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Abstract 

In this study, a novel fault diagnosis system for rotating machinery using thermal imaging is 

proposed. This system consists of bi-dimensional empirical mode decomposition (BEMD) for 

image enhancement, a generalized discriminant analysis (GDA) for feature reduction, and a 

relevance vector machine (RVM) for fault classification. Firstly, the thermal image obtained 

from machine conditions is decomposed into intrinsic mode functions (IMFs) by using BEMD. 

At each decomposed level, the IMF is expanded and fused with the residue by grey-scale 

transformation and principal component analysis fusion technique, respectively. The enhanced 

image is then formed by the improved IMFs in reconstruction process. Subsequently, feature 

extraction is applied for the enhanced images to obtain histogram features which characterize 

the thermal image and contain useful information for diagnosis. The high dimensionality of the 

achieved feature set can be reduced by GDA implementation. Moreover, GDA also assists in the 

increase of the feature cluster separation. Finally, the diagnostic results are performed by RVM. 

The proposed system is applied and validated with the thermal images of a fault simulator. A 

comparative study of the classification results obtained from RVM, support vector machines, 

and adaptive neuro-fuzzy inference system is also performed to appraise the accuracy of these 

models. The results show that the proposed diagnosis system is capable of improving the 

classification accuracy and efficiently assisting in rotating machinery fault diagnosis. 

 

Keywords: Thermal image; Bi-dimensional empirical mode decomposition; Rotating machinery 

fault diagnosis; Generalized discriminant analysis; Relevance vector machines 
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1. Introduction 

Rotating machinery covers a wide range of mechanical equipment and is of importance in 

industrial applications. Therefore, faults occurring in rotating machinery may severely affect 

operations in industry and even safety. In order to minimize the number of breakdowns as well 

as to increase the reliability, rotating machinery condition should be monitored for symptoms 

and incipient fault detection. By this, the life of machinery could be prolonged and the 

catastrophic consequences of unplanned failure could be avoided. Consequently, fault diagnosis 

and condition monitoring of rotating machinery have been the research subject in recent years. 

Traditionally, to monitor the conditions and diagnose the faults of rotating machinery, acoustics 

and vibration are commonly used signals due to their easy-to-measure characteristics and 

analysis. Some outstanding works [1-6] have successfully employed these signals for fault 

detection and diagnosis areas. However, it is necessary to increase the fault diagnosis capability 

and implement suitable signals which intensify the fault detection ability for highly automatic 

rotating machinery. 

In recent times, infrared thermal image has been considered as a new signal which can be 

applied for fault diagnosis because of the possibility to indicate the object’s operating condition 

through its temperature. In the study of Bagavathiappan et al. [7], the operating conditions of 

blower bearings, shaft at the impeller end, and motors in ventilation systems of nuclear plants 

were monitored by the temperature obtained from thermal images. The result of this study 

showed that thermography could assist in detecting the abnormal operation of various 

components at an early stage of impending failure. Younus et al. [8] used thermal imaging for 

diagnosing the faults of rotating machinery in which principal component analysis (PCA) and 

independent component analysis (ICA) were utilized as feature extraction tools whilst support 

vector machine (SVM) was employed as a classifier. Moreover, the classification accuracy of 

SVM was also compared with other classifiers such as parzen probabilistic neural networks, 

fuzzy k-nearest neighbor, and adaptive resonance theory-Kohonen neural network. In another 

work in [9], thermal images of rotating machinery conditions were decomposed by two-

dimensional discrete wavelet transform. For each level obtained from the decomposition 

process, histogram features was extracted and selected by Mahalanobis distance and relief 

algorithm to choose salient features. Subsequently, SVM and linear discriminant analysis were 

applied as classifiers for each level. 

Generally, the classification accuracy of those studies was not significant because the 

thermal images were not enhanced before implementing feature extraction or classification. 

Image enhancement, which is a function of image processing, aims to augment some 

information in an image as a specific requirement, weaken or remove some unwanted 

information, so that it changes the original image into a more suitable form for human 
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observations or computer analysis. Traditionally, image enhancement technologies can be 

divided into two categories [10]: image enhancement on spatial domain and image enhancement 

on frequency domain. Several methods consisting of histogram equalization, adaptive contrast 

enhancement, smoothing, sharpening, color processing, etc. have been utilized in these 

categories. 

