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This paper presents a fault diagnosis method based on adaptive neuro-fuzzy inference system 

(ANFIS) in combination with decision trees. Classification and regression tree (CART) which is 

one of the decision tree methods is used as a feature selection procedure to select pertinent 

features from data set. The crisp rules obtained from the decision tree are then converted to fuzzy 

if-then rules that are employed to identify the structure of ANFIS classifier. The hybrid of back-

propagation and least squares algorithm are utilized to tune the parameters of the membership 

functions. In order to evaluate the proposed algorithm, the data sets obtained from vibration 

signals and current signals of the induction motors are used. The results indicate that the CART-

ANFIS model has potential for fault diagnosis of induction motors. 

 

Key Words: Fault Diagnosis; Induction Motors; Feature Selection; Adaptive Neuro-fuzzy 

Inference; Decision Trees  

 

 

1. Introduction 

Induction motors are the workhorse of many different industrial applications due to their 

ruggedness and versatility. Although the induction motors are well constructed and robust, the 

possibility of faults is inherent due to stresses involved in the conversion of electrical to 

mechanical energy and vice versa. The faults of induction motors may not only cause the 

interruption of product operation but also increase costs, decrease product quality and effect 

safety of operators. Early detection of incipient faults can minimize breakdown and reduces 

maintenance time. Furthermore, the availability and reliability of machines will be also increased. 

Consequently, fault diagnosis for detection of faults in induction motors has been the subject of 

considerable research in recent years to avoid the stoppage of product operation. For increased 
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productivity and safety reason, there has been an increasing demand for automated predictive 

maintenance and fault diagnosis system. 

The most common faults of induction motors are bearing failures, stator phase winding failures, 

broken rotor bar or cracked rotor end-rings and air-gap irregularities (Acosta et al., 2006). 

Different approaches for motors incipient fault detection and diagnosis have successfully been 

proposed (Yang and Kim, 2006; Satish and Samar, 2005; Yang et al., 2004; Casimir et al., 2006; 

Widodo et al., 2007; Benbouzid and Nejjari, 2001). Most of these techniques involve vibration 

analysis and stator current analysis because they are easy to measure, high accuracy and 

reliability. Most of the current research works in motor incipient fault detection and diagnosis 

focused on integrating two or more intelligent techniques to obtain a hybrid model to utilize the 

excellence property and capability of individual classifier.  

Artificial neural networks (ANNs) have been proven as a reliable technique to diagnose the 

condition of a motor and have good learning capability. However, ANNs are not interpretable and 

understandable, i.e. they are incapable of explaining a particular decision to the user in a human-

comprehensible form. Fuzzy logic is another method, which has been used for fault detection and 

diagnosis (Benbouzid and Nejjari, 2001). It has the ability of modeling human knowledge in a 

form of if-then rules using easily understandable linguistic term. It has the capability of 

transforming linguistic and heuristic terms into numerical values for use in complex machine 

computation via fuzzy rules and membership functions. The if-then rules as well as the initial 

parameters of membership functions are normally prepared by an expert. Thus, fuzzy logic 

requires fine-turning in order to obtain acceptable rule base and optimize parameters for available 

data (Shukri et al., 2004). The individual problems from fuzzy logic or ANN alone can be solved 

by the integration of both methods and has been applied for motor fault diagnosis (Goode and 

Chow, 1995).  

The adaptive neuro-fuzzy inference system (ANFIS) (Jang, 1993) is a specific kind of neuro-

fuzzy classifier approach which integrates the ANNs adaptive capability and the fuzzy logic 

qualitative approach. ANFIS have been successfully applied for automated fault detection and 

diagnosis of induction machines (Shukri et al., 2004; Altug et al., 1999). Recently, ANFIS and its 

combination with other methods were also employed as an enhanced tool for fault classification. 

Some examples of the combined algorithms are ANFIS with genetic algorithms (Lei et al., 2007) 

and ANFIS with wavelet transform (Lou and Loparo, 2004) for bearing fault diagnosis. ANFIS 

has been applied in classifying the faults of induction motor with variable driving speed (Ye et al., 

2006). 

The data obtained from measurements is normally high dimension and has a large amount of 
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redundant features. If the data is directly inputted into the classifier, the performance will be 

significantly decreased. Feature extraction and selection have been utilized for reducing the 

dimension of data by selecting important features wherein feature extraction means and 

transforming the existing features into a lower dimensional space (Yang et al., 2006). 

Nevertheless, each feature set contains many redundant or irrelevant features as well as salient 

features in feature space after the feature extraction has been done. Consequently, there is a need 

for feature selection procedure to select minimum features which can characterize the machine 

conditions from the whole feature set (Lei et al., 2007).  

In this study, decision tree is utilized as feature selection procedure to remove irrelevant 

features for the purpose of reducing the amount of data needed to achieve good learning, 

classification accuracy, compact and easily understood knowledge-base, and a reduction in 

computational time (Kumar et al., 2005). It involves an integrated method which combines 

classification and regression trees (CART) and ANFIS for use of fault diagnosis of induction 

motors. The proposed approach consists of two stages. First, the CART is performed as a feature 

selection tool to obtain the valuable features and identifies the structure of classifier in the next 

iterative step. Second, the ANFIS classifier is used to diagnose the faults of induction motors 

wherein the parameters of membership functions which are tuned throughout the learning process.  

 

2. Materials and Method 

2.1 Classification and regression trees (CART) 

CART algorithm (Breiman et al., 1984) is similar to other ones used in decision tree induction 

such as ID3 and C4.5 (Quinlan, 1986). One of the major distinctions is that CART induces 

strictly binary trees through a process of binary recursively partitioning of feature space of a data 

set (Jang et al., 1996). The trees produced by CART also consist of internal nodes (with two 

children) and terminal nodes or leaf nodes (without children). Each internal node is associated 

with a decision function to indicate which node to visit next, whilst each terminal node shows the 

output of a given input vector that leads the visit to this node (Sugeno and Kang, 1988). The 

decision tree shown in Fig. 1 evidently classifies the input space into four mutually exclusive 

rectangular regions which are assigned a labeled class. As in ID3 or C4.5, CART extensively 

builds the tree by using the data set of already classified instances which is called training set, and 

then prunes the tree back based on a minimum cost-complexity principle. The first phase is called 

tree building, and the other is tree pruning. 
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Fig. 1 Decision tree (Jang, 1994) 

 

2.1.1 Tree building 

The initial state of a decision tree is the root node (the first internal node) which assigned all 

the examples of the training set. If all the examples belong to the same class, then no further 

decisions need to be made to partition the examples and the solution is completed. Conversely, if 

the examples at this node belong to two or more classes, a test is made at the node that will result 

in a split and the training set is then divided into two sub-spaces. The process is recursively 

repeated for each of the new terminal node until a completely discriminating tree is obtained. 

The test at internal nodes is determined based upon a measure of impurity to select which 

feature is selected and which threshold value is chosen. The best known measure of impurity for 

CART is entropy impurity given by, 

#

1

( ) ( | ) log ( | )
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j j

j

E t p w t p w t
=

= −�                           (1) 

where E(t) is the entropy impurity at node t, p(wj|t) is the fraction of patterns at node t that  

belongs to class wj.  

The optimal splitting value s
*
 at node t is chosen from a set of all splitting candidates S so that 

the drop of impurity is maximized as 

( ) ( ), max ,
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∈
∆ = ∆                                                                                                             (2) 

where �E(s,t) is the drop of impurity given by 

( , ) ( ) ( ) ( )
L L R R

E s t E t p E t p E t∆ = − −                       (3) 

where tL and tR are left and right branch nodes, E(tL) and E(tR) are the impurities of the left and 

right branch nodes, pL and pR are the fraction of patterns at node t, respectively. 

 

2.1.2 Tree pruning 

The tree obtained by preceding building phase is biased toward the training data set (Jang et al., 

1996) and may have a large number of branches which substantially increase the tree’s 

complexity whilst they do not yield higher accuracy if resulting from noisy data. It is therefore 

necessary to prune the tree to improve the accuracy of classifier and to overcome the familiar 

over-fitting problem. The method for pruning in CART is based on the principle of minimum 

cost-complexity. Let Tmax denotes a wholly expanded tree that is grown in building phase, the 

cost-complexity measure Eα(T) of sub-tree T ⊂ Tmax is defined as: 

( ) ( )E T E T Tα = − α �                                                (4) 
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where T� is the number of terminal nodes in T and α is a complexity parameter.  

The general process for pruning tree is executed as following steps: 

Step 1: Beginning at the internal node t which is an upward terminal node of a tree T. 

Step 2: Calculating the value of α, and denote by αt, that makes T-Tt as the next minimizing 

tree for each internal node t, where αt is given by 

( ) ( )

1

t

t

t

E t E T

T

−
α =

−�
                                                       (5) 

Step 3: Finding the minimal αt and choosing T-Tt as the next minimizing tree. 

Step 4: Repeating the process until the optimum-size tree is achieved by using an independent 

testing data set or performing cross-validation. 

The resulting decision tree is an easy representation of the nonlinear input-output mapping. 

Furthermore, it is also easy for generating decision rules. For instance, the decision tree shown in 

Fig. 1 is equivalent to a set of crisp rules, 

If x > a and y > b then z = f1 

If x > a and y ≤ b then z = f2                                                                         (6) 

If x ≤ a and y > c then z = f3   

If x ≤ a and y ≤ c then z = f4 

Those crisp rules and thresholds are utilized to define the structure of neuro-fuzzy classifier 

and will be briefly described in the next section. However, the discontinuities at the decision 

boundaries are crisp and lead to large output variations for small changes in input features when 

such features are closed to decision boundaries. 

 

2.2 Adaptive neuro-fuzzy inference system (ANFIS) 

2.2.1 Architecture of ANFIS based on CART 

The ANFIS architecture is an integration of fuzzy logic and neural network algorithm (Jang, 

1994; Jang et al., 1996) which utilize the learning abilities of neural networks with human 

knowledge representation abilities of fuzzy systems.  

In order to present the ANFIS architecture based on CART, crisp rules (6) in the previous 

section are considered. Assuming any input vector (x, y) is given, only one rule out of four will be 

fired at full strength whilst the other three rules will not be activated and the output is solely 

determined by the fired rule. Furthermore, the crisp sets reduce the computation burden in 

constructing the tree using CART, but it also gives undesired discontinuous boundaries as 
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mentioned above. This problem can be solved by using fuzzy sets that can smooth out the 

discontinuities at each split. Fuzzy sets, therefore, are used to represent the premise part of the 

rule set in Eq. (6). This equation is converted into a set of fuzzy rules of either zero-order (when 

fi’s are constant) or first order (when fi’s are linear equations). Assuming that a first-order Sugeno 

fuzzy model (Sugeno and Kang, 1988) is considered, the crisp rules in Eq. (6) can be expressed as  

Rule 1: If x > a and y > b then z = f1 = p1x + q1y + r1 

Rule 2: If x > a and y ≤ b then z = f2 = p2x + q2y + r2 (7) 

Rule 3: If x ≤ a and y > c then z = f3 = p3x + q3y + r3 

Rule 4: If x ≤ a and y ≤ c then z = f4 = p4x + q4y + r4 

where x and y are the inputs, fi are the outputs within the fuzzy region specified by the fuzzy rule, 

pi, qi, and ri are the design parameters that are determined during the learning process.  

 

Fig. 2 ANFIS architecture of first-order Sugeno fuzzy model 

 

The ANFIS architecture to implement these rules consists of five layers as shown in Fig. 2. In 

this architecture, circles indicate fixed nodes, while squares indicate adaptive nodes. Nodes 

within the same layer perform identical functions as detailed below. 

Layer 1: All the nodes are adaptive nodes. The outputs of this layer are the fuzzy membership 

grade of the inputs, which are given by: 

( )1

i x d
O x∗= µ                                                      (8) 

( )1

i x d
O y∗= µ                                                      (9) 

where d is decision boundaries, and ( )x d x∗µ and ( )x d y∗µ  can adopt any fuzzy membership 

function. For instance, the statement y > c can be represented as a fuzzy set characterized by 

either the sigmoid membership function with one parameter α (Jang et al., 1996): 
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1
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>

µ α = α =
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                                                                         (10) 

or the extended sigmoid membership function with two parameters: α and γ 
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where α, γ, c are the modifiable parameters governing the shape of the membership functions. 

Parameters in this layer are referred to as premise parameters. 

