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Abstract 
 

This paper presents a novel control architecture system which is composed of a 

multi-objective cost function which Pareto optimises the programming of 

cutting parameters while adapting the milling process to new cutting conditions 

if new constraints appear.  

The paper combines a self-optimised module which looks for and finds Pareto 

optimal cutting parameters according to multi-objective purposes and, a multi-

estimation adaptive control module which keeps the cutting forces under 

prescribed upper safety limits independently of programmed cutting conditions 

and material properties while maintaining the performance of the process. A 

supervised controller acts as decision support-software to automatically switch 

to best performance tracking adaptive controller among those available at each 

required time.  

1. Introduction 

The dynamical complexity of milling processes combined with the more 

exigent performance requirements requires more sophisticated and complex 

control systems. The selection of adequate cutting parameters for multi-

objective optimization in milling processes has occupied an extensive research 

study in manufacturing literature [1-5], using Computer Aided Programming 

Planning, decision support systems and bio-inspired systems to cope with the 

problem of multi-objective optimization.  

Moreover, the adaptive control of milling forces has been applied successfully 

in a broad range of milling applications [6-9]. 

In this paper, intelligent control architecture is proposed which is composed of 

self-optimizing and self-adaptive levels which inter-actuate in order to Pareto 

optimise cutting parameters while controlling milling forces in the selected 

working points. The self-optimisation kit for cutting parameters is based on a 

cost function.    

This cost function is composed of three parameters but some others can be 

added or subtracted depending on the objectives of the process. Then, as a 

representative illustration example, in this paper three parameters namely: tool-

life, surface roughness, and material remove rate represents objective purposes.  

A weighting factor measures the importance of each term in the cost function. 

Initial weighting factors have to be programmed by operators but the system 

incorporates algorithms for automatic modification and renormalization of the 
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weighting factors based on a novel mathematical approach. Then, Pareto optimal 

cutting parameters are obtained from the cost function depending on the process 

requirements and constraints.  

Furthermore, a multi-parallel scheme is presented for adaptively controlling 

milling forces. The multi-parallel scheme allows taking into account different 

possible behaviours of the system at different working points through different 

adaptive control structures or to take into account possible changes in the 

parameters of the system. Finally, a supervised controller based on a rule-based 

expert system switches the set of parallel available controllers to the one with 

better performance at each required time.  An example illustrates the behaviour 

of the system. 

2. System description   

Milling processes are well characterized as mechanical systems which are 

particularly sensitive to acquiring vibrations. In this section, the milling process 

is modelled as a second order differential equation, which is excited by forces 

whose inherent terms excite the modal parameters of the system. This fact 

results in the conversion of resultant energy into vibrations of the system. 

Those vibrations are generated under certain cutting conditions depending on 

the process being carried out, clamping of the workpiece, tool and workpiece 

materials, etc.   

In this frame of mind, the standard milling system responds to a second order 

differential equation excited by the cutting forces,  

       M r t B r t C r t F t
 

         (1) 

where       ,
T

r t x t y t  are the relative displacements between the tool and 

the workpiece in the X Y  plane,       ,
T

x yF t F t F t , and  ,M B  and C  

are the modal mass, damping and stiffness matrices, all of them represented in 

two dimensions. The milling cutting force is represented by a tangential force 

proportional with the instantaneous chip thickness, and a radial force which is 

expressed in terms of the tangential force [6], 

   t t dc cF t K a t t    and    r r tF t K F t    (2) 

where tK  and rK , the tangential and radial specific cutting constants which 

are dependent on the tool material for any geometry, dca , the axial depth of cut 

and,  ct t , the chip thickness, obtaining the cutting forces in Cartesian 

coordinates. The most critical variable in the equation of motion, the chip 

thickness,  ct t , consists of a static part and a dynamic one. The static part is 

proportional to the feed rate and it is attributed to the rigid body motion of the 

cutter. The dynamic part models two subsequent passes of the tool through the 

same part of the work-piece. The phase shift between two consecutive passes of 

one tooth on the work-piece is widely modelled and represented [6] by, 



         sin sin cosc r j j jt t f x t x t y t y t                     (3) 

where rf  is the feed rate, j  the immersion angle and   is a delayed term 

defined as ,  tN   is the number of teeth and  sS  the spindle speed in  

rpm . Figure 1 pictures this mathematical representation in a drawing.  
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Figure 1: Cross-sectional view of a milling tool [6]. 

Furthermore, the transfer function of the system, in chatter and resonant free 

zones, can be separated as a series decomposition of the transfer function which 

relates the resultant force and the actual feed delivered by the drive motor, 

which models the deflection of the tool, and the transfer function which 

represents the Computerized Numerical Control (CNC). Then,  a continuous 

transfer function which relates both signals, measured resultant force and the 

actual feed delivered by the drive motor can be showed as a first order dynamic 

[6],  

   (4) 

Where  2
cK N mm  is the resultant cutting pressure constant,  dca mm is the 

axial depth of cut,  , ,st ex tr N   is a non-dimensional immersion function, 

which is dependent on the immersion angle and the number of teeth in cut, tN   

is the number of teeth in the milling cutter,  sS rev s the spindle speed and 

. At the same time, the relationship between the machine tool 

control, the CNC and, the motor drive system can be approximated as a first 



order system within the range of working frequencies [6]. This transfer function 

relates the actual, af , and the command,  cf  , feed velocities,  

     (5) 

where s  represents an average time constant. 

The combined transfer function of the system is given by, 

 (6) with   c dc dc
p

t s

K a rkN sK
mm N S

    

3. Self-optimized tool-box 

A novel cost function has been conceived to allow an inference engine to carry 

out the selection of suitable cutting parameters. The tool cost model for a single 

milling process can be calculated using the following equation, (7): 

  1,..,3

3 3
1 1 2 2

, , ; ,
i i

J TOL MRR SURF R c

c NF
c NF TOL c NF MRR

SURF





      

 

The cost function has three terms. Each term is composed of a weighting 

factor  ic , a normalisation factor  iNF and the function which delimits the 

process efficiency. These functions are: the life of the tool, TOL ; the material 

remove rate, MRR ; and the surface finish, SURF . The tool cost function is 

designed to be directly proportional to the life of the tool and material remove 

rate and inversely proportional to surface roughness. So, optimal solutions will 

maximise TOL  and MRR  while minimising SURF . These parameters play an 

important role when selecting cutting parameters since they are usually used as 

benchmark indices in industries to measure the performance of the system. 

They are defined as following: 

 
3.1 Life of the tool (TOL) 

TOL  is a measure of the length of time a cutting tool will cut effectively. 

According to previous studies [3], an increase in the cutting speed, feed rate 

and axial depth of cut will decrease the tool life. In this paper, the Taylor 

Equation for Tool Life Expectancy, a model typically used in literature, is used 

to evaluate TOL   in the expert system. This model is represented by the 

equation [3]: 

2 31
tol tdcTOL K V a f

   
          (8) 

where tolK  is a model constant, 1 2,   and 3 , are model parameters and 

, dcV a  and tf , the cutting speed  minm  , axial depth of cut  mm  and feed 

per tooth  mm tooth . 

 

 

 



3.2 Material or metal remove rate (MRR) 

The MRR  measures the amount of material removed from the workpiece. Its 

definition is,  

dc dc cMRR a r f    ,     (9)  

where dca  is the axial depth of cut  mm  , dcr  the radial depth of cut  mm   

and cf  the feed velocity  mm s  . 

3.3 Surface roughness (SURF) 

The variations of the surface roughness are widely used criteria for the 

assessment of the surface quality. Some research works use the empirical 

relationship of the equation (10), [3]. This approach is adopted in this paper: 

31 2
surf c dcSURF K V f a

 
          (10) 

where , cV f and dca  are the cutting velocity   m i nm  , the feed velocity  

 mm s and axial depth of cut  mm , and surfK   is a model constant 

and, 1 2,   and 3   surface roughness model parameters. 

Finally, the weighting factors, , 1,2,3ic i    have the restriction that the sum of 

the parameters is the unity, i.e. 3
1 1ii c  . Their declaration depends on 

process constraints. Normalization factors, , 1,..,3iNF i  , equalize the 

magnitude order of each term in the cost function. They are defined as: 

max

max min

i
i

J J
NF

J J





       (12) 

where iJ , represents each term of the cost function of the equation (9), which 

eventually, can be represented as 
3

1 i i iiJ c NF J                                                                       (13) 

The selected cutting parameters will be the values of ,s dcS a  and cf   

corresponding to the minimum value of the cost function according to selected 

values of the ic  parameters. It can be expressed mathematically as follows, 

         * * * *, , arg max , , ; ,
js dc c q Q j j j i iq S a f J TOL q MRR q SURF q NF c    

, (14) obtaining the 3-tuple of candidate input cutting parameters,  * * *, ,s dc cS a f  

.  

In order to achieve certain process or machine tool requirements in the cost 

function variables, the ic   parameters are automatically redefined (self-

modified) as in the following equation, (15): 3
1 i i iiJ c NF J   , which 

represents the proposed cost function of the equation (7). Then, for a given 

operation, if ,o ok k l k l N        and , 1i i i i i iJ J J J      then if 
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Weighting factors need to be normalized again to fulfil the constraint 
3

1 1ii c    . Then, 
 

3
10 , 1i i i ii ic c c c c c      . 

4.  Self- adaptive control toolbox 

The self-adaptive controller is broken up into two parts. First, a parallel process 

control scheme is proposed, which aims to maintain milling forces constant at 

each Pareto optimal working point. This control scheme incorporates least 

squares parameter estimators in order to adapt the system to changes in process 

requirements. For each working point, the multi-scheme controller proposes 

using different adaptive control structures to face the challenging milling non-

linear force control problem. The used of different control structures is 

supported by the idea that, as the milling system is a highly non-linear problem, 

the system will face different potential models at different working points. 

Also, it can deal with the possible changes of parameters in the milling system. 

The second part is a supervised controller, which incorporates actuation logic 

hinged on taken measurements over the allowable cutting parameter space to 

know how the system works at each required point and switch to the adequate 

force controller at each time. It is based on a rule-based expert system. Then, 

the actuation logic is switched depending on the structure of the controller or 

depending on the value of system parameters.  

In the current paper and, as practical work each candidate adaptive control is 

supposed to address possible changes of parameters, while the structure of the 

control remains the same at each parallel controller. Moreover, the supervised 

controller is based on a series of expert rules which switch the controller to the 

most adequate one depending on the cutting conditions and tool and workpiece 

material properties. As a result, the multi-parallel adaptive control scheme 

managed by the supervised controller allows dealing with the milling force 

control problem automatically and, independently of changes in cutting 

parameters and taken into account possible uncertainties in modelled 

parameters.   
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Figure 2: Architecture of the self-optimized and self-adaptive system  

Finally, figure 2 pictures the proposed control architecture for the interaction 

between the self-adaptive and the self-optimized toolboxes. It works as follows, 

the operator or engineer inputs constraints to the self-optimized toolbox 

according to the interaction interface with the cost function presented in 

equation 7, i.e. the weighting factors. Then, the self-optimized toolbox outputs 

the programming Pareto optimal cutting parameters. At the same time, a multi-

parallel adaptive control scheme, which is composed of N  work in parallel 

controller, processes different control signals according to possible different 

structures of the controllers or parameters in different sets of knowing Pareto 

optimal cutting parameters. The supervised controller, which is composed of a 

rule-based expert system, is able to switch to adequate force controller in order 

to keep the forces of the system under the prescribed upper bound in a wide 

range of cutting conditions for a given pairs of tool and workpieces materials. 

5. Example 

For implementing the above explained control scheme a practical end mill has 

been chosen with the modal characteristics in the X and Y directions 

corresponding to table 1, with three tooth and 30 millimetre diameter. The 

work-piece is a rigid aluminium block whose specific cutting energy is 
1600tk kN mm  and the proportionally factor is taken to be 0.07rk  . 

                                          Table 1 Tool modal parameters. 

  1
n rad s    

k  

X 603 3.9 5.59 

Y 666 3.5 5.715 

 



Regarding to the model reference adaptive control, the transfer function of the 

equation (6); the cutting pressure of the transfer function has been selected to 

be constant and equal to 21200N mm   in all range of cutting parameters, the 

CNC time constant, 0.1m ms  and, 1c t sN S  . The continuous model 

reference system of the adaptive control is chosen to be a typical continuous 

second order plant with 0.75   and  2.5 4n T    , where T is the 

sampling period., which is usually selected as inversely proportional to the 

spindle speed, 1 sT S  . Also, it is desirable for the reference force to be 

maintained at 1200N .  

The input space parameter where the system looks for Pareto optimal cutting 

parameters is given by the stability border line (first graph of figure 2). This 

figure says that if programming cutting parameters are over the border line 

chatter vibrations will appear and the system will be unstable [6]. However, if 

programmed cutting parameters are below this border line the system will work 

correctly against chatter vibrations. Other mechanical and electrical restrictions 

when searching for programming adequate cutting parameters are referred to 

spindle power consumption and feed drive limitations. Other safety constraints 

can be added in order to avoid uncertainty in searching regions.  

For example purposes, it is supposed that the following cutting parameters 

represent three Pareto optimal fronts. Those are represented in the table 2. A 

more in-depth explanation of how to obtain Pareto optimal cutting parameters 

is provided by Rubio et al. [10].  

                Table 2: Cutting parameters and cost function values. 

    
 

  

1. 2325 0.3326 5.22 0.0441 37.05 1.4048 

2. 2985 0.7890 13.94 0.2793 5.1921 9.8730 

3. 3510 0.5124 11.04 0.1436 20.8051 5.6167 

Figure 3 depicts, from top to bottom, the stability lobes with the situation of the 

programmed cutting parameters, the adaptive controller with changes in the 

cutting parameters and the frequency response of the programmed cutting 

parameters, which incorporates different adaptive controllers to face the 

problem of changing parameters of the system and changing cutting parameters 

combined with expert rule-based supervised controller.  

Then, to test the system it is supposed that the first production requirements 

give to program the cutting parameters associated to the point 1 in table 2 and 

point 1 in lobes of figure 2.  Then, new constraints are given. They are 

represented by point 2 in table 2 and figure 2. And, finally, the last 

requirements are given by cutting parameters represented in point 3.  

It can be observed that the proposed cutting parameters given by the Self-

optimized toolbox are below the stability border-line in the stable zone and 

their frequency responses do not excite the chatter frequency (close to one 

natural frequency of the system). Moreover, the adaptive controller developed 

in parallel allows the system to move around the cutting space parameter 



keeping the forces below a prescribed upper limit bound while programming 

feasible command feed rates.   
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Figure 3: Situation of the programmed cutting parameters in stability lobes, 

control signal and frequency responses (points 1 and 3). 

6. Conclusion 

A novel control scheme is proposed. It is composed of two levels. The first one, 

the self-optimised cutting parameters layer compromises life of the tool, 

material remove rate, surface roughness and the robustness of the system.  

While the second one, the multi-parallel adaptive controller, provides an 

environment to adaptively control the milling process under changes in cutting 

parameters. A rule-based supervised controller is able to choose automatically 

the most suitable controller among the set of designed for each Pareto optimal 

cutting parameters. As a result, the control architecture leads to automatically 

work out the complex milling system using an easy interface with the operator. 

Simulation results support the performance of the system.   
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