period which is suspected to be the heat from the electrical cabinet 

and the cables being confined when the drives were energised during the 

machine stabilization phase (first hour). It can also be observed that the initial 

temperature had a large magnitude difference compared to the initial 

temperatures of other air pockets and the outside column environment.  

     Previously the whole column was simulated with a constant ambient (sink) 

temperature in Abaqus. However, the above plots confirm that ambient 

temperature around the column is not constant. The local temperature change 

was selected from each plot and applied to the respective column sides as sink 

temperature. The column/carrier face was simulated with a temperature of 

25.35°C considering that approximately 1.6°C temperature change occurred at 

that face from the start of the test (23.75°C surface temperature measured at the 

column). Similarly the inside face of the column was simulated with 25.25°C 

considering  approximately 1.5°C temperature change and the column/Electrical 

cabinet face was applied with 27.25°C considering  approximately 3.5°C 

temperature change.  Figure 6 show the column faces where ambient magnitudes 

obtained from the new test were applied. 

 

 
column/carrier 

interface air pocket 

 
column/hollow 

air pocket 

 
column/elect 

cabinet air pocket 

 
Column back face 

(column ambient) 

Figure 6: Measured temperatures applied to the faces of the machine column to 

represent potential air pockets in Abaqus 

 

The simulation was repeated and Figure 7 show the correlation results for the Z-

axis where a comparison can be made between the profiles with and without 

considerations to air pockets. Importantly, in the Z -axis direction an improved 

correlation of 62% was achieved compared to around 45% for the simpler 

model. The residual error remained is less than 10µm in magnitude. Figure 8 is 

the visual representation of the simulated deformation of the machine. 
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Figure 7: Z-Displacement profiles correlation (8000rpm) 

 

 
Figure 8: Simulated visual representation of deformation of the machine due to 

internal heating 

 
2.2 Analysis of individual air pockets 

 

This section details simulation-based analysis for each air pocket. The aim is to 

distinguish between the nature of the existence of air pockets with respect to 

their significance toward affecting the overall thermal performance of the 

machine. In this case study, all air pockets were considered as rectangular areas, 

although this is a justifiable simplification. Since the consideration of all air 

pockets in the FEA model improved the correlations of the Z-axis [9], at this 

stage it is important to note the distinction of each air pocket towards overall 

improvement of results for which each air pocket is now individually analysed. 

This is important analysis when undertaking error avoidance, to design out the 

cause of the error, or during development of thermal compensation to ensure the 

correct locations are monitored. Simple methods, such as improving ventilation, 

can be inherently more stable than implementing sophisticated and specialized 

compensation.  
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Figure 9: Individual air pocket towards the overall correlation improvement   

 

     The results shows that without the consideration of air pockets in the FEA, 

the model results showed excessive displacements during the heating cycle 

compared to the measured results. To a lesser extent, the cooling cycle results in 

the FEA also show deviation in amplitude. It is obvious from results that the 

column/carrier air pocket had the most effect and caused excessive bending in 

the column, which in effect created an angle, or out-of-squareness of the whole 

spindle-carrier structure. This effect better matched the measured cooling cycle 

profile but also brought the overall magnitude of the Z displacement closer to 

the measured. In comparison, the rest of air pockets individually improved the 

overall performance to a lesser extent. Table 1 shows the correlation 

improvement from inclusion of air pockets. 

 

Table 1: Correlation improvements  

Air pocket Correlation improvement 

No air pocket 45% 

column/elect 47% 

column/hollow 46% 

column/carrier 54% 

All pockets 62% 

   

     It can be observed that the most significant air pocket is the gap between the 

column and the carrier, which is not a structural void, and which apparently 

experiences the most heat build-up during the heating cycle and fails to release it 

during the cooling cycle. The resultant heat inside the gap is suspected to be the 

combination of heat radiation from the carrier structure and the ball screw 

motor; and from the air flow around the spindle and test mandrel consequently 

turning that gap into a virtual heat source. Careful investigation of this area 

revealed that the lack of ventilation was due to the ballscrew motor restricting 

the airflow by effectively sealing the top of the void. The effects from air 

pockets may be reduced by improving the ventilation system by considering the 

size of apertures and creating airflow by installing small fans.  

 



3 Conclusions 

 
This paper explains the behaviour of air pockets inside the structure of a 

machine tool and their effect on the overall machine thermal performance. An 

improvement in the correlation of results between the measured and the FEA 

simulated results was achieved by including the effect of air pockets in the FEA 

model. Correlation result from a spindle heating test was improved from less 

than 45% to 62% in the Z-axis with spindle running at 8000rpm. Later, each air 

pocket was analysed individually to understand their significance on the overall 

correlation improvement. Perhaps counter intuitively, the most significant 

pocket was between the column and the carrier.  

     It can be stated that error avoidance by good design to counter the effect of 

air pockets is recommended where convenient. However, in cases where 

avoidance is not possible, air pocket behaviour must be considered during the 

development of any thermal compensation model to improve their predictability. 
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