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Abstract 

This paper presents an approach to predict the operating conditions of machine based on 

classification and regression trees (CART) and adaptive neuro-fuzzy inference system (ANFIS) 

in association with direct prediction strategy for multi-step ahead prediction of time series 

techniques. In this study, the number of available observations and the number of predicted 

steps are initially determined by using false nearest neighbor method and auto mutual 

information technique, respectively. These values are subsequently utilized as inputs for 

prediction models to forecast the future values of the machines’ operating conditions. The 

performance of the proposed approach is then evaluated by using real trending data of low 

methane compressor. A comparative study of the predicted results obtained from CART and 

ANFIS models is also carried out to appraise the prediction capability of these models. The 

results show that the ANFIS prediction model can track the change in machine conditions and 

has the potential for using as a tool to machine fault prognosis. 

 

Keywords: Machine fault prognosis; Long-term time series prediction; ANFIS; CART; Direct 

prediction methodology. 

 

1. Introduction 

The fault progression process of mechanical systems usually consists of a series of degraded 

states mainly due to component wear and fatigue during the operation process. In order to 

sustain the operating life of these components, selective maintenance strategies are regularly 

performed. Maintenance strategy is traditionally carried out by either corrective maintenance or 

preventive maintenance. The detailed introduction and the ability to apply these strategies could 
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be found in [1]. Condition based maintenance (CBM) is the second type of preventive 

maintenance strategy of which structure consists of the modules as follows: sensing and data 

acquisition, signal processing, condition monitoring, fault diagnosis and health assessment, 

prognosis, decision support, and presentation [2]. It is based on the actual condition and can 

assess whether the equipment is in need of maintenance or not; and if it is necessary, determine 

when the maintenance actions need to be executed. Moreover, with the assistance of prognosis, 

an alarm level can be set when the predicted values and the actual fault symptom of failure fall 

within the warning region. This will provide the adequate time for the system operators to take 

remedial actions, inspect the condition of the equipment, and conduct a repair on the defect 

before the catastrophic failure occurs. Therefore, an effective and efficient machine condition 

prognosis is essential for effective maintenance strategy and has become the key component of 

CBM system [3]. Nevertheless, prognosis has been a difficult task of CBM and can be broadly 

classified into three categories: experience-based, model-based, and data-driven based. 

Experience-based prognostic approaches require the component failure history data or 

operational usage profile data. They involve in collecting statistical information from a large 

number of component samples to indicate the survival duration of a component before a failure 

occurs and use these statistical parameters to predict the remaining useful life (RUL) of 

individual components. Generally, they are the least complex forms of prognostic techniques 

and their accuracy is not high because they base solely on the analysis of the past experience. 

Model-based prognostic approaches are applicable to where the accurate mathematical 

models can be constructed based on the physical fundamentals of a system. These approaches 

use residuals as features, which are the outcomes of consistency checks between the sensed 

measurements of system and the outputs of a mathematical model [4]. Some of the published 

researches using these approaches can be found in references [3-8]. However, these techniques 

are merely applied for some specific components and each requires a different mathematical 

model. Changes in structural dynamics and operating conditions can affect the mathematical 

model as it is impossible to model all real-life conditions. Furthermore, a suitable model is 

difficult to establish to mimic the real life. 

The data-driven prognostic approaches are also known as data mining or machine learning 

techniques. They utilize and require large amount of historical failure data to build a prognostic 

model that learns the system behavior. Among these techniques, artificial intelligence is 

regularly used because of its flexibility in generating appropriate model. Schwabacher and 

Goebel [9] have demonstrated the capability of using artificial intelligent techniques for 

prognosis. Other outstanding data-driven approaches have been proposed by Vachsevanos and 

Wang [10]; and Huang et al. [11]. In [10], they used dynamic wavelet neural network to predict 
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the failure growth based on the vibration signals to estimate the RUL of bearings. Huang et al. 