Layer 2: The nodes are fixed nodes denoted as Π, indicating that they perform as a simple 

multiplier. Each node in this layer calculates the firing strengths of each rule via multiplying the 

incoming signals and sends the product out. The outputs of this layer can be represented as 

2 ( ) ( ), 1, 2, 3 and 4i i i ix yO w i= = µ µ =                          (12) 

Layer 3: The nodes are also fixed nodes. They are labeled with N, indicating that they play a 

normalization role to the firing strengths from the previous layer. The i-th node of this layer 

calculates the ratio of the i-th rule’s firing strength to the sum of all rules’ firing strengths:  

3

4

1 2 3 4

1

i i

i i

i

i

w w
O w

w w w w
w

=

= = =
+ + +

�
                                                (13) 

Note that this layer is not needed if the constraints: (a) ( ) ( ) 1
x a x a

x x
> ≤

µ + µ = and (b) 

multiplication is used as the T-norm operator to calculate each rule’s firing strength, with the 

summation over each rule’s firing strength is always equal to one. 

Layer 4: The nodes are adaptive nodes. The output of each node in this layer is simply the 

product of the normalized firing strength and a first order polynomial. Thus, the outputs of this 

layer are given by: 

4 ( ), 1,2,3 and 4
i i i i i i i

O w f w p x q y r i= = + + =                       (14) 

Layer 5: There is only single fixed node labeled with Σ. This node performs the summation of 

all incoming signals. Hence, the overall output of the model is given by 

4
5

1

i i

i

i i i

i i

i

w f

O w f
w=

= =
�

�
�                                   (15) 

Thus we have constructed an adaptive network that has exactly the same function as a Sugeno 

fuzzy model. 
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2.2.2 Learning algorithm of ANFIS 

The task of learning algorithm for ANFIS architecture is to tune all the modifiable parameters, 

namely premise parameters {α, γ, c} and consequent parameters {pi, qi, ri}, to make the ANFIS 

output matches the training data. The least squares method can be easily used to identify the 

optimal values of these parameters. When the premise parameters are not fixed, the search space 

becomes larger and convergence of the training becomes slower. A hybrid algorithm combining 

the least squares method and the gradient descent method is adopted to solve the problem. The 

hybrid algorithm is composed of a forward pass and a backward pass. In the forward pass, the 

least squares method is used to optimize the consequent parameters with the fixed premise 

parameters. Once the optimal consequent parameters are found, the backward pass commences 

immediately. In the back pass, the gradient descent method is used to adjust the premise 

parameters corresponding to the fuzzy sets in the input domain, whilst the consequent parameters 

remain fixed. This procedure is repeated until either the squared error is less than a specified 

value or the maximum number of training epoch is encountered. 

 

3. Proposed system fault diagnosis 

In this work, the vibration signals and current signals are utilized for detecting the faults of 

induction motors. The proposed system consists of four procedures as in Fig.3: data acquisition, 

feature calculation, feature reduction and fault classification which are specifically explained in 

the next section. In this section, the summary role of each procedure is described as follow: 

Data acquisition: this procedure is used to attain the vibration signals and current signals. 

Furthermore, data processing is also carried out.  

Feature calculation: the most significant features are calculated by using statistical feature 

parameters from time domain and frequency domain. 

Feature reduction: the CART algorithm is used to select the salient features from the whole 

feature set.  

Fault classification: The data obtained from feature reduction procedure is split into two data 

sets: training and testing data. Training data is employed to build the model whilst testing data is 

for validating the model. The results indicate the accuracy of classification. 

 

Fig. 3 Proposed system for fault diagnosis 
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4. Results and discussion 

4.1 Data acquisition 

To validate CART-ANFIS model, experiment was carried out using a test-rig which consists of 

a motor, pulleys, belt, shaft and fan with changeable blade pitch angle that represents the load. 

The load can be changed by adjusting blade pitch angle or the number of blades. Six induction 

motors of 0.5 kW, 60 Hz, 4-pole were used to create data. One of the motors with good condition 

(healthy) is used for comparison with faulty motors. The others are faulty motors, with rotor 

unbalance, broken rotor bar, phase unbalance, bearing outer race fault, bowed rotor, and 

adjustable eccentricity motor, as shown in Fig. 4. The conditions of faulty motors are described in 

Table 1. 