The first commonly used method for image enhancement is histogram equalization (HE). As 

a consequence, HE flattens the density distribution of the resultant image and enhances the 

contrast of the image, since it has an effect of stretching dynamic range [11]. However, HE 

changes the brightness of the image significantly and makes the image saturated with very 

bright or dark intensity values [12]. The second method is un-sharp masking (USM). The classic 

linear USM is implemented by passing a low-contrast image through a linear two-dimensional 

high-pass filter and then adding a fraction of its output to the origin. This method enlarges the 

image noise, particularly in uniform areas of even slightly noisy images and causes overshoot 

artifacts in high-contrast regions. HE and USM are only the compromise between de-noising 

and enhancing image details. Furthermore, they are also less sensitive to noise presented in the 

input. Another commonly used method is wavelet transformation. The main advantage of this 

method is that no artificial information is introduced into the enhanced image. This allows some 

flexibility in different applications. Nevertheless, wavelet transformation has a major drawback 

where the basis function has to be defined a priori and this choice may influence the final results. 

To overcome the shortcomings of the above traditional methods, several image enhancement 

methods were proposed in which some of them were based on bi-dimensional empirical mode 

decomposition (BEMD). BEMD is a two-dimensional generalization of the classical empirical 

mode decomposition (EMD), which was proposed by Huang et al. [13] to extract the frequency 

components of a signal. Theoretically, any complicated signal can be decomposed into a set of 

intrinsic mode functions (IMFs) based upon the local characteristic time scale of the signal. 

EMD is self-adaptive and highly efficient in non-stationary data analysis because IMFs, 

working as the basis functions, are determined by the signal itself. Accordingly, BEMD 

overcomes the wavelet transformation drawback and provides a promising image processing 

technique that can be applied in various areas of image analysis, e.g. image fusion [14], image 

compression [15-16], texture analysis [17-18], feature extraction [19], etc. Numerous 

expansions of BEMD are afterwards developed for image enhancement. Qin et al. [20] used 

BEMD to decompose the medical images and the high frequency information was then 

expanded to obtain the enhanced images. Çelebi et al. [21] utilized BEMD to separately 

decompose the color channels of underwater color images into IMFs; then, the weighted IMFs 

of each channel were combined to reconstruct the enhanced images [22]. Other image 

enhancement methods based on ensemble EMD [23] and fast and adaptive BEMD [24] were 
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developed by Bakhtiari et al. in [22] and [25], respectively. In this study, a novel method which 

is a combination of BEMD and PCA fusion technique [26] is proposed to enhance the thermal 

images of machine conditions. The thermal images are iteratively decomposed into the IMFs. At 

each decomposition step, the obtained IMF is expanded by grey-scale transformation and then 

fused with the residue by using PCA fusion. The enhanced image is obtained from the 

reconstruction once the decomposition process is terminated. 

Next, the enhanced images are the input of the feature extraction process to draw out useful 

information. According to Umbaugh [27], the image features consist of histogram, spectral, 

texture, and color. Among these, histogram features which are truly statistical features are a 

compact representation of image characteristics without requiring knowledge about them. 

Moreover, histogram features also provide information about the characteristics of the intensity 

grey level distribution for the image. Hence, they are suitable for fully automatic 

characterization of images and are used in this study. Histogram features consist of mean, 

standard deviation, skewness, energy, entropy, and kurtosis. Normally, these features are rarely 

usable because of the huge dimensionality leading to the increase of computational complexity 

and the decrease of accuracy in fault diagnosis. Therefore, dimensionality reduction is the 

necessity for data preprocessing techniques. In fault diagnosis, there have been numerous 

approaches for feature reduction such as ICA, PCA [28], and genetic algorithms [29], etc. In this 

study, the generalized discriminant analysis (GDA) [30] based feature reduction is investigated 

with the aim of improving the classification performance. 

Selecting the model is the last stage in this system in order to diagnose the machine 

conditions. The classification models have a wide range of approaches which are varied from 

model-based to pattern recognition-based. Amongst these, machine learning and artificial 

intelligence are regularly used for machine fault diagnosis system due to their accuracy and 

flexibility. In machine learning techniques, the relevance vector machine (RVM) which was 

originally introduced by Tipping [31] is one of the remarkable models. However, the original 

RVM could only be implemented for binary classification which merely encounters in real 

applications in general and fault diagnosis in particular. Therefore, RVM was developed from 

the original for multi-class classification by introducing multinomial logistic regression [32] and 

applied for fault diagnosis of low speed bearing [33]. In this study, multi-class RVM is used for 

classifying the different machine conditions such as normal, misalignment, mass unbalance, and 

bearing fault. A comparative study of the classification results obtained from RVM, SVM [34], 

and adaptive neuro-fuzzy inference system (ANFIS) [35] is also carried out to appraise the 

accuracy of these models.  

2. Background knowledge 

2.1. Histogram features 
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Let’s consider an image I, the first-order histogram probability P(g) can be defined as:  

( )
( )

N g
P g

M
=          (1) 

where M is the number of pixels in the image I, N(g) is the number of pixels at grey level g. The 

histogram features of image based on the first-order histogram probability are mean, standard 

deviation, skew, energy, entropy, and kurtosis. These features are expressed as followings 

2.1.1. Mean: is the average value that gives some information about general brightness of image. 

Denote L as total number of grey levels for the available range from 0 to 255 for the image. The 

mean can be defined as: 

1

0

( , )
( )

L

g r c

I r c
g gP g

M

−

=

= =∑ ∑∑        (2) 

where I(r,c) is the grey level value of the image I at point (r,c); r and c are respectively row and 

column. 

2.1.2. Standard deviation: is the square root of the variance. It provides us something about the 

contrast and also describes the spread in the data, so a high contrast image will have a high 

variance, vice versa. Standard deviation is defined as follows: 
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2.1.3. Skewness: measures the asymmetry about the mean in the grey-level distribution. It is 

defined as: 

1
3

3
0

1
( ) ( )

L

gg

S g g P g
σ

−

=

= −∑        (4) 

The skewness could also be measured by using the mean, mode, and the standard deviation 

where the mode is defined as the peak or highest value. This method is more computationally 

efficient, especially when the mean and the standard deviation have already been calculated 

mode
'
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2.1.4. Kurtosis: is a measure characterized the peakedness or flatness of the grey-level 

distribution. It is given by the ratio of the fourth central moment and the square of the variance.  

41
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2.1.5. Energy: is a measure that tells us something about how the grey levels are distributed: 
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The energy measure has a maximum value of 1 for an image with a constant value, and it 

gets increasingly smaller as the pixel values are distributed across more grey-level values. 

2.1.6. Entropy: is a measure that provides us how many bits we need to code the image data and 

is given by: 
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2.2. Bi-dimensional empirical mode decomposition (BEMD) 

The central idea of the BEMD is the sifting process to decompose any given image into is its 

frequency components, namely intrinsic mode functions (IMFs), which satisfy two conditions: 

• The number of extrema and the number of zero crossings must either be equal or differ at 

most by one. 

• At any point, the mean value of the envelope defined by the local maxima and the 

envelope defined by the local minima are zero. 

Given the digital image I = f(x,y), x = 1,…, K, y = 1,…, L , where K and L are the total 

number of rows and columns in the discrete-domain image, respectively. The decomposition 

process is summarized as follows [17, 36]: 

1. Initialization: ),(),(0 yxIyxr = (the residual) and i = 1 (index number of IMF) 

2. Extraction of the ith IMF: 

(i) Initialize ),(),( 10 yxryxh i−= , j = 1  

(ii) Identify all the extrema involving maxima and minima of ),(1 yxh j−  

(iii) Compute the upper envelope ),(1 yxu j − and the lower envelope ),(1 yxl j −  of 

),(1 yxh j− by connecting maxima points and minima points using surface 

interpolation, respectively. 

(iv) Calculate the mean of the upper and the lower envelopes: 

2/)],(),([),( 111 yxlyxuyxm jjj −−− +=      (9) 

(v) Update 

),(),(),( 11 yxmyxhyxh jjj −− −=       (10) 

and j = j + 1 

(vi) Calculate stopping criterion using the normalized standard deviation (SD) which 
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can be computed from the two consecutive sifting results: 

∑∑
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(vii) Repeat steps (ii) to (vi) until ξ≤ijSD , where ξ is an a priori constant, then 

),(),( yxhyxs ji = is ith IMF 

3. Update the residual ),(),(),( 1 yxsyxryxr iii −= −   

4. Repeat steps (2)-(3) with i = i + 1 until the number of extrema in ),( yxri is less than 2 

At the end of the decomposition, the original image I(x,y) can be reconstructed using the 

following equation 

∑
=

+=
n

k

nk yxryxcyxI
1

),(),(),(       (12) 

where rn(x,y) denotes the final residue, n is the number of IMFs, ck(x,y) is the kth IMF. 

2.3. Generalized discriminant analysis for feature reduction 

The generalized discriminant analysis (GDA) [30, 37-38] deals with a nonlinear 

classification using a kernel function Φ which maps the original space X into new high-

dimensional features space Z. The within-class scatter and between-class scatter matrix of the 

nonlinearly mapped data is: 

1 1

( ) , ( ) ( )
c

C C
T T

c c c

c c x X

B M m m W x x
φ φ φ φ φ φ

= = ∈

= =∑ ∑∑      (13) 

where 
c

m
φ is the mean of class Xc and Z, Mc is the number of samples belonging to Xc. The aim 

of the GDA is to find such projection matrix U
φ
 that maximizes the ratio 

1 2

| ( ) |
arg max [ , ,..., ]

| ( ) |

T

opt NT
U

U B U
U u u u

U W Uφ

φ φ φ
φ φ φ φ

φ φ φ
= =      (14) 

The vectors u
φ
 can be found as the solution of the generalized eigenvalue problem i.e., 

i i i
B u W u

φ φ φ φλ= . The training vectors are supposed to be centered (zero mean, unit variance) in 

the feature space Z. From the theory of reproducing kernels, any solution u
φ∈ Z must lie in the 

span of all training samples, i.e.  

1 1

( )
cMC

ci ci

c i

u x
φ α φ

= =

=∑∑         (15) 

where αci are some real weights and xci is the ith sample of the class c. The solution is obtained 
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by solving 

T

T

KDK

KK

α α
λ

α α
=         (16) 

where ( ), 1,...,
c

c Cα α= = is a vector of weights with ( ), 1,...,
c ci c

i Mα α= = . The kernel matrix 

K(M × M) is composed of the dot products of nonlinearly mapped data, i.e. 

( ); 1,..., ; 1,...,
kl

K K k C l C= = =        (17) 

where ( ( , )); 1,..., ; 1,...,kl ki lj k lK k x x i M j M= = = . The matrix D(M × M) is a block diagonal 

matrix such that  

( ); 1,...,
c

D D c C= =         (18) 

where the cth on the diagonal has all elements equal to 1 /
c

M . Solving the eigenvalue problem 

yields the coefficient vector α that defines the projection vectors u
φ∈ Z. A projection of a testing 

vector 
test

x is computed as [25] 

1 1

( ) ( ) ( , )
cMC

T

test ci ci test

c i

u x k x x
φ φ α

= =

=∑∑       (19) 

The procedure of the proposed algorithm could be summarized as follows: 

• Compute the matrices K and D by solving the Eq. (17) and Eq. (18). 

• Decompose K using eigenvector decomposition 

• Compute eigenvectors α and eigenvalues of Eq. (14) 

• Compute u
φ
 using αci from Eq. (15) and normalize 

• Compute projections of the test points onto the eigenvectors u
φ
 using Eq. (19) 

 

2.4. Relevance vector machine 

The RVM has the probabilistic Bayesian learning framework, which outputs probabilities of 

class membership. Originally, RVM was derived and experimented on binary classification 

where it was desired to predict the posterior probability of membership of one of the classes 

given the input x. Recently, the RVM was developed for multi-class classification using 

multinomial logistic regression [32]. In the following, the basic theory of RVM is briefly 

introduced. Further details of the RVM could be found in [31]. For binary classification, 

following statistical convention and generalizing the linear model by applying the logistic 

sigmoid function ( ) 1 / (1 )y
y eσ −= +  to y(x) and adopting the Bernoulli distribution for )|( xtP , 

the likelihood is written as [31]: 
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1

1

( | ) { ( ; )} [1 { ( ; )}]n n

N
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n n

n

P y yσ σ −

=

= −∏t x x w x w      (20) 

where the targets }1,0{∈it . However, the weights w cannot be analytically integrated, and so 

are denied the closed-form expression for either the weight posterior ( | , )p w t α  or the marginal 

likelihood ( | )P t α , with a hyper-parameter vector αααα. Due to the fact that the weights cannot be 

analytically obtained, the approximation procedure proposed by MacKay [39], which is based 

on Laplace’s method, is used as the following: 

1. For a fixed value of αααα, the most possible maximum posteriori weights (wMP) are found, 

giving the location of the mode of the posterior distribution. Since 

( | , ) ( | ( | )p P p∝w t α t w) w α , this is equivalent to finding the maximum, over w, of 

1

1
log{ ( | ) ( | )} [ log (1 ) log(1 )]

2

N
T

n n n n

n

P p t y t y
=

= + − − −∑t w w α w Aw    (21) 

where )};({ wxnn yy σ= , ),...,,( 10 Ndiag ααα=A for the current values of αααα. This is a 

penalized logistic log-likelihood function and necessitates iterative maximization. Thus, 

the following procedure adopts the iteratively reweighed least-squares algorithm [40] to 

find the wMP. 

2. Eq. (21) is differentiated twice, then give 

 )(|),|(log ABΦΦαtw www +−=∇∇ T

MP
p      (22) 

where ),...,,( 21 Ndiag βββ=B is a diagonal matrix with { ( )}[1 ( )]
n n n

yβ σ σ= −x x , and 

Φ is the )1( +× NN design matrix with T
N )](),...,(),([ 21 xxxΦ φφφ= , where in 

T
Nnnnn KKK )],(),...,,(),,(,1[)( 11 xxxxxxx =φ . This result is then negated and inverted to 

give the covariance ∑∑∑∑ for a Gaussian approximation to the posterior over weights 

centered at wMP 

3. Using the statistics ∑∑∑∑ and wMP, the hyper-parameter αααα is updated by 

 
2
MP

inew
i

w

γ
α =         (23) 

where iiii ∑−= αγ 1 ;
ii

∑  is the ith diagonal element of the covariance 1( )T −
∑ = +Φ BΦ A   

and BtΦw T
MP ∑=  

For solving the multi-class problem, the original formulation of RVM essentially treats the K 

multi-class problem as a series on n one-against-all binary classification problem. This would 

translate into training n binary classifiers independently. The likelihood in Eq. (20) is 

generalized to standard multinomial form: 
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where tnk is the indicator variable for observation n to be a member of class k; yk is the predictor 

of class k. Here, a true multi-class likelihood can be stated as [41]: 

∏∏
= =

=
N

n

K

k

t
kk

nkyyyyP
1 1

21 },...,,;{)|( σwt       (25) 

where the predictors of each class yk is coupled in the multinomial logic function (or soft-max) 

1 2
1 2( ; , ,... )

k

k

y

k k yy y

e
y y y y

e e e
σ =

+ + +L
      (26) 

3. The proposed system for fault diagnosis 

The proposed system for rotating machinery fault diagnosis using thermal imaging is shown 

in Fig. 1. This system consists of several modules: image capture, image preprocessing, image 

enhancement, histogram feature extraction, feature reduction, and classification. Thermal 

images are captured from the machine conditions such as normal condition, misalignment, mass 

unbalance, and bearing fault. These images are then processed by the preprocessing module for 

cropping the region of interest (ROI), removing the noise, and enhancing the contrast in ROI 

using the HE algorithm before they are input to the image enhancement module. 

Fig. 1 Proposed system for thermal image based fault diagnosis 

A method for ameliorating the image quality in the enhancement module is proposed as 

follows: 

(i) BEMD decomposes the original images into IMFs which reduce the frequency 

information gradually. At each step of decomposition, the high-frequency information 

part being IMF and low-frequency information part being the residue are obtained. The 

former expresses the image texture whilst the latter expresses the content of the image. 

(ii) Once the IMF is obtained, it is expanded to be clearer and more prominent by 

multiplying by factor k. This factor is set in 1< k< 3. For k too high, the highest 

frequency is augmented too much hence the borders become too prominent. For k 

smaller than 1, results in the loss of borders.  

(iii) The expanded IMF is fused with the residue by using PCA. 

(iv) The steps from (i) to (iii) are iteratively carried out until the decomposition process is 

terminated.  

(v) Finally, the enhanced image is reconstructed from the fused IMFs. 
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After being enhanced, the images are input to the feature extraction module for computing 

the histogram features. However, as mentioned before, the features are normally of high 

dimensions, are not well clustered, and may contain a large amount of redundant features. These 

will decrease significantly the performance and increase the computational time if the features 

are directly input into the classifier. Therefore, GDA is employed to transform the exiting 

features into lower dimension space and allow for the construction of nonlinear mappings that 

maximize the class separability in the feature set. Finally, these features will be split into 

training and test data to generate the diagnostic model through the learning process and to 

validate the model. 

 

4. Experiment 

To validate the proposed system, a series of experiments were carried out using a fault 

simulator which consists of driving motor, shaft, disk, PC for saving data, and thermal camera 

as shown in Fig. 2. The short shaft, which is of 30 mm diameter and is supported by two ball 

bearings at the ends, was attached to the shaft of the driving motor through a flexible coupling. 

This coupling is also used to adjust the misalignment condition on the fault simulator. In order 

to create the unbalance condition, a disk with many available screwed holes to add extra mass 

were attached on the shaft. The variable speed DC motor (0.5 HP) with speed up to 3,450 rpm 

was used as the driving motor. Table 1 shows the main specifications of thermal camera and 

fault simulator. This camera used in the experiments was a long-wave infrared camera from 

FLIR with a thermal sensitivity of 0.08 °C at 30 °C.  

Fig. 2 Experimental setup 

Table 1 Main specification of thermal camera and fault simulator 

The thermal camera is the key device and some its parameters require to be set due to their 

importance for data acquisition, especially for thermal image data. The most important 

parameter is emissivity and the other parameters are relative humidity, scale temperature, focal 

length of camera, and distance. All of these parameters are chosen according to experimental 

condition. In this study, all parameters were maintained constant. The experiment for each 

condition was carried out as followings: the speed of the motor was increased gradually up to 

900 rpm. This speed was held for five minutes to enable the machine to reach its stable 

condition. The image acquisition processes for normal, misalignment, mass unbalance, and 

bearing fault conditions were then conducted. Data from the thermo-cam were saved directly to 

the PC. The detailed descriptions of image data in four machine condition experiments are 

shown in Table 2. 

Table 2 Detailed descriptions of image data 
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5. Results and discussion 

Fig. 3 shows one of the original thermal images of machine conditions. For the purpose of 

rotating machinery fault diagnosis and reduction of image processing computation, ROI is 

chosen from original image as a rectangle, size 150×20 pixels. This size is likewise applied for 

other images. Subsequently, these ROIs are preprocessed by using the HE technique to enhance 

the contrast. Then, histogram feature extraction is carried out to describe the characteristics of 

the machine conditions. In total, 480 feature values (80×6) have been extracted from the ROIs. 

The images after being enhanced by the HE technique and their features are now called original 

images and original features, respectively. 

Fig. 3 Original thermal image and ROI 

In order to observe the feature distribution of the original image, three features can be 

arbitrarily selected from the feature set. This visualization only provides the information to 

understand how the features distribute in same machine condition and how the clusters of the 

features separate in the different conditions. From this visualization, the reason of 

misclassification, if any, can be estimated based on the overlap of the features. Fig. 4 shows the 

distribution of the three-first features involving skewness, standard deviation (SD), and the 

mean of the original images. It can be seen that the features of machine conditions are not well 

clustered and overlapped with each other even though the images have been enhanced by HE. 

This significantly decreases the accuracy of classification which leads to the misunderstanding 

of existing machine condition. Obviously, HE algorithm is not adequate to improve the images 

for achieving good diagnosis. 

To increase the separation among the feature clusters and reduce the feature dimensionality 

for effective computation, GDA is continuously applied to the original feature set. The sufficient 

amount of necessary features to characterize the machine condition can be gained based on the 

eigenvalue of the covariance matrix [42]. As shown in Fig. 5, the number of features is reduced 

from 6 to 3. Also the structure of the features related to the different conditions is reconstructed 

and presented in Fig. 6. It can be observed that the features of the same condition in a new space 

are now located close to each other and are separated from other conditions in comparison to the 

original ones. Thus, GDA not only increases the effective computation but also assists in a better 

discrimination of different machine conditions. However, there still exists the overlap between 

normal and bearing fault conditions, which can cause the misclassification in diagnosis process. 

It also indicates that the assistance of GDA is not enough to achieve the highest diagnosis 

performance with the original images. 

Fig. 4 Original features 

Fig. 5 Eigenvalue of covariance matrix for feature reduction 
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Fig. 6 Original features obtained from GDA 

Obviously, it is necessary to apply an enhancement method to ameliorate the image quality. 

In this study, the enhancement method based on BEMD is employed in which the stopping 

criterion and the k factor are chosen as 0.1 and 1.35, respectively. The results of the 

decomposition process and enhancement according to the proposed method are respectively 

presented in Figs. 7 and 8. As observed in Fig. 7, the fused IMF of each decomposition level is 

much better than the IMF derived by the conventional technique. This results in an improved 

visibility of the image obtained from the reconstruction process as shown in Fig. 8. Similarly, 

histogram features are also extracted from these enhanced images and GDA is then employed to 

these extracted features. Figs. 9 and 10 are correspondingly depicted the three-first features of 

enhanced images and the structure of the features in the GDA space. Evidently, after enhancing, 

the features are well separated into groups which are similar in characteristics and there is no 

overlap between the machine conditions. This shows that the proposed enhancement method has 

assisted in improving the image quality. 

 

Fig. 7 a) Original image, b) IMFs, c) Residues 

Fig. 8 a) Original image, b) Enhanced image 

Fig. 9 Enhanced image features 

Fig. 10 Enhanced image features obtained from GDA  

 

The next stage of the proposed system is the diagnosis task or classification where the 

features attained from GDA become the inputs to the classifiers involving multi-class RVM, 

SVM, and ANFIS. In case of RVM, some parameters are predefined e.g. the Gaussian kernel is 

used as the basis function, and the kernel parameter is set to 0.1. In case of SVM, two 

algorithms involved one-against-one (SVM-OAO) and one-against-all (SVM-OAA) are used. 

Furthermore, some parameters are predefined for this classifier such as the regularizing 

parameter C and the kernel parameter γ are set to 100 and 0.1, respectively. Regarding to the 

ANFIS classifier, three inputs are used according to the number of features after GDA reduction. 

For each input, a bell shape is chosen for each membership function (MF) and the number of 

MFs is chosen as 2. The parameters of these MFs, which are premise parameters and 

consequent parameters, are automatically adjusted through the learning process in order that the 

outputs of ANFIS model match the actual classes in training data. The convergence of root 

mean squared error (RMSE) is utilized for evaluating and terminating the learning process. In 

the case that either the decreasing rate of the RMSE or the performance is not significant, the 

learning process will be terminated. 
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Firstly, the training set, which is randomly partitioned from the total samples by holdout 

validation method, is used to generate the classification models. In case of ANFIS, the RMSE of 

the output reaches the convergent stage after 200 training epochs. Also, the premise parameters 

of the membership functions corresponding to the inputs are changed during the training process. 

As depicted in Fig. 11, the second and the third membership functions have reformed the shapes 

for the sake of network convergence according to the given classes in the training data. After 

being trained, the classifiers are tested against the test data to validate the accuracy in diagnosis 

task. The classification results of all classifiers in the training and testing processes are 

presented in Table 3. 

Fig. 11 Membership functions 

 

In the training process, all the classifiers including RVM, SVM-OAO, SVM-OAA, and 

ANFIS achieve 100% accuracy without any misclassification out of 40 samples of training data 

for both original features and enhanced features. This indicates that the classifiers are well 

trained and can be applied for diagnosing faults. However, in the testing process in which these 

classifiers are validated against the test data, the accuracy of each classifier is different. For the 

original features, the classification accuracy of SVM-OAO and RVM are same as 97.5% whilst 

SVM-OAA and ANFIS are respectively as 95% and 82.5%. These show that the accuracy of 

ANFIS is the lowest in comparison with others even though its learning result has been 

completed. Additionally, these results also indicate that SVM-OAO is superior to SVM-OAA. 

The miss-classifications are due to the overlap of machine condition features. For the features of 

enhanced images, the accuracy of ANFIS achieves only 97.5%, whilst RVM, SVM-OAO, and 

SVM-OAA classifiers achieve 100% accuracy. Obviously, the classification accuracy of all 

classifiers using the enhanced features is higher than that of the original features. This concludes 

that the proposed enhancement method based on BEMD has significantly improved the quality 

of images which results in the increase of the classification accuracy. From the classification 

results, it can be realized that the accuracy of RVM and SVM-OAO is the same and both are 

higher than that of SVM-OAA. In order to appraise the efficiency of RVM and SVM-OAO, 

their training time are considered and shown in Table 4. Evidently, the time for training RVM is 

much smaller in comparison with that of SVM-AOA. Thereby, RVM is very suitable to use as 

the fault classifier in real applications. 

 

Table 4 Time-consumption in the training process of RVM and SVM-OAO 

 

6. Conclusions 
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In this study, the novel fault diagnosis system using thermal images consisting of BEMD 

based image enhancement, GDA for feature reduction, and RVM for classification have been 

presented. The thermal images captured from machine conditions are firstly preprocessed by the 

HE algorithm to enhance the image contrast, removing noise, and cropping to obtain the ROI. 

These images are further improved by the enhancement method based on the combination of 

BEMD and PCA fusion. Then, the histogram feature extraction and the GDA feature reduction 

are respectively carried out to extract the features of enhanced images, reduce the high 

dimension and increase the cluster separability of the feature data. The classification process 

provides a comparative study of RVM, SVM including one-against-one and one-against-all 

algorithms, and ANFIS in fault diagnosis. 

As a result, the classification accuracy of the enhanced images is much higher than that of 

the original images. This can conclude that the proposed image enhancement method has 

significantly assisted in improving the image quality. Furthermore, the performances of RVM 

and SVM-OAO are considerably superior to SVM-OAA in the case of the original images. It 

indicates that RVM and SVM-OAO have great potential for fault diagnosis using thermal 

imaging. In training time comparison, RVM is faster than SVM-OAO, which is necessary and 

useful in real applications. Accordingly, the proposed system with RVM used as classifier is 

capable of efficiently assisting in machine fault diagnosis. 
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 Fig. 1 Proposed system for thermal image based fault diagnosis 

 

 

 

Fig. 2 Experimental setup 
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Fig. 3 Original thermal image and ROI 
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Fig. 4 Original features 
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Fig. 5 Eigenvalue of covariance matrix for feature reduction 
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Fig. 6 Original features obtained from GDA 
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Fig. 7 a) Original image, b) IMFs, c) Residues, d) Fused IMFs 

 

Fig. 8 a) Original image, b) Enhanced image 
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Fig. 9 Enhanced image features 
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Fig. 10 Enhanced image features obtained from GDA 
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(b) Final membership functions of original images 
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(c) Final membership functions of enhanced images 

Fig. 11 Membership functions 
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Table 1 Main specification of thermal camera and fault simulator 

Devices Specification 

Thermal camera  

(FLIR-A 40 series) 

• Detector type: focal plane array uncooled microbolometer 

• Spectral range: 7.5 to 13 µm 

• Storage temperature range: −40 °C to +70 °C  

• Solid object materials and surface treatments exhibit emissivity 

ranging from approximately 0.1 to 0.95. 

• For short distance, humidity is default value of 50 % 

• Thermal sensitivity: 0.08 °C at 30 °C 

• Accuracy: ± 2°C 

• Encapsulation: IP 40 (Determined by connector type) 

Fault simulator  • Shaft diameter: 30 mm 

• Bearing: two ball bearings  

• Bearing housings: two bearing housings, aluminum horizontally 

split bracket for simple and easy changes, tapped to accept 

transducer mount 

• Bearing housing base: completely movable using jack bolts for 

easy misalignment in all three planes  

• Rotors: two rotors, 6″ diameter with two rows of tapped holes at 

every 20° (with lip for introducing unbalance force) 
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Table 2 Detailed description of image data 

Label of Classes Machine 

Condition 

No. of Samples No. of Training 

Samples 

No. of Testing 

Samples 

C1 

C2 

C3 

C4 

Normal 

Misalignment 

Bearing fault 

Mass unbalance 

20 

20 

20 

20 

10 

10 

10 

10 

10 

10 

10 

10 

Total samples 80 40 40 

 

Table 3 Results of classification 

Features Process Classification Accuracy (%) 

SVM-OAO SVM-OAA ANFIS RVM 

Original Training 

Testing 

100 

97.5 

100 

95 

100 

82.5 

100 

97.5 

Enhanced Training 

Testing 

100 

100 

100 

100 

100 

97.5 

100 

100 

 

Table 4 Time-consumption in the training process of RVM and SVM-OAO 

Features RVM SVM-OAO 

Original 2.15s 6.6s 

Enhanced 2.0s 5.15s 

 

 