[11] applied self-organizing map and back propagation neural networks methods using vibration 

signals to predict the RUL of ball bearing. Wang et al. [12] utilized and compared the results of 

two predictors, namely, recurrent neural networks and ANFIS, to forecast the damage 

propagation trend of rotating machinery. A hybrid approach of fuzzy logic and neural networks 

was employed in [13] to predict the RUL of bearings of small and medium size induction 

motors. An approach based on data-driven prognostic technique applied in aircraft systems can 

be referred in [14]. 

In our previous work, we have proposed a data-driven prognosis approach that used 

regression trees as prediction model and one-step ahead (OS) prediction methodology for 

forecasting the machines’ operating conditions [15]. In this paper, a multi-step ahead (MS) 

prediction methodology is proposed for the same purpose. MS prediction plays a crucial role in 

industry by providing information on the RUL of machine ranging from system identification to 

ecology. It is divided into three strategies involved recursive prediction, direct prediction which 

is dealt with this study, and DirRec prediction [16]. The detail of these strategies will be 

presented and compared further in the next section. 

Other problems to be dealt with MS methodology will also be addressed in this paper as 

follows: the number of initial observations (embedding dimension) should be used as the inputs 

for prediction model; the number of steps (time delay) can be predicted by the prediction model 

to obtain the optimum performance. The former problem can be solved by using the false 

nearest neighbor method (FNN) [17] or the Cao’s method [18] in which FNN is commonly used. 

The latter can be calculated by using published methods such as auto-correlation [19], average 

displacement [20], and auto mutual information (AMI) [21]. In this study, AMI is chosen to 

estimate the time delay. After determining the embedding dimension and time delay, the 

prediction model is subsequently established. CART [22] and ANFIS [23] are utilized as the 

prediction model for the purposes of comparing the forecasting ability for MS prediction in the 

machine condition. 

 

2. Background knowledge 

2.1. Multi-step ahead strategies 

Multi-step ahead is a difficult task as well as challenging task for time series prediction 

problem due to the growing uncertainties which arise from various sources, such as the 

accumulated errors and the lack of information [24]. As mention in previous section, there are 

three strategies that could be frequently used for creating prediction model. The variance of 
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these strategies is introduced and compared as follows 

 

2.1.1. Recursive prediction strategy 

In order to predict h future values, the prediction model uses the predicted value of the 

previous step as a known value to forecast iteratively the next value until h future values are 

obtained. Given the observations 1 2[ , ,..., ]
t t d t d t

y x x x− + − += , the first future value can be 

predicted by using OS prediction: 

1 1 2
ˆ ( ) ( , ,..., )

t t t d t d t
y f y f x x x+ − + − += =       (1) 

where d denotes the number of inputs or the embedding dimension. For predicting the next 

value, the same prediction model is used: 

2 2 3 1
ˆ ˆ( , ,..., , )

t t d t d t t
y f x x x y+ − + − + +=       (2) 

The predicted value 1
ˆ

t
y +  is used as a known value in equation (2) for current forecasting 

time. The similar process is executed iteratively for h-2 remaining values. However, the 

accumulated error in previous predicting process will be added in the following step. Hence, 

this reduces the performance of prediction accuracy of recursive strategy.  

 

2.1.2. DirRec prediction strategy 

The predicting process of this strategy is similar with the above strategy. Nevertheless, the 

difference is that a new model is generated for each iteration when the predicted value is 

obtained. For instance, the value 2
ˆ

t
y + is predicted by the new prediction model which is 

retrained with temporary training set included the initial training set and 1
ˆ

t
y + . This strategy also 

has the same drawback of recursive strategy even though the new model is created after each 

step of the predicting process. 

 

2.1.3. Direct prediction strategy 

The direct prediction strategy can forecast the sequence of h future values 

1 2
ˆ [ , ,..., ]

t h t t t h
y x x x+ + + +=  from a given observations 1 2[ , ,..., ]

t t d t d t
y x x x− + − +=  by using H 

different prediction models. In order to generate these models, the training set D is initially 

created from the time series by using a sliding window of length d+h. Let X and Y be the input 

and output vectors, respectively. The input X corresponds to the first d values of window whilst 

the output Y is the remaining h values of window. The training set D comprised X and Y vectors 

is structured in the form shown in Table 1. Therefore, by learning each training set 

independently, H prediction models are sequentially generated with the same input X but 

different output Yi which include all the values in the ith column Y in D. Obviously, the direct 
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prediction strategy provides a higher accuracy due to the avoidance of the accumulated errors 

and is therefore used in this paper for MS prognosis. MS prediction with direct prediction 

strategy has been applied in many fields, such as time series prediction and the state of river 

flow [24-26]. 

 

Table 1 Training data D for direct prediction strategy 

 

2.2. Time delay estimation 

 

There are several methods published in literatures could be used to choose the time delay. 

However, most of them are based on empirical concepts and is not easy to identify which of the 

method is the best for a particular task. In this paper, time delay is dealt with AMI method 

which is mutual information between two measurements taken from a single time series. AMI 

estimates the degree to which the time series x(t+τ) on average can be predicted from x(t), i.e. 

the mean predictability of future values in the time series from the past values [27].  

The AMI between x(t) and x(t+τ) is: 

( ), ( )

( ( ), ( ))
( ( ), ( )) ln

( ( )) ( ( ))

XX

XX XX

x t x t X X

P x t x t
I P x t x t

P x t P x t

τ

τ τ

τ
τ

τ
τ

τ+

� �+
= + � �� �+� �
�    (3) 

where ( ( ))XP x t  is the normalized histogram of the distribution of values observed for x(t) and 

( ( ), ( ))XXP x t x t
τ

τ+ is the joint probability density for the measurements of x(t) and x(t+τ). 

The rate of decrease of the AMI with increasing time delay is a normalized measure of the 

complexity of the time series. The first local minimum of the AMI of time series has been used 

to determine the optimal time delay that makes the coordinates for an embedding procedure less 

pair-wise dependent in a well controlled manner. 

 

2.3. Determining the embedding dimension 

Assuming a time-series of x1, x2, …, xN. The time delay vector ( )iy d constructed from this 

time series with time delay τ and embedding dimension d is defined as follows: 

( 1)( ) [ , ,..., ], 1,2,..., ( 1)i i i i dy d x x x i N dτ τ τ+ + −= = − −     (4) 

The FNN method is based on the concept that in the passage from dimension d to dimension 

d+1, where one can differentiate between points which are ‘true” or “false” neighbor on the 

orbit. The criteria for identification of false nearest neighbors can be explained as follows: 

denote ( )
r

i
y d  as the nearest neighbor of ( )

i
y d  in a d dimensional embedding space. The 
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nearest neighbor is determined by finding the vector which minimizes the Euclidean distance: 

( ) ( )r

d i iR y d y d= −         (5) 

Considering each of these vectors under a d+1 dimensional embedding: 

2( 1) [ , , ,..., ], 1,2,...,i i i i i dy d x x x x i N dτ τ τ τ+ + ++ = = −     (6) 

2( 1) [ , , ,..., ], 1,2,...,r r r r r

i i i i i dy d x x x x i N dτ τ τ τ+ + ++ = = −     (7) 

The vectors are separated by the Euclidean distance: 

1 ( 1) ( 1)r

d i iR y d y d+ = + − +        (8) 

The first criterion of FNN which identifies a false nearest neighbor is: 

2 2

1

2

r

i d i dd d
tol

d d

x xR R
R

R R

τ τ+ ++
−−

= >       (9) 

where 
tol

R is a tolerance level. 

The second criterion is: 

1d
tol

A

R
A

R

+ >           (10) 

where RA is a measure of the size of the attractor and Atol is a threshold that can be chosen in 

practice. If both equations (9) and (10) are satisfied, then ( )r

i
y d  is a false nearest neighbor of 

( )
i

y d . Once the total number of FNN is calculated, the percentage of FNN is measured. An 

appropriate embedding dimension is the value where the percentage of FNN falls to zero. 

 

2.4. Prediction models 

2.4.1. Regression trees 

CART method has been extensively developed for classification or regression purpose 

depending on the response variable which is either categorical or numerical. In this study, 

CART is utilized to build a regression tree model. Beginning with an entire data set, a binary 

tree is constructed with the repeated splits of the subsets into two descendant subsets according 

to independent variables. The goal is to produce subsets of the data which are as homogeneous 

as possible with respect to the response variables. Regression tree in CART is built by using the 

following two processes: tree growing and tree pruning. 

 

Tree growing: Let L be a learning data which comprises n couples of 

observations ),(),...,,( 11 nnyy xx , where ),...,( 1 ii di xx=x is a set of independent variables and 
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Ryi ∈  is a response associated with xi. In order to build the tree, learning data L is recursively 

partitioned into two subsets by binary split until the terminal nods are achieved. The result is to 

move the couples ),( xy  to left or right nodes containing more homogeneous responses. The 

predicted response at each terminal node t is estimated by the mean )(ty  of the n(t) response 

variables y contained in that terminal node. 

The split selection at any internal node t is chosen according to the node impurity that is 

measured by within-node sum of squares: 

2

,

1
( ) ( ( ))

xi i

i

y t

R t y y t
n ∈

= −�        (11) 

and,  

,

1
( )

( ) xi i

i

y t

y t y
n t ∈

= �         (12) 

When a split is performed, two subsets of observations tL and tR are obtained. The optimum 

split s
*
 at node t is obtained from the set of all splitting candidates S in order that it verifies: 

*( , ) max ( , ),

( , ) ( ) ( ) ( )L R

R s t R s t s S

R s t R t R t R t

∆ = ∆ ∈

∆ = − −
      (13) 

where R(tL) and R(tR) are sum of squares of the left and right subsets, respectively. 

 

Tree pruning: The tree gained in tree growing process has many terminal nodes that increase 

precision of the responses. However, this is frequently too complicated and over-fitting is highly 

probable. Consequently, it should be pruned back. 

Tree pruning process is performed by the following procedure: 

Step 1: At every internal node, an error-complexity is found for the number of descendant 

subtrees. The error-complexity is defined as: 

TTRTR
~

)()( αα +=         (14) 

where ( )� �∈ ∈
−=

Tt ty i
ii

tyy
n

TR ~

2

),(
)(

1
)(

x
is the total within-node sum of squares, T

~
is the set 

of current nodes of T and T
~

 is the number of terminal nodes in T, α  � 0 is the complexity 

parameter which weights the number of terminal nodes. 

Step 2: Using the error-complexity attained in step 1, the internal node with the smallest 

error is replaced by terminal node. 

Step 3: The algorithm terminates if all the internal nodes have converge to a terminal node. 

Otherwise, it returns to step 1. 
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Cross-validation for selecting the best tree: There are two possible methods to select the best 

tree. One is through the use of independent test data and the other is cross-validation that is used 

in this study. 

The learning data L is randomly divided into v approximately equal group, and (v−1) groups 

are then utilized as the learning data for growing the tree model. The remaining group is 

employed as testing data for error estimation of tree model. As a result, v errors are obtained by 

v iterations with variation of the combinations of the learning data and testing data. The mean 

and standard deviation of the errors are given: 

1

2

1

1
( ) ( )

1
( ( )) ( ( ) ( ))

v
CV ts

i

i

v
CV ts CV

i

i

R d R d
v

R d R d R d
v

σ

=

=

=

= −

�

�
            (15) 

Here ( )CVR ⋅ is the average relative error, d is the cross-validation tree, σ is the standard error, 

and ( )tsR ⋅ is the testing data error. The best tree Tt selection is adopted: 

min min
( ) ( ) ( ( ))CV CV

t
R T R T R Tσ= +       (16) 

where ( )R ⋅ is the cross-validation error and Tmin is the tree with the smallest cross-validation 

error. 

 

2.4.2. Adaptive Neuro-fuzzy inference system (ANFIS) 

Architecture of ANFIS: The ANFIS is a fuzzy Sugeno model put in the framework of adaptive 

systems to facilitate learning and adaptation [23]. Such framework makes the ANFIS modeling 

more systematic and less dependent on expert knowledge. In order to present ANFIS 

architecture, two fuzzy if-then rules based on a first-order Sugeno model are considered: 

Rule 1: If (x is A1) and (y is B1) then
1 1 1 1f p x q y r= + + . 

Rule 2: If (x is A2) and (y is B2) then
2 2 2 2f p x q y r= + + . 

where x and y are the inputs, fi are the outputs within the fuzzy region specified by the fuzzy 

rule, Ai and Bi are the fuzzy sets, { , , }
i i i

p q r  is a set of design parameters that are determined 

during the learning process. The ANFIS architecture to implement these rules consists of five 

layers as shown in Fig. 1. In this architecture, circles indicate fixed nodes and squares indicate 

adaptive nodes. Nodes within the same layer perform identical functions as detailed below. 

 

Fig. 1 Schematic of ANFIS architecture 

 

Layer 1: all the nodes are adaptive nodes. The outputs of this layer are the fuzzy membership 

grade of the inputs, which are given by: 
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2

1

1

( ), 1,2

( ), 3, 4

i

i

i A

i B

O x i

O y i

µ

µ
−

= =

= =
              (17) 

Theoretically, ( )
iA xµ and ( )

iB yµ can adopt any fuzzy membership function. For example, if 

the bell functions are chosen then: 

2

1
( ) , 1,2

1

i i
A b

i

i

x i

x c

a

µ = =
� 	� �−

 �+ � �

 �� �� 

      (18) 

where {ai, bi, ci} are the modifiable parameters governing the shape of the membership 

functions. Parameters in this layer are referred to as premise parameters. 

Layer 2: The nodes are fixed nodes denoted as Π, indicating that they perform as a simple 

multiplier. Each node in this layer calculates the firing strengths of each rule via multiplying the 

incoming signals and sends the product out. The outputs of this layer can be represented as: 

2 ( ) ( ), 1, 2
i ii i A BO w x y iµ µ= = =       (19) 

Layer 3: The nodes are also fixed nodes. They are labeled with N, indicating that they play a 

normalization role to the firing strengths from the previous layer. The ith node of this layer 

calculates the ratio of the ith rule’s firing strength to the sum of all rules’ firing strengths: 

3

1 2

, 1,2i i
i i

i

w w
O w i

w w w
= = = =

+�
      (20) 

Layer 4: The nodes are adaptive nodes. The output of each node in this layer is simply the 

product of the normalized firing strength and a first order polynomial. Thus, the outputs of this 

layer are given by: 

4 ( )
i i i i i i i

O w f w p x q y r= = + +        (21) 

where 
i

w is the output of layer 3, and {pi, qi, ri} are consequent parameters. 

Layer 5: There is only a single fixed node labeled with Σ. This node performs the summation 

of all incoming signals. Hence, the overall output of the model is given by: 

5 , 1, 2
i i

i
i i i

i i

i

w f

O w f i
w

= = =
�

�
�

      (22) 

 

Learning algorithm of ANFIS: The task of the learning algorithm for ANFIS architecture is to 

tune all the modifiable parameters, namely premise parameters {ai, bi, ci} and consequent 

parameters {pi, qi, ri}, to make the ANFIS output match the training data [28]. From the ANFIS 
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architecture, it can be observed that when the values of premise parameters are fixed, the output 

of network can be expressed as a linear combination of the consequent parameters: 

1 1 2 2

1 1 1 1 1 1 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( )

f w f w f

w x p w y q w r w x p w y q w r

= +

= + + + + +
   (23) 

The least squares method can be easily used to identify the optimal values of these 

parameters. When the premise parameters are not fixed, the search space becomes larger and 

convergence of the training becomes slower. A hybrid algorithm combining the least squares 

method and the gradient descent method is adopted to solve the problem. The hybrid algorithm 

is composed of a forward pass and a backward pass. In the forward pass, the least squares 

method is used to optimize the consequent parameters with the fixed premise parameters. Once 

the optimal consequent parameters are found, the backward pass commences immediately. In 

the back pass, the gradient descent method is used to adjust the premise parameters 

corresponding to the fuzzy sets in the input domain, whilst the consequent parameters remain 

fixed. This procedure is repeated until either the squared error is less than a specified value or 

the maximum number of training epoch is encountered. 

 

3. Proposed system 

The proposed system for prognosis of machine condition comprises four procedures 

sequentially as shown in Fig. 2: data acquisition, data splitting, training-validating model, and 

predicting. The role of each procedure is explained as follows: 

Step 1 Data acquisition: this procedure is used to obtain the vibration data from machine 

condition. It covers a range of data from normal operation to obvious faults of the machine. 

Step 2 Data splitting: the trending data attained from previous procedure is split into two 

parts: training set and testing set. Different data is used for different purposes in the prognosis 

system. Training set is used for creating the prediction models whilst testing set is utilized to test 

the trained models. 

Step 3 Training-validating: this procedure includes the following sub-procedures: estimating 

the time delay and determining the embedding dimension based on AMI and FNN method, 

respectively; creating the prediction models and validating those models. Validating the 

prediction models are used for measuring their performance capability. 

Step 4 Predicting: multi-step ahead or long-term direct prediction method is used to forecast 

the future values of machine condition. The predicted results are measured by the error between 

predicted values and actual values in the testing set. Models and updated data are also carried 

out in this procedure for the next prediction time. 

  

Fig. 2 Proposed system for machine fault prognosis. 
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4. Experiment 

The proposed method is applied to a real system to predict the trending data of a low 

methane compressor which is an important equipment in petrochemical plant. This compressor 

shown in Fig. 3 is driven by a 440 kW motor, 6600 volt, 2 poles and operating at a speed of 

3565 rpm. Other information of the system is summarized in Table 2. 

 

Fig. 3 Low methane compressor: wet screw type. 

Table 2 Information of the system 

 

The condition monitoring system of this compressor consists of two types: off-line and on-

line. In the off-line system, the vibration sensors are installed along axial, vertical, and 

horizontal directions at the locations of drive-end motor, non drive-end motor, male rotor 

compressor and suction part of compressor. In the on-line system, acceleration sensors are 

located at the same places as in the off-line system but only in the horizontal direction. 

The trending data was recorded from August 2005 to November 2005 which included peak 

acceleration and envelope acceleration data. The average recording duration was 6 hours during 

the data acquisition process. This data consists of approximately 1200 data points as shown in 

Figs. 4 and 5, and contains information of machine history with respect to time sequence 

(vibration amplitude). Consequently, it can be classified as time-series data. The proposed 

method is employed to predict the future condition of vibration amplitude based on the past and 

current states. 

 

Fig. 4 The entire peak acceleration data of low methane compressor. 

Fig. 5 The entire envelope acceleration data of low methane compressor. 

 

The machine is in normal condition during the first 300 points of the time sequence. After 

that time, the condition of the machine suddenly changes. This indicates that there are some 

faults occurring in the machine.  These faults were identified as the damages of main bearings 

of the compressor (notation Thrust: 7321 BDB) due to insufficient lubrication. Consequently, 

the surfaces of these bearings were overheated and delaminated [15]. 

 

5. Results and discussions 

With the aim of forecasting the change of machine condition, the first 300 points were used 

to train the system. Before being used to generate the prediction models, the time delay τ is 
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initially calculated according to the method mentioned in section 2.2. Theoretically, the optimal 

time delay is the value at which the AMI obtains the first local minimum. From Fig. 6, the 

optimal time delay of peak acceleration training data is found as 7. Similarly, 5 is the optimal 

time delay value of envelope acceleration training data. 

 

Fig. 6 Time delay estimation. (a) Peak acceleration, (b) Envelope acceleration. 

 

Using FNN method described in section 2.3, the optimal time delay τ is subsequently utilized 

to determine the embedding dimension d. It is noted that the tolerance level Rtol and threshold 

Atol must be initially chosen. In this study, Rtol = 15 and Atol = 2 are used according to [17]. The 

relationship between the false nearest neighbor percentage and the embedding dimension for 

both peak acceleration data and envelope data is shown in Fig. 7. From the figure, the 

embedding dimension d is chosen as 4 for both data sets where the false nearest neighbor 

percentage reaches to 0. 

 

Fig. 7 The relationship between FNN percentage and embedding dimension. (a) Peak 

acceleration, (b) Envelope acceleration. 

 

After calculating the time delay and embedding dimension, the process of generating the 

prediction models is carried out. Based on the time delay and embedding dimension values, the 

training data is created as mentioned in section 2.1.3. Using this training data, the CART model 

and the ANFIS model are established. In case of the CART model, the number of response 

values for each terminal node in tree growing process is 5 and 10 cross-validations are decided 

for selecting the best tree in tree pruning. Furthermore, in order to evaluate the predicting 

performance, the root-mean square error (RMSE) is utilized as following 

( )

N

yy
RMSE

N

i ii� =
−

= 1

2ˆ
       (24) 

where N, yi, �i represent the total number of data points, the actual value, and predicted value  

of prediction model in the training data or testing data, respectively. 

Figs. 8(a) and 9(a) perform the training and validating results of the CART models for peak 

acceleration and envelope acceleration data, respectively. The actual values and predicted values 

are almost identical with very small RMSE values ranging from 0.002217 to 1.3314×10
-5

. It 

indicates that the learning capability of CART model is extremely good. Similarly, the ANFIS 

models are also created for both training set of peak acceleration and envelope acceleration. 

There are four inputs for each ANFIS model due to the embedding dimension value. For each 
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input, a bell shape is chosen for each membership function (MF) and the number of MFs is 2. It 

means that the region value of each input is divided into two, namely, small and large. In order 

to evaluate the learning process, the convergence of RMSE is utilized. If the decreasing rate of 

the RMSE as well as the performance is not significant, the learning process can be terminated. 

In this study, after executing 100 epochs, all RMSEs of the outputs reach the convergent stage 

for both the peak acceleration data and envelope acceleration data as shown in Fig. 10. 

Alternatively, the parameters of MFs, which are premise parameters and consequent parameters, 

are automatically adjusted through the learning in order that the outputs of ANFIS model match 

the actual values in training data. The changes of MF shapes are depicted in Fig. 11. The 

training and validating results of ANFIS models for both the peak acceleration data and 

envelope acceleration data are respectively shown in Figs. 8(b) and 9(b). From these figures, the 

RMSE values are sequentially 0.00876 and 0.08886. These values are higher than those of the 

CART models. The reason could be that the number of MFs is improperly chosen. For higher 

accuracy of RMSEs, the MFs can be increased. Nevertheless, this will also increase the 

computational complexity and take too much training time. 

 

Fig. 8 Training and validating results of peak acceleration data. (a) CART, (b) ANFIS 

Fig. 9 Training and validating results of envelope acceleration data. (a) CART, (b) ANFIS. 

Fig. 10 RMSE convergent curve. (a) Peak acceleration, (b) Envelope acceleration. 

Fig. 11 The changes of MFs after learning. (a) Peak acceleration, (b) Envelope acceleration. 

 

Figs. 12 and 13 show the predicted results of the CART models and the ANFIS models for 

peak acceleration and envelope acceleration data. The RMSE values of the CART model and the 

ANFIS model for those data are summarized in Table 3. Although, the RMSEs of ANFIS 

models are slightly higher values than those of CART models in both cases of peak acceleration 

and envelope acceleration data, the predicted results of ANFIS models can keep track with the 

changes of the operating condition of machine more precisely. This is of crucial importance in 

industrial application for estimating the time-to-failure of equipments. As mentioned above, the 

predicted results of ANFIS models can be improved by adjusting the parameters of ANFIS. 

However, these changes should take into consideration the increase of computational 

complexity and time-consumption of the training process which may lead to unrealistic 

application in real life. 

 

Fig. 12 Predicted results of peak acceleration data. (a) CART, (b) ANFIS. 

Fig. 13 Predicted results of envelope acceleration data. (a) CART, (b) ANFIS. 
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Table 3 The RMSEs of CART and ANFIS 

 

5. Conclusion 

Machine condition prognosis is extremely essential in foretelling the degradation of 

operating conditions and trends of fault propagation before they reach the final failure threshold. 

In this study, multi-step ahead direct prediction for the operating conditions of machine based 

on data-driven approach has been investigated. The CART models and ANFIS models are 

validated by its ability to predict future state conditions of a low methane compressor using the 

peak acceleration and envelope acceleration data. The predicted results of CART models are 

slightly better than those of ANFIS. Nonetheless, they are incapable of tracking the change of 

machines’ operating conditions with high accuracy as compared to ANFIS models. The 

tracking-change capability of operating conditions is of crucial importance in estimating the 

RUL of industrial equipments. This means that ANFIS has the potential for using as a tool to 

machine condition prognosis. 
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Fig. 2 Proposed system for machine fault prognosis. 
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Fig. 3 Low methane compressor: wet screw type. 
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Fig. 4 The entire of peak acceleration data of low methane compressor. 
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Fig. 5 The entire of envelope acceleration data of low methane compressor. 
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Fig. 6 Time delay estimation. (a) Peak acceleration, (b) Envelop acceleration. 
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(b) 

Fig. 7 The relationship between FNN percentage and embedding dimension.  

(a) Peak acceleration, (b) Envelop acceleration. 

 



 24

 

(a) 

 

 

(b) 

Fig. 8 Training and validating results of peak acceleration data. (a) CART, (b) ANFIS. 
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(b) 

Fig. 9 Training and validating results of envelop acceleration data. (a) CART, (b) ANFIS 
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(a) 

 

 

(b) 

Fig. 10 RMSE convergent curve. (a) Peak acceleration, (b) Envelop acceleration. 
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Fig. 11 The changes of MFs after learning. (a) Peak acceleration, (b) Envelop acceleration. 
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(b) 

Fig. 12 Predicted results of peak acceleration data. (a) CART, (b) ANFIS. 
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Fig. 13 Predicted results of envelop acceleration data. (a) CART, (b) ANFIS. 
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Table 1 Training set D for direct prediction strategy 

Input 
1 2

[ , ,..., ]
d

=X X X X  Output 
1 2[ , ,..., ]h=Y Y Y Y  

1 2[ , ,..., ]
d

x x x  1 2[ , ,..., ]
d d d h

x x x+ + +  

2 3 1[ , ,..., ]
d

x x x +  2 3 1[ , ,..., ]
d d d h

x x x+ + + +  

�  �  

1 2[ , ,..., ]
t h d t h d t h

x x x− − + − − + −  1 2[ , ,..., ]
t h t h t

x x x− + − +  

 

 

Table 2 Information of the system 

Electric motor Compressor 

Voltage 6600 V Type Wet screw 

Power 440 kW 
Lobe 

Male rotor (4 lobes) 

Pole 2 Pole Female rotor (6 lobes) 

Bearing NDE:#6216, DE:#6216 
Bearing 

Thrust: 7321 BDB 

RPM 3565 rpm Radial: Sleeve type 

 

Table 3 The RMSEs of CART and ANFIS 

Data type 
Training Testing 

CART ANFIS CART ANFIS 

Peak acceleration 0.002217 0.00876 0.14809 0.1708 

Envelop acceleration 1.3314×10
-5

 0.08886 0.2772 0.2938 

 

 


