Ibbett, Roger, Domvoglou, Dimitra and Phillips, D. A. S (2008) The hydrolysis and recrystallisation of lyocell and comparative cellulosic fibres in solutions of mineral acid. Cellulose, 15 (2). pp. 241-254. ISSN 0969-0239

Regenerated cellulosic fibres undergo a process described as scission-reordering during hydrolysis in solutions of mineral acid. This occurs within disordered polymer regions at lateral crystal interfaces, which are accessible to aqueous agents through the pore spaces and polymer free volume. This process is distinct from that of oligomer-solubilsation, which occurs within disordered polymer regions in series between crystal domains, where no effective template exists for recrystallisation. The degradation of series disorder will have the greatest influence on fibre tensile properties, which fall dramatically even at low levels of hydrolysis. The mechanics of fibrillation are most sensitive to the degradation of lateral disorder, which occurs at a higher rate constant. Soft-touch fabric processing may therefore be possible under conditions where there is a reduced influence on tensile performance. A kinetic model has been proposed to describe the hydrolysis and recrystallisation pathways, which shows that lyocell has longer but thinner crystal domains than viscose or modal fibres, and also a tighter distribution of lateral crystal sizes. Lyocell also has a lower proportion of series disorder and also thinner regions of lateral disorder. This is consistent with the overall greater crystallinity of the original lyocell fibre and the also of the final microscrystalline product.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email