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Abstract 

This paper presents an approach to machine fault diagnosis and condition prognosis based on 

classification and regression tress (CART) and neuro-fuzzy inference systems (ANFIS). In case 

of diagnosis, CART, which is one of the decision tree methods, is used as a feature selection tool 

to select pertinent features from data set and ANFIS is used as a classifier. The crisp rules 

obtained from CART are then converted to fuzzy if-then rules that are employed to identify the 

structure of ANFIS classifier. The hybrid of back-propagation and least squares algorithm are 

utilized to tune the parameters of the membership functions. The data sets obtained from 

vibration signals and current signals of the induction motors are used to evaluate the proposed 

algorithm. In case of prognosis, both of these models in association with direct prediction 

strategy for long-term prediction of time series techniques are utilized to forecast the future 

values of machine’s operating condition. In this case, the number of available observations and 

the number of predicted steps are initially determined by using false nearest neighbor method 

and auto mutual information technique, respectively. These values are subsequently utilized as 

inputs for prediction models. The performance of the proposed prognosis system is then 

evaluated by using real trending data of a low methane compressor. A comparative study of the 

predicted results obtained from CART and ANFIS models is also carried out to appraise the 

prediction capability of these models. The results of the proposed methods in the two cases 

indicate that CART and ANFIS offers a potential for machine fault diagnosis as well as for 

condition prognosis. 

 

Keywords: Fault diagnosis; Classification; Induction motors; Decision trees; Forecasts; Fuzzy 

systems. 

 

1. Introduction 

The fault progression process of mechanical systems usually consists of a series of degraded 
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states due to component wear and fatigue during the operation process. Early detection of 

incipient faults and foretelling the future states of mechanical systems can minimize the costs of 

unnecessary maintenance, avoid unplanned breakdown and enable maintenance actions to be 

scheduled more effectively. Thence, the availability and reliability of machine will be increased. 

Consequently, machine fault diagnosis and machine condition prognosis have been the 

considerable subjects of researches in recent years. 

 

1.1. Machine diagnosis of induction motors 

Machine fault diagnosis is the ability to detect fault, isolate which component is failure, and 

decide on the potential impact of failed component on the health of the system. Due to the costs 

of implementing, only the critical machine components of which failures drastically affect the 

breakdown are frequently examined. In this study, induction motors are considered due to their 

indispensable roles in several industrial applications. The faults of induction motors may not 

only cause the interruption of product operation but also increase costs, decrease product quality 

and effect safety of operators. Consequently, fault diagnosis in induction motors has been the 

subject of considerable research in recent years. 

The most common faults of induction motors are bearing failures, stator phase winding 

failures, broken rotor bar or cracked rotor end-rings and air-gap irregularities [1]. In order to 

detect/diagnose these faults, system identification and parameter estimation [2-6] as well as 

other techniques [7-10] have been proposed. These techniques required expensive equipment or 

accurate mathematical models which are challenging to describe the fault of motors. On the 

contrary, fuzzy logic and artificial neural networks (ANNs) can be used to provide inexpensive 

but effective fault detection mechanism alternatives [11]. ANNs are good at mapping non-linear 

numerical information between inputs and outputs. However, ANNs are not interpretable and 

understandable, i.e. they are incapable of explaining a particular decision to the user in a human-

comprehensible form. Conversely, fuzzy logic has the ability of modeling human knowledge in 

a form of if-then rules using easily understandable linguistic term. In the case of machine fault 

diagnosis which involves high levels of uncertainty due to the complexity of machine systems 

and unexpected disturbance and noise in sensing [12], fuzzy logic can handle situations where 

the answer lies somewhere in-between. Some fuzzy logic based diagnosis approaches for 

induction motors have been proposed in [13-15]. Nevertheless, the if-then rules as well as the 

initial parameters of membership functions are normally prepared by an expert. Thus, fuzzy 

logic requires fine-turning in order to obtain acceptable rule base and optimize parameters for 

available data [15]. The individual problems from fuzzy logic or ANN alone can be solved by 

the integration of both methods and has been applied for motor fault diagnosis [11]. 
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The adaptive neuro-fuzzy inference system (ANFIS) [16] is an integration of the ANNs 

adaptive capability and the fuzzy logic qualitative approach. It has been successfully applied for 

automated fault detection and diagnosis of induction machines [15, 17]. Recently, ANFIS and its 

combination with other methods were also employed as an enhanced tool for fault classification. 

Some examples of the combined algorithms are ANFIS with genetic algorithms [18] and ANFIS 

with wavelet transform [19] for bearing fault diagnosis. ANFIS has been also applied in 

classifying the faults of induction motor with variable driving speed [20]. 

Generally, the data obtained from measurements is high dimension and have a large amount 

of redundant features. If the data are directly inputted into the classifier, the performance will be 

significantly decreased. Feature extraction and selection have been utilized for reducing the 

dimension of data by selecting important features wherein feature extraction means and 

transforming the existing features into a lower dimensional space [21]. Nevertheless, each 

feature set contains many redundant or irrelevant features as well as salient features in feature 

space after the feature extraction has been done. Consequently, there is a need for feature 

selection tool to achieve good learning, classification accuracy, compact and easily understood 

knowledge-base, and a reduction in computational time [22]. 

In this study, CART [23] and ANFIS are utilized as feature selection tool and classifier for 

fault diagnosis of induction motors, respectively. This proposed system consists of two stages. 

First, the CART is performed to obtain the valuable features and identifies the structure of 

classifier in the next iterative step. Second, the ANFIS classifier is used to diagnose the faults of 

induction motors in which the parameters of membership functions are tuned throughout the 

learning process. 

 

1.2. Machine condition prognosis 

Prognosis is the ability to predict accurately the future health states and failure modes based 

on current health assessment and historical trends [24]. There are two main functions of 

machine prognosis: failure prediction and remaining useful life (RUL) estimation. Failure 

prediction, which is addressed in this paper, allows pending failures to be identified early before 

they come to more serious failures that result machine breakdown and repair costs. RUL is the 

time left before a particular fault will occur or the part needs to be replaced. The techniques 

related to prognosis can be broadly classified as experience-based, model-based, and data-

driven based techniques. 

Experience-based prognostic approaches require the component failure history data or 

operational usage profile data. They involve in collecting statistical information from a large 

number of component samples to indicate the survival duration of a component before a failure 
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occurs and use these statistical parameters to predict the RUL of individual components. 

Generally, they are the least complex forms of prognostic techniques and their accuracy is not 

high because they base solely on the analysis of the past experience. 

Model-based prognostic approaches are applicable to where the accurate mathematical 

models can be constructed based on the physical fundamentals of a system. These approaches 

use residuals as features, which are the outcomes of consistency checks between the sensed 

measurements of system and the outputs of a mathematical model [25]. Some of the published 

researches using these approaches can be found in references [25-30]. However, even though 

the accuracy of these techniques is reasonably high, they are only suitable for specific 

components and each component requires a specific mathematical model. Changes in structural 

dynamics and operating conditions can affect the mathematical model which is impossible to 

mimic all real-life situations. 

Data-driven prognosis techniques utilize and require a large amount of historical failure data 

to build a prognostic model that learns the system behavior. Among these techniques, artificial 

intelligence is regularly used because of its flexibility in generating appropriate models. 

Reference [31] gives a survey on artificial intelligent techniques used in prognosis. Other 

outstanding data-driven prognosis techniques can be found in references [32-35]. In comparison 

with other prognosis techniques, data-driven prognosis techniques are the most promising and 

effective techniques in machine condition prognosis. They frequently use vibration signals for 

temporal pattern identifications since it is relatively easy to measure and record machine 

vibration data. Accordingly, data-driven prognosis technique with vibration-based measurement 

are developed and used for machine condition prognosis in this study. 

In addition, the more future states are predicted precisely, the more effective the maintenance 

activities become. For that reason, long-term prediction methodology is considered in machine 

condition prognosis significantly. Nevertheless, forecasting the future with long-term prediction 

strategy is still a difficult and challenging task in time series prediction domain due to the 

growing uncertainties arising from unrelated sources, such as, accumulation errors and 

insufficient information [36]. The techniques of long-term prediction methodology will be 

described in the next section. 

In long-term prediction, embedding dimension (ED), time delay (TM), and selection 

prediction model are essential to be considered. ED and TM are used to reconstruct the space 

state of machine’s condition time series and establish the fundamental parameters of prediction 

model. ED is the number of initial observations that should be used as the inputs for prediction 

model. This value can be determined by using the false nearest neighbor method (FNN) [37] or 

the Cao’s method [38]. Of the two suggested methods, the FNN method is commonly used. 
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Time delay is the number of steps that can be predicted by the prediction model to obtain the 

optimum performance. It can be calculated by using some of the published methods such as 

auto-correlation [39], average displacement [40], and auto-mutual information (AMI) [41]. In 

this study, AMI is chosen to estimate the time delay. After determining the embedding 

dimension and time delay, CART and ANFIS are utilized as the prediction model for the 

purposes of comparing the forecasting ability for long-term prediction in the machine condition. 

 

2. Background knowledge and proposed systems 

2.1 Background knowledge 

2.1.1 Long-term prediction strategies 

In time series domain, prediction techniques consist of short-term prediction (one-step ahead 

prediction) and long-term prediction (multi-step ahead prediction). Unlike the short-term 

prediction, the long-term prediction is typically faced with growing uncertainties arising from 

various sources. According to Sorjamaa et al. [42], there are three strategies mainly used in 

long-term prediction. They are recursive, direct, and DirRec strategies that could be frequently 

used for creating prediction model. The detailed information of these strategies could be found 

in reference [43] 

2.1.2. Time delay (TM) estimation 

There are several methods published in literature could be used to choose the TM. However, 

most of them are based on empirical concepts and it is not easy to identify which of the methods 

is suitable for a particular task. In this paper, TM is dealt with auto mutual information (AMI) 

method. The mutual information (MI) can be used to evaluate the dependence among random 

variables. The MI between two variables, let X and Y be the amount of information obtained 

from X in the presence of Y and vice versa. In time series prediction problem, if Y is the output 

and X is a subset of the input variables, the MI between X and Y is one criterion for measuring 

the dependence between inputs and output. Thus, the inputs subset X, which gives maximum MI, 

is chosen to predict the output Y.  The MI between two measurements taken from a single time 

series x(t) separated by time τ is called the AMI. The detailed theory of AMI was presented in 

references [41-42, 44]. AMI estimates the degree to which the time series x(t+τ) on average can 

be predicted from a given time series x(t), i.e. the mean predictability of future values in the 

time series from the past values.  

The AMI between x(t) and x(t+τ) is: 
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where ( ( ))XP x t  is the normalized histogram of the distribution of values observed for x(t) and 

( ( ), ( ))XXP x t x t
τ

τ+ is the joint probability density for the measurements of x(t) and x(t+τ). 

The decreasing rate of the AMI with increasing time delay is a normalized measure of the 

time series’ complexity. The first local minimum of the AMI of time series has been used to 

determine the optimal TM. 

2.1.3. Determining the embedding dimension (ED) 

After calculating the TM, ED is the next parameter to be determined. FNN method is 

employed in this study and will be briefly explained. Assuming that a time-series of 

1 2
, , ...,

N
x x x  and vector ( )iy d , which is given in equation (2), in a delay coordinate 

embedding of the time series with time delay τ and embedding dimension d are given.  

( 1)( ) [ , ,..., ], 1,2,..., ( 1)i i i i dy d x x x i N dτ τ τ
+ + −

= = − −     (2) 

The observations xi are projections of the system’s trajectory in the multivariate state space 

onto 1-dimensional axis. The FNN method is based on the concept that in the passage from 

dimension d to dimension d+1, where one can differentiate between points which are ‘true” or 

“false” neighbor on the orbit. For instance in Figure 1, points A, B, C and D belong to a curve. 

In 1-dimension, points A and D appear to be nearest neighbor. However, point D is no longer 

nearest neighbor of point A in 2-dimension. In the same way, points A and C are nearest 

neighbor in 2-dimension but they are no longer neighbors when viewed in 3-dimension. In this 

case, points A, D, C are examples of “false” neighbors while points A and B are “true” 

neighbors. 

 

Fig. 1 An example of false nearest neighbors 

 

The criteria for identification of false nearest neighbors can be explained as follows: denote 

( )
r

i
y d  as the nearest neighbor of ( )

i
y d  in a d dimensional embedding space. According to 

[19], the nearest neighbor is determined by finding the vector which minimizes the Euclidean 

distance: 

( ) ( )r

d i iR y d y d= −         (3) 

Considering each of these vectors under a d+1 dimensional embedding: 

2( 1) [ , , ,..., ], 1,2,...,i i i i i dy d x x x x i N dτ τ τ τ
+ + +

+ = = −     (4) 

2( 1) [ , , ,..., ], 1,2,...,r r r r r

i i i i i dy d x x x x i N dτ τ τ τ
+ + +

+ = = −     (5) 
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The vectors are separated by the Euclidean distance: 

1 ( 1) ( 1)r

d i iR y d y d
+

= + − +        (6) 

The first criterion of FNN which identifies a false nearest neighbor is: 

2 2

1

2

r

i d i dd d
tol

d d

x xR R
R

R R

τ τ+ ++
−−

= >       (7) 

where 
tol

R is a tolerance level. 

The second criterion is: 

1d
tol

A

R
A

R

+ >           (8) 

where RA is a measure of the size of the attractor and Atol is a threshold that can be chosen in 

practice. If both equations (7) and (8) are satisfied, then ( )r

i
y d  is a false nearest neighbor 

of ( )iy d . Once the total number of FNN is calculated, the percentage of FNN is measured. An 

appropriate ED is the value where the percentage of FNN falls to zero. 

2.1.4. Classification and regression trees (CART) and adaptive neuro-fuzzy inference system 

(ANFIS) model 

CART algorithm has been extensively developed by Breiman et al. [23] for classification or 

regression purpose depending on the response variable which is either categorical or numerical. 

In case of classification, CART induces strictly binary trees through a process of binary 

recursively partitioning of feature space of a data set [45]. Similarly, in case of regression, a 

binary tree is constructed with the repeated splits of the subsets into two descendant subsets 

according to independent variables. The goal is to produce subsets of the data which are as 

homogeneous as possible with respect to the response variables. Either classification tree or 

regression tree consists of the following two processes: tree growing and tree pruning. The 

detailed theory of these processes can be found in [23, 45, 47]. 

ANFIS is a fuzzy Sugeno model put in the framework of adaptive systems to facilitate 

learning and adaptation [16]. Such framework makes the ANFIS modeling more systematic and 

less dependent on expert knowledge. In order to present ANFIS architecture, two fuzzy if-then 

rules based on a first-order Sugeno model are considered: 

Rule 1: If (x is A1) and (y is B1) then
1 1 1 1f p x q y r= + + . 

Rule 2: If (x is A2) and (y is B2) then
2 2 2 2f p x q y r= + + . 

where x and y are the inputs, fi are the outputs within the fuzzy region specified by the fuzzy 

rule, Ai and Bi are the fuzzy sets, { , , }
i i i

p q r  is a set of design parameters that are determined 

during the learning process. The ANFIS architecture to implement these rules and the learning 
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algorithm to tune all the modifiable parameters could be referred to [43, 45-46]. 

2.2. Proposed systems 

2.2.1. Machine fault diagnosis 

In this study, the vibration signals and current signals are utilized for detecting the faults of 

induction motors. The proposed system consists of four procedures as in Fig. 2: data acquisition, 

feature calculation, feature reduction, and fault classification. The summary role of each 

procedure is described as follow: 

Data acquisition: this procedure is used to attain the vibration signals and current signals. 

Furthermore, data processing is also carried out.  

Feature calculation: the most significant features are calculated by using statistical feature 

parameters from time domain and frequency domain. 

Feature selection: the CART algorithm is used to select the salient features from the whole 

feature set.  

Fault classification: The data obtained from feature reduction procedure is split into two data 

sets: training and testing data. Training data is employed to build the model whilst testing data is 

for validating the model. The results indicate the accuracy of classification 

 

Fig. 2 Proposed system for fault diagnosis 

 

2.2.2. Machine condition prognosis 

The proposed system for prognosis of machine condition comprises four procedures 

sequentially as shown in Fig. 3, namely, data acquisition, data splitting, training-validating 

model, and predicting. The role of each procedure is explained as follows: 

Data acquisition: this procedure is used to obtain the vibration data from machine condition. 

It covers a range of data from normal operation to obvious faults of the machine. 

Data splitting: the trending data attained from previous procedure is split into two parts: 

training set and testing set. Different data is used for different purposes in the prognosis system. 

Training set is used for creating the prediction models whilst testing set is utilized to test the 

trained models. 

Training-validating: this procedure includes the following sub-procedures: estimating the 

TM and determining the ED based on AMI and FNN method, respectively; creating the 

prediction models and validating those models. Validating the prediction models are used for 

measuring their performance capability. 

Predicting: long-term direct prediction method is used to forecast the future values of 

machine condition. The predicted results are measured by the error between predicted values 

and actual values in the testing set. Updating models are also carried out in this procedure for 
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the next prediction process. 

  

Fig. 3 Proposed system for machine condition prognosis 

 

3. Experiments 

3.1. Machine fault diagnosis 

To validate CART-ANFIS model, experiment was carried out using a test-rig which consists 

of a motor, pulleys, belt, shaft and fan with changeable blade pitch angle that represents the 

load. The load can be changed by adjusting blade pitch angle or the number of blades. Six 

induction motors of 0.5 kW, 60 Hz, 4-pole were used to create data. One of the motors with 

good condition (healthy) is used for comparison with faulty motors. The others are faulty 

motors, with rotor unbalance, broken rotor bar, phase unbalance, bearing outer race fault, bowed 

rotor, and adjustable eccentricity motor, as shown in Fig. 4. The conditions of faulty motors are 

described in Table 1. 

 

Fig. 4 Faults on the induction motors 

Table 1 The description of faulty motors 

 

For acquiring data from test rig, three AC current probes and three accelerometers were used 

to measure the stator current of the three-phase power supply and vibration signal in the 

horizontal, vertical, axial directions for evaluating the fault diagnosis system, respectively. The 

maximum frequency of the signal was 3 kHz, with 16,384 sampled data and giving a measured 

time of 2.133 s. 

3.2 Machine condition prognosis 

The proposed method is applied to a real system to predict the trending data of a low 

methane compressor which is important equipment in petrochemical plant. This compressor is 

driven by a 440 kW motor, 6600 volt, 2 poles and operating at a speed of 3565 rpm. Other 

information of the system is summarized in Table 2. 

 

Table 2 Information of the system 

 

The condition monitoring system of this compressor consists of two types: off-line and on-

line. In the off-line system, the vibration sensors were installed along axial, vertical, and 

horizontal directions at the locations of drive-end motor, non drive-end motor, male rotor 

compressor and suction part of compressor. In the on-line system, acceleration sensors were 
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located at the same places as in the off-line system but only in the horizontal direction. 

The trending data were recorded from August 2005 to November 2005 which included peak 

acceleration and envelope acceleration data. The average recording duration was 6 hours during 

the data acquisition process. Each data record consisted of approximately 1200 data points as 

shown in Figs. 5 and 6, and contained information of machine history with respect to time 

sequence (vibration amplitude). Consequently, it can be classified as time-series data.  

 

Fig. 5 The entire peak acceleration data of low methane compressor 

Fig. 6 The entire envelope acceleration data of low methane compressor 

 

These figures show that the machine was in normal condition during the first 300 points of the 

time sequence. After that time, the condition of the machine suddenly changed, indicating that 

possible faults were occurring in the machine. By disassembling and inspecting, these faults were 

identified as the damage of main bearings of the compressor (notation Thrust: 7321 BDB) due to 

insufficient lubrication. Consequently, the surfaces of these bearings were overheated and 

delaminated [47]. With the aim of forecasting the change of machine condition, the first 300 

points will be used to train the system. 

 

4. Results and discussions 

4.1. Machine fault diagnosis 

4.1.1. Feature calculation 

In this paper, the feature calculation using statistical feature parameters from time domain 

and frequency domain was used. Sixty-three (63) (21 parameters × 3 signals) features in total 

are calculated from 10 feature parameters of time domain. These parameters are mean, RMS, 

shape factor, skewness, kurtosis, crest factor, entropy error, entropy estimation and histogram of 

upper and lower limits. And three parameters from frequency domain (RMS frequency, 

frequency center and root variance frequency) using the three direction vibration signals and 

three-phase current signals. The total number of feature parameters is shown in Table 3. The 

data sets of the features have 270 samples. In each operating condition, 20 samples are 

employed for training process and 10 samples for testing. The detailed descriptions of those data 

sets are shown in Table 4. 

 

Table 3 Feature parameters 

Table 4 Descriptions of data sets 
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4.1.2. Feature selection and classification 

The final trees obtained from the feature sets corresponding to the vibration signals and 

current signals are depicted in Figs. 7 and 8, respectively. Obviously, the feature appearing in 

root node of the trees is the most important one. The other features in remaining nodes appear in 

descending order of importance. It is to be emphasized which only features that contribute to the 

classification appear in the decision tree and the others do not. Features, which have less 

discriminating capability, can be consciously discarded by deciding on the threshold. From that, 

a number of features are strikingly diminished and only 4 features (x2, x5, x15 and x23) of 

vibration signals and 7 features (x2, x5, x6, x8, x11, x15 and x19) of current signals are remained. 

The reduction of features will decrease the burden of computation for ANFIS classifier in the 

next step. Furthermore, these trees are also used to identify the structure of ANFIS classifier. 

This structure includes fuzzy rule set which has been fuzzyfied from the crisp set of tree and 

membership functions which bell-shaped functions are chosen in this system. 

 

Fig. 7 Tree of features obtained from vibration signals 

Fig. 8 Tree of features obtained from current signals 

 

The system parameters and the chosen membership functions are automatically adjusted 

during the learning process. The convergence of the root mean squared (RMS) error is utilized 

to evaluate the learning process. If the decreasing rate of the RMS error as well as the 

performance is not significant, the learning process can be terminated. In this study, after 800 

training epochs, the RMS error decreased to 0.087 and reached the convergent stage. This 

means the learning process can be terminated. 

The classification results are calculated using a ten-fold cross-validation evaluation where 

the data set to be evaluated is randomly partitioned so that 180 samples are used for training and 

90 samples are used for testing. The process is iterated with different random partitions and the 

results are averaged. The CART-ANFIS achieved 100% classification accuracy without any 

misclassification out of 180 samples of training data for vibration and current signals. After 

training, the CART-ANFIS was tested against the testing data. The confusion matrix showing 

the classification results of the CART-ANFIS created with 800 epochs of training cycle is given 

in Table 5. In confusion matrix, each cell contains the number of samples that was correctly 

classified corresponding to actual network outputs and desired outputs of vibration signals and 

current signals. For example, the number is shown as 10/7 in the first cell (the first column and 

the first row of confusion matrix) means that there were 10 outputs were belonged to class C1 

and 7 outputs were belonged to class C1 for vibration signals and current signals, respectively. It 
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is similar to the other cells in the diagonal of confusion matrix. The other cells that were not in 

the diagonal of confusion matrix indicate the misclassifications. For example, the cell being in 

the first column and the third row has the value as 0/1 shows that all subjects were correctly 

classified for vibration signals and one subject should have belonged to class C1 was classified 

as subjects of class C3. 

The total classification accuracy for the test data was found as 91.11% with 8 

misclassification out of 90 test samples for the vibration signal, while 76.67% with 21 

misclassification out for the current signal. 

The test performance of the classifier can be determined by the computation of statistical 

parameters such as sensitivity, specificity and total classification accuracy defined by: 

Sensitivity: number of true positive decisions/ sum of number of true positive cases and 

number of false negative cases. 

Specificity: number of true negative decisions/sum of number of true negative cases and 

number of false positive cases. 

Total classification accuracy: number of correct decisions/total number of cases. 

The values of statistical parameters are given in Table 6. The CART-ANFIS model classified 

C1 to C9 subject in form of a/b which implies the accuracy of classification corresponding to 

vibration signals and current signals as follows: 100/70, 100/80, 70/90, 90/80, 80/70, 100/70, 

90/70, 100/80 and 90/80% for vibration and current signals, respectively. Those values are 

obtained from the cells that are in the diagonal of confusion matrix. All of the data sets were 

classified with the accuracy of 91.11%/76.67% (total classification accuracy). 

 

Table 5 The confusion matrix for CART-ANFIS of 800 epochs 

Table 6 The value of statistical parameters 

 

4.2. Machine condition prognosis 

Before being used to generate the prediction models, TM is initially calculated according to 

the method mentioned in section 2.1.2. Theoretically, the optimal time delay is the value at 

which the AMI obtains the first local minimum. From Fig. 9, the optimal TM of peak 

acceleration training data is found as 7. Similarly, 5 is the optimal TM value of envelope 

acceleration training data. 

 

Fig. 9 Time delay estimation 

 

Using FNN method described in section 2.1.3, the optimal TM is subsequently utilized to 
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determine the embedding dimension d. It is noted that the tolerance level Rtol and threshold Atol 

must be initially chosen. In this study, Rtol = 15 and Atol = 2 are used according to the results 

from [37]. The relationship between the false nearest neighbor percentage and the embedding 

dimension for both peak acceleration data and envelope data is shown in Fig. 10. From the 

figure, the embedding dimension d is chosen as 4 for both data sets where the false nearest 

neighbor percentage reaches to 0. 

 

Fig. 10 The relationship between FNN percentage and embedding dimension  

 

Subsequent to determining the TM and ED, the process of generating the prediction models 

is carried out. Based on those values, the training data are created in which the number of 

observations is equal to ED and the number of predicted steps is equal to TM. Using this 

training data, the CART model and the ANFIS model are established. In case of the CART 

model, the number of response values for each terminal node in tree growing process is 5 and 

10 cross-validations are decided for selecting the best tree in tree pruning. Furthermore, in order 

to evaluate the predicting performance, the root-mean square error (RMSE) is utilized as 

following 

( )

N

yy
RMSE

N

i ii� =
−

= 1

2ˆ
       (9) 

where N, yi, �i represent the total number of data points, the actual value, and predicted value  

of prediction model in the training data or testing data, respectively. 

Figs. 11(a) and 12(a) perform the training and validating results of the CART models for 

peak acceleration and envelope acceleration data, respectively. The actual values and predicted 

values are almost identical with very small RMSE values ranging from 0.002217 to 1.3314×10
-5

. 

It indicates that the learning capability of CART model is extremely good. Similarly, the ANFIS 

models are also created for both training set of peak acceleration and envelope acceleration. 

There are four inputs for each ANFIS model due to the embedding dimension value. For each 

input, a bell shape is chosen for each membership function (MF) and the number of MFs is 2. It 

means that the region value of each input is divided into two, namely, small and large. In order 

to evaluate the learning process, the convergence of RMSE is also utilized. In this study, after 

executing 100 epochs, all RMSEs of the outputs reach the convergent stage for both the peak 

acceleration data and envelope acceleration data as shown in Fig. 13. Alternatively, the 

parameters of MFs are automatically adjusted through the learning in order that the outputs of 

ANFIS model match the actual values in training data. The changes of MF shapes are depicted 
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in Fig. 14. The training and validating results of ANFIS models for both the peak acceleration 

data and envelope acceleration data are respectively shown in Figs. 11(b) and 12(b). From these 

figures, the RMSE values are sequentially 0.00876 and 0.08886. These values are slightly 

higher than those of the CART models. The reason could be that the number of MFs is 

improperly chosen. For higher accuracy of RMSEs, the MFs can be increased. Nevertheless, 

this will also increase the computational complexity and take too much training time. 

 

Fig. 11 Training and validating results of peak acceleration data. (a) CART, (b) ANFIS 

Fig. 12 Training and validating results of envelope acceleration data. (a) CART, (b) ANFIS. 

Fig. 13 RMSE convergent curve. (a) Peak acceleration, (b) Envelope acceleration. 

Fig. 14 The changes of MFs after learning. (a) Peak acceleration, (b) Envelope acceleration. 

 

Figs. 15 and 16 show the predicted results of the CART models and the ANFIS models for 

peak acceleration and envelope acceleration data. The RMSE values of the CART model and the 

ANFIS model for those data are summarized in Table 7. Although, the RMSEs of ANFIS 

models are slightly higher values than those of CART models in both cases of peak acceleration 

and envelope acceleration data, the predicted results of ANFIS models can keep track with the 

changes of the operating condition of machine more precisely. This is of crucial importance in 

industrial application for estimating the time-to-failure of equipments. As mentioned above, the 

predicted results of ANFIS models can be improved by adjusting the parameters of ANFIS. 

However, these changes should take into consideration the increase of computational 

complexity and time-consumption of the training process which may lead to unrealistic 

application in real life. 

 

Fig. 15 Predicted results of peak acceleration data. (a) CART, (b) ANFIS. 

Fig. 17 Predicted results of envelope acceleration data. (a) CART, (b) ANFIS. 

Table 7 The RMSEs of CART and ANFIS 

 

5. Conclusion 

Machine fault diagnosis and condition prognosis are extremely essential in mechanical 

systems for detecting the faults and foretelling the degradation of operating conditions. In this 

study, an approach to machine fault diagnosis and condition prognosis based on CART and 

ANFIS has been investigated. In case of diagnosis, a combined CART and ANFIS have been 

presented to perform fault diagnosis of induction motors. The classification results and 

statistical measures were used for evaluating the CART-ANFIS model. The total classification 
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accuracy was 91.11% and 76.67% for vibration and current signals, respectively. In case of 

prognosis, long-term direct prediction for the operating conditions of machine based on data-

driven approach has been examined. The CART models and ANFIS models are validated by its 

ability to predict future state conditions of a low methane compressor using the peak 

acceleration and envelope acceleration data. The predicted results of CART models are slightly 

better than those of ANFIS. Nonetheless, they are incapable of tracking the change of machines’ 

operating conditions with high accuracy as compared to ANFIS models. The tracking-change 

capability of operating conditions is of crucial importance in estimating the RUL of industrial 

equipments. The results confirm that the proposed systems in both cases offer a potential for 

machine fault diagnosis and condition prognosis. 

 

References 

[1] G.G. Acosta, C.J. Verucchi, E.R. Gelso, A current monitoring system for diagnosis 

electrical failures in induction motors, Mechanical Systems and Signal Processing 20 

(2006) 953-965. 

[2] A.K. Sood, A.A. Fahs, N.A. Henein, Engine fault analysis – part I: statistical methods, 

IEEE Transactions on Industrial Electronics 32 (1985) 294-300. 

[3] A.K. Sood, A.A. Fahs, N.A. Henein, Engine fault analysis – part I: Parameter estimation 

approach, IEEE Transactions on Industrial Electronics 32 (1985) 301-307 

[4] R. Isermann, Process fault detection based on modeling and estimation methods – a 

survey, Automatica 20 (1984) 387-404 

[5] R. Isermann, B. Freyermuth, Process fault diagnosis based on process model knowledge 

– part I, Journal of Dynamic Systems, Measurement, and Control 113 (1991) 620-626 

[6] K.R. Cho, J.H. Lang, S. Umans, Detection of broken rotor bars using state and parameter 

estimation, IEEE Transactions on Industry Applications 28 (1992) 702-713 

[7] B.S. Yang, K.J. Kim, Application of Dampster-Shafer theory in fault diagnosis of 

induction motors using vibration and current signals, Mechanical Systems and Signal 

Processing 20 (2006) 403-420. 

[8] B.S. Yang, S.K. Jeong, Y.M. Oh, A.C.C. Tan, Case-based reasoning with Petri nets for 

induction motors fault diagnosis, Expert Systems with Applications 27 (2) (2004) 301-

311. 

[9] R. Casimir, E. Boutleux, G. Clerc, A. Yahoui, The use of feature selection and nearest 

neighbors rule for faults diagnosis in induction motors, Engineering Applications of 

Artificial Intelligence 19 (2006) 169-177. 

[10] A. Widodo, B.S Yang, T. Han, Combination of independent component analysis and 

support vector machines for intelligent faults diagnosis of induction motors, Expert 

Systems with Applications 32 (2) (2007) 299-312. 

[11] P. Goode, M.Y. Chow, Using a neural/fuzzy to extract knowledge of incipient fault in 

induction motor: part 1- methodology, IEEE Trans. Industrial Electronics 42 (2) (1995) 

131-138. 

[12] Y. Chen, A fuzzy decision system for fault classification under high levels of uncertainty, 

Journal of Dynamic Systems, Measurement, and Control 117 (1995) 108-115 

[13] B. Satish, N.D.R. Samar, A fuzzy approach for diagnosis and prognosis of bearing faults 

in induction motors, IEEE Power Engineering Society General Meeting 3 (2005) 2291-

2294. 

[14] M.E.H. Benbouzid, H. Nejjari, A simple fuzzy logic approach for induction motors stator 



 17

condition monitoring, Proceedings of the IEEE IEMDC2001, 2001, pp. 634-639. 

[15] M. Shukri, M. Khalid, R. Yusuf, M. Shafawi, Induction machine diagnostic using 

adaptive neuron fuzzy inference system, M. Gh. Negoita et al. (Eds.), KES2004 (2004) 

380-387. 

 

[16] J.S.R. Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans. System, 

Man and Cybernetics 23 (3) (1993) 665-685. 

[17] S. Altug, M.Y. Chow, H.J. Trussell, Fuzzy inference systems implemented on neural 

architectures for motor fault detection and diagnosis, IEEE Trans. Industrial Electronics 

46 (6) (1999) 1069-1079. 

[18] Y. Lei, Z. He, Y. Zi, Q. Hu, Fault diagnosis of rotating machinery based on multiple 

ANFIS combination with GAs, Mechanical Systems and Signal Processing, in press. 

[19] X. Lou, K.A. Loparo, Bearing fault diagnosis based on wavelet transform and fuzzy 

inference, Mechanical Systems and Signal Processing 18 (2004) 1077-1095. 

[20] Z. Ye, A. Sadeghian, B. Wu, Mechanical fault diagnosis for induction motor with variable 

speed drives using adaptive neuro-fuzzy inference system, Electric Power Systems 

Research 76 (2006) 742-752. 

[21] B.S. Yang, T. Han, Z.J. Yin, Fault diagnosis system of induction motors using feature 

extraction, feature selection and classification algorithm, JSME International Journal (C) 

49 (3) (2006) 734-741. 

[22] R. Kumar, V.K Jayaraman, R.D. Kulkarni, An SVM classifier incorporating simultaneous 

noise reduction and feature selection: illustrative case examples, Pattern Recognition 38 

(2005) 41-49. 

[23] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and regression trees, 

Chapman & Hall Press, 1984. 

[24] C.S. Byington, M. Watson, M.J Roemer, T.R. Galic, J.J. McGroarty, (2003). Prognostic 

enhancements to gas turbine diagnostic systems, Proceeding of IEEE Aerospace 

Conference 7 (2003) 3247-3255. 

[25] F. Tu, S. Ghoshal, J. Luo, G. Biswas, S. Mahadevan, L. Jaw, K. Navarra, PHM integration 

with maintenance and inventory management systems, IEEE Aerospace Conference 

Digest, Motana, (2004) 1-12. 

[26] M. Abbas, A.A. Ferri, M.E. Orchard, G.J. Vachtsevanos, An intelligent diagnostic/ 

prognostic framework for automotive electrical systems, Proceedings of the 2007 IEEE 

Intelligent Vehicles Symposium, Instanbul, (2007) 352-357. 

[27] Y. Li, S. Billington, C. Zhang, T. Kurfess, S. Danyluk, S. Liang, Adaptive prognostics for 

rolling element bearing condition, Mechanical Systems and Signal Processing 13 (1) 

(1999) 103-113. 

[28] Y. Li, T.R. Kurfess, S.Y. & Liang, Stochastic prognostics for rolling element bearings, 

Mechanical Systems and Signal Processing 14 (5) (2000) 747-762. 

[29] M. Watson, C. Byington, D. Edwards, S. Amin, Dynamic modeling and wear-based 

remaining useful life prediction of high power clutch systems, Tribology Transactions 48 

(2) (2005) 208-217. 

[30] M. Luo, D. Wang, M. Pham, C.B. Low, J.B. Zhang, D.H. Zhang, Y.Z. Zhao, Model-based 

fault diagnosis/prognosis for wheeled mobile robots: a review. Proceedings of the 31st 

Annual Conference of IEEE Industrial Electronics Society, New York, (2005) 2267-2272. 

[31] M. Schwabacher, K. Goebel, A survey of artificial intelligence for prognostics, 

Proceedings of AAAI Fall Symposium on Artificial Intelligence for Prognostics, 9-11 

Nov., 2007. 

[32] G. Vachtsevanos, P. Wang, Fault prognosis using dynamic wavelet neural networks, 

Proceedings of IEEE Systems Readiness Technology Conference (2001) 857-870. 

[33] R. Huang, L. Xi, X. Li, C.R. Liu, H. Qiu, J. Lee, Residual life prediction for ball bearings 

based on self-organizing map and back propagation neural network methods, Mechanical 

Systems and Signal Processing 21 (2007) 193-207. 



 18

[34] W.Q. Wang, M.F. Golnaraghi, F. Ismail, Prognosis of machine health condition using 

neuro-fuzzy system, Mechanical System and Signal Processing 18 (2004) 813-831. 

[35] E.R. Brown, N.N. McCollom, E. Moore, A. Hess, Prognostics and health management – a 

data-driven approach to supporting the F-35 Lightning II, Proceedings of IEEE 

Aerospace Conference, (2007) 1-12. 

[36] Y. Ji, J. Hao, N. Reyhani, A. Lendasse, Direct and recursive prediction of time series 

using mutual information selection, Lecture Notes in Computer Science 3512 (2005) 

1010-1017. 

[37] M.B. Kennel, R. Brown, H.D.I. Abarbanel, Determining embedding dimension for phase-

space reconstruction using a geometrical construction, Physical Review A 45 (1992) 

3403-3411. 

[38] L. Cao, Practical method for determining the minimum embedding dimension of a scalar 

time series, Physica D 110 (1997) 43-50. 

[39] D.S. Broomhead, Extracting qualitative dynamics from experimental data, Physica D 20 

(1986) 217-236. 

[40] M.T. Rosenstein, J.J. Collins, C.J.D. Luca, Reconstruction expansion as a geometry-based 

framework for choosing proper delay time, Physica D 73 (1994) 82-89. 

[41] A.M. Fraser, H.L. Swinney, Independent coordinates for strange attractors from mutual 

information, Phys. Rev. A 33 (1986) 1134-1140. 

[42] A. Sorjamaa, A. Lendasse, Time series prediction as a problem of missing values: 

application to ESTSP and NN3 competition benchmarks, Proceedings of European 

Symposium on Time Series Prediction, (2007) 165-174. 

[43] V.T. Tran, B.S. Yang, A.C.C. Tan, Multi-step ahead direct prediction for the machine 

condition prognosis using regression trees and neuro-fuzzy systems, Expert Systems with 

Applications 36 (2009) 9378-9387. 

[44] A. Sorjamaa, J. Hao, N. Reyhani, Y. Ji, A. Lendasse, Methodology for long-term 

prediction of time series, Neurocomputing 70 (2007) 2861-2869. 

[45] J.S.R. Jang, C.T. Sun, E. Mizutani, Neuro-fuzzy and soft computing: a computational 

approach to learning and machine intelligent, Prentice Hall, 1996. 

[46] E. Ikonen, K. Najim, Fuzzy neural networks and application to the FBC process, 

Proceeding of Control Theory Application 143 (1996) 259-269. 

[47] V.T. Tran, B.S. Yang, M.S. Oh, A.C.C. Tan, Machine condition prognosis based on 

regression trees and one-step-ahead prediction, Mechanical Systems and Signal 

Processing, 22 (2008) 1179-1193. 

 

 



 19

 
 

Fig. 1 An example of false nearest neighbors 
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Fig. 2 Proposed system for fault diagnosis 
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Fig. 3 Proposed system for machine condition prognosis 
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Fig. 4 Faults on the induction motors 
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Fig. 5 The entire peak acceleration data of low methane compressor 

 



 23

+
�
�
�
��
��
��
�
�
	,
�
-

 

Fig. 6 The entire envelope acceleration data of low methane compressor 

 

Fig. 7 Tree of features obtained from vibration signals 
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Fig. 8 Tree of features obtained from current signals 
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Fig. 9 Time delay estimation 
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Fig. 10 The relationship between FNN percentage and embedding dimension 
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(a) 

 

 

(b) 

Fig. 11 Training and validating results of peak acceleration data. (a) CART, (b) ANFIS 
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(b) 

Fig. 12 Training and validating results of envelope acceleration data. (a) CART, (b) ANFIS 
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(a) 

 

 

(b) 

Fig. 13 RMSE convergent curve. (a) Peak acceleration, (b) Envelop acceleration 
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Fig. 14 The changes of MFs after learning. (a) Peak acceleration, (b) Envelop acceleration 
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(b) 

Fig. 15 Predicted results of peak acceleration data. (a) CART, (b) ANFIS. 
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Fig. 16 Predicted results of envelop acceleration data. (a) CART, (b) ANFIS. 
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Table 1 The description of faulty motors 

Fault condition Fault description Others 

Broken rotor bar Number of broken bar:12 ea Total number of 34 bars 

Bowed rotor Max. shaft deflection: 0.075mm Air-gap: 0.25mm 

Faulty bearing A spalling on outer raceway #6203 

Rotor unbalance Unbalance mass on the rotor 8.4g 

Eccentricity Parallel and angular misalignments Adjusting the bearing pedestal 

Phase unbalance Add resistance on one phase 8.4% 

 

Table 2 Information of the system 

Electric motor Compressor 

Voltage 6600 V Type Wet screw 

Power 440 kW 
Lobe 

Male rotor (4 lobes) 

Pole 2 Pole Female rotor (6 lobes) 

Bearing NDE:#6216, DE:#6216 
Bearing 

Thrust: 7321 BDB 

RPM 3565 rpm Radial: Sleeve type 

 

Table 3 Feature parameters 

Signals Position Feature parameters 

Time domain Frequency domain 

Vibration 

 

 

Current 

Vertical 

Horizontal 

Axial 

Phase A 

Phase B 

Phase C 

Mean 

RMS 

Shape factor 

Skewness 

Kurtosis 

Crest factor 

Entropy error 

Entropy estimation 

Histogram lower 

Histogram upper 

RMS variance frequency 

Frequency center 

Root variance frequency 
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Table 4 Descriptions of data sets 

Label of  

classification 

Condition Number of  

training samples 

Number of  

testing samples 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 

Angular misalignment 

Bowed rotor 

Broken rotor bar 

Bearing outer race fault 

Mechanical unbalance 

Normal condition 

Parallel misalignment 

Phase unbalance (30°) 

Phase unbalance (50°) 

20 

20 

20 

20 

20 

20 

20 

20 

20 

10 

10 

10 

10 

10 

10 

10 

10 

10 

Total samples 180 90 

 

Table 5 The confusion matrix for CART-ANFIS of 800 epochs 

Output/ 

desired 

Confusion matrix (vibration/current signals) 

C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 

10/7 

0/0 

0/1 

0/0 

0/0 

0/0 

0/0 

0/2 

0/0 

0/0 

10/8 

0/0 

0/0 

0/0 

0/0 

0/0 

0/2 

0/0 

0/0 

0/0 

7/9 

0/0 

0/0 

0/0 

0/0 

1/1 

2/0 

0/0 

1/0 

0/1 

9/8 

0/0 

0/0 

0/0 

0/1 

0/0 

0/0 

1/0 

0/1 

0/1 

8/7 

0/0 

0/0 

1/0 

0/1 

0/0 

0/0 

0/2 

0/0 

0/0 

10/7 

0/1 

0/0 

0/0 

0/0 

1/1 

0/0 

0/1 

0/0 

0/0 

9/7 

0/0 

0/1 

0/0 

0/1 

0/0 

0/1 

0/0 

0/0 

0/0 

10/8 

0/0 

0/0 

0/0 

1/2 

0/0 

0/0 

0/0 

0/0 

0/0 

9/8 

 

 

Table 6 The value of statistical parameters 

Datasets 

label 

Statistical parameters (vibration/current signals) 

Sensitivity (%) Specificity (%) Total classification accuracy (%) 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 

100/70 

100/80 

70/90 

90/80 

80/70 

100/70 

90/70 

100/80 

90/80 

100/100 

96.5/97.5 

98.75/91.25 

100/96.25 

100/100 

100/100 

100/98.75 

97.5/92.5 

97.5/97.5 

91.11/76.67 
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Table 7 The RMSEs of CART and ANFIS 

Data type 
Training Testing 

CART ANFIS CART ANFIS 

Peak acceleration 0.002217 0.00876 0.14809 0.1708 

Envelop acceleration 1.3314×10
-5

 0.08886 0.2772 0.2938 

 

 