 

Fig. 4 Faults on the induction motors 

Table 1 The description of faulty motors 

Fig. 5 Vibration and current signals of each fault condition 

 

For acquiring data from test rig, three AC current probes and three accelerometers were used to 

measure the stator current of the three-phase power supply and vibration signal in the horizontal, 

vertical, axial directions for evaluating the fault diagnosis system, respectively. The maximum 

frequency of the signal was 3 kHz, with 16,384 sampled data and giving a measured time of 

2.133 s. The time waveform of vibration and stator current signals are shown in Fig. 5. From the 

vibration signals, it can be seen that there are difference between the waveforms of a normal, 

rotor unbalance, rotor bar broken and phase unbalance, which show approximate sine waves with 

frequency corresponds to the running speed. The characteristics of misalignment waveforms are 

sinusoidal with one or two clear cycles per revolution. There are many impacts in bowed rotor 

and faulty bearing waveforms. For stator current signals, the differences are not visible among 

these faults from time waveforms since the main component is line frequency and fault signals 

are modulated or riding on the sine wave of line frequency (60 Hz). 

 

4.2 Feature calculation 

The measured signals after being obtained from the experiment were calculated to obtain the 

most significant features by feature calculation. The accuracy of feature calculation is of 

substantial importance since it directly affects the final diagnosis results. In this paper, the feature 

calculation using statistical feature parameters from time domain and frequency domain was used. 

Sixty-three (63) features in total are calculated from 10 feature parameters of time domain. These 

parameters are mean, RMS, shape factor, skewness, kurtosis, crest factor, entropy error, entropy 
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estimation and histogram of upper and lower limits. And three parameters from frequency domain 

(RMS frequency, frequency center and root variance frequency) using the three direction 

vibration signals and three-phase current signals. The total number of feature parameters is shown 

in Table 2. The data sets of the features have 270 samples. In each operating condition, 20 

samples are employed for training process and 10 samples for testing. The detailed descriptions 

of those data sets are shown in Table 3. 

 

Table 2 Feature parameters 

Table 3 Descriptions of data sets 

 

4.3 Feature selection and classification 

A decision tree grows wholly based on training data sets and then prunes the tree back to give 

the final tree. Figs. 6 and 7 depict the trees corresponding to the data set of features obtained from 

vibration signals and current signals, respectively. Obviously, the feature appearing in root node 

of the trees is the most important one. The other features in remaining nodes appear in descending 

order of importance. It is to be emphasized which only features that contribute to the 

classification appear in the decision tree and the others do not. Features, which have less 

discriminating capability, can be consciously discarded by deciding on the threshold. From that, a 

number of features are strikingly diminished and only 4 features (x2, x5, x15 and x23) of vibration 

signal and 7 features (x2, x5, x6, x8, x11, x15 and x19) of current signal are remained.  

The reduction of features will decrease the burden of computation for ANFIS classifier in the 

next step. Furthermore, the structure of ANFIS classifier can be defined based on the crisp rules 

and boundary values of the decision trees.  

 

Fig. 6 Decision tree of features obtained from vibration signals 

Fig. 7 Decision tree of features obtained from current signals 

Fig. 8 Topology of ANFIS architecture for vibration signals 

 

In order to implement the fault diagnosis of induction motors by using ANFIS classifier, the 

structure identification for classifier is antecedently defined. This structure includes fuzzy rule set 

and membership functions. The fuzzy rule set is also crisp rule set of decision tree that has been 

fuzzyfied. Bell-shaped membership functions, from which the initial parameters are determined 

based on boundary values, are chosen for our classifiers. For instance, the topology of ANFIS 

architecture designed using MATLAB software package with fifteen fuzzy rules for vibration 

signal data set is shown in Fig. 8. In this figure the number of nodes in each layer, the number of 

fuzzy rules and other meaningful information can be seen. 
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The system parameters and the chosen membership functions are automatically adjusted during 

the learning process. The convergence of the root mean squared (RMS) error is utilized to 

evaluate the learning process. If the decreasing rate of the RMS error as well as the performance 

is not significant, the learning process can be terminated. In Fig. 9, the RMS error decreased to 

0.087 after 800 training epochs for the vibration signal data set which meant the network had 

learned the training data very well. In other words, the premise parameters of the membership 

functions corresponding to the inputs were changed for the sake of network convergence 

according to the given training samples. The membership function of each input parameter was 

divided into three regions, namely small, medium and large. Fig. 10 shows the initial (before 

training) and final (after training) membership functions of the four input parameters, using the 

generalized bell-shaped membership function. From this figure, it shows that changes of the final 

membership functions of input 2 (x5) and input 3 (x15) are similar while input 1 (x2) and input 4 

(x23) have changed. 

 

Fig. 9 The network RMS error convergence curve  

Fig. 10 Bell-shaped membership functions for vibration signals 

 

The classification results are calculated using a ten-fold cross-validation evaluation where the 

data set to be evaluated is randomly partitioned so that 180 samples are used for training and 90 

samples are used for testing. The process is iterated with different random partitions and the 

results are averaged. The CART-ANFIS achieved 100% classification accuracy without any 

misclassification out of 180 samples of training data for vibration and current signals. After 

training, the CART-ANFIS was tested against the testing data. The confusion matrix showing the 

classification results of the CART-ANFIS created with 800 epochs of training cycle is given in 

Table 4. In confusion matrix, each cell contains the number of samples that was correctly 

classified corresponding to actual network outputs and desired outputs of vibration signals and 

current signals. For example, the number is shown as 10/7 in the first cell (the first column and 

the first row of confusion matrix) means that there were 10 outputs were belonged to class C1 and 

7 outputs were belonged to class C1 for vibration signals and current signals, respectively. It is 

similar to the other cells in the diagonal of confusion matrix. The other cells that were not in the 

diagonal of confusion matrix indicate the misclassifications. For example, the cell being in the 

first column and the third row has the value as 0/1 shows that all subjects were correctly 

classified for vibration signals and one subject should have belonged to class C1 was classified as 

subjects  of  class C3. 
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The total classification accuracy for the test data was found as 91.11% with 8 misclassification 

out of 90 test samples for the vibration signal, while 76.67% with 21 misclassification out for the 

current signal. 

The test performance of the classifier can be determined by the computation of statistical 

parameters such as sensitivity, specificity and total classification accuracy defined by: 

Sensitivity: number of true positive decisions/number of actually positive cases. 

Specificity: number of true negative decisions/number of actually negative cases. 

Total classification accuracy: number of correct decisions/total number of cases. 

The values of statistical parameters are given in Table 5. The CART-ANFIS model classified 

C1 to C9 subject in form of a/b which implies the accuracy of classification corresponding to 

vibration signals and current signals as follows: 100/70, 100/80, 70/90, 90/80, 80/70, 100/70, 

90/70, 100/80 and 90/80% for vibration and current signals, respectively. Those values are 

obtained from the cells that are in the diagonal of confusion matrix. All of the data sets were 

classified with the accuracy of 91.11%/76.67% (total classification accuracy). 

 

Table 4 The confusion matrix for CART-ANFIS of 800 epochs 

Table 5 The value of statistical parameters 

 

5. Conclusion 

A combined classification and regression tree (CART) algorithm and adaptive neuro-fuzzy 

inference system (ANFIS) have been presented to perform fault diagnosis of induction motors. 

The implementation of CART-ANFIS based classifier requires two consecutive steps. Firstly, 

CART is utilized to select the relevant features in data set obtained from feature calculation part. 

The output of CART is decision tree that is employed to product the crisp if-then rule set. 

Secondly, the structure of ANFIS classifier is defined based on the obtained rules, which are 

fuzzyfied in order to avoid classification surface discontinuity. A hybrid algorithm is incorporated 

to tune the parameters fuzzy memberships. The classification results and statistical measures were 

used for evaluating the CART-ANFIS model. The total classification accuracy was 91.11% and 

76.67% for vibration and current signals, respectively. The results indicate that the proposed 

CART-ANFIS model can be used in diagnosing induction motor faults. 

 

References 



 14

Acosta, G.G., Verucchi, C.J. and Gelso, E.R., 2006, “A Current Monitoring System for 

Diagnosis Electrical Failures in Induction Motors,” Mechanical Systems and Signal Processing, 

Vol. 20, pp. 953~965. 

Altug, S., Chow, M.Y. and Trussell, H.J., 1999, “Fuzzy Inference Systems Implemented on 

Neural Architectures for Motor Fault Detection and Diagnosis,” IEEE Trans. Industrial 

Electronics, Vol. 46, No. 6, pp. 1069~1079. 

Benbouzid, M.E.H. and Nejjari, H., 2001, “A Simple Fuzzy Logic Approach for Induction 

Motors Sstator Condition Monitoring,” Proceedings of the IEEE IEMDC2001, pp. 634~639. 

Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J., 1984, Classification and Regression 

Trees, Wadsworth, Inc., Belmont, California. 

Casimir, R., Boutleux, E., Clerc, G. and Yahoui, A., 2006, “The Use of Feature Selection and 

Nearest Neighbors Rule for Faults Diagnosis in Induction Motors,” Engineering Applications of 

Artificial Intelligence, Vol. 19, pp. 169~177. 

Goode, P. and Chow, M.Y., 1995, “Using a Neural/fuzzy to Extract Knowledge of Incipient 

Fault in Induction Motor: Part 1- Methodology,” IEEE Trans. Industrial Electronics, Vol. 42, No. 

2, pp. 131~138.  

Jang, J.S.R., 1993, “ANFIS: Adaptive-Network-based Fuzzy Inference System,” IEEE Trans. 

System, Man and Cybernetics, Vol. 23, No. 3, pp. 665~685. 

Jang, J.S.R., 1994, “Structure Determination in Fuzzy Modeling: a Fuzzy CART Approach,” 

Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 1~6. 

Jang, J.S.R., Sun, C.T. and Mizutani, E., 1996, Neuro-fuzzy and Soft Computing: a 

Computational Approach to Learning and Machine Intelligent, Prentice Hall. 

Kumar, R., Jayaraman, V.K. and Kulkarni, R.D., 2005, “An SVM Classifier Incorporating 

Simultaneous Noise Reduction and Feature Selection: Illustrative Case Examples,” Pattern 

Recognition, Vol. 38, pp. 41~49. 

Lei, Y., He, Z., Zi, Y. and Hu, Q., 2007, “Fault Diagnosis of Rotating Machinery Based on 

Multiple ANFIS Combination with GAs,” Mechanical Systems and Signal Processing, in press. 

Lou, X. and Loparo, K.A., 2004, “Bearing Fault Diagnosis Based on Wavelet Transform and 

Fuzzy Inference,” Mechanical Systems and Signal Processing, Vol. 18, pp. 1077~1095. 

Quinlan, J.R., 1986, “Induction of Decision Trees,” Machine Learning, Vol. 1, pp. 81~106. 

Satish, B. and Samar, N.D.R., 2005, “A Fuzzy Approach for Diagnosis and Prognosis of 

Bearing Faults in Induction Motors,” IEEE Power Engineering Society General Meeting, Vol. 3, 

pp. 2291~2294. 

Shukri, M., Khalid, M., Yusuf, R. and Shafawi, M., 2004, “Induction Machine Diagnostic 

using Adaptive Neuron Fuzzy Inference System,” M. Gh. Negoita et al. (Eds.), KES 2004, pp. 

380 ~387. 

Sugeno, M. and Kang, G.T., 1988, “Structure Identification of Fuzzy Model,” Fuzzy Sets and 

Systems, Vol. 28, pp. 15~33. 

Widodo, A., Yang, B.S. and Han, T., 2007, “Combination of Independent Component Analysis 

and Support Vector Machines for Intelligent Faults Diagnosis of Induction Motors,” Expert 

Systems with Applications, Vol. 32, No. 2, pp. 299~312. 

Yang, B.S., Jeong, S.K., Oh, Y.M. and Tan, A.C.C., 2004, “Case-based Reasoning with Petri 

Nets for Induction Motors Fault Diagnosis,” Expert Systems with Applications, Vol. 27, No. 2, pp. 

301~311. 

Yang, B.S., Han, T. and Yin, Z.J., 2006, “Fault Diagnosis System of Induction Motors using 

Feature Extraction, Feature Selection and Classification Algorithm,” JSME International Journal 

(C), Vol. 49, No. 3, pp. 734~741. 

Yang, B.S. and Kim, K.J., 2006, “Application of Dampster-Shafer Theory in Fault Diagnosis 

of Induction Motors using Vibration and Current Signals,” Mechanical Systems and Signal 

Processing, Vol. 20, pp. 403~420. 



 15

Ye, Z., Sadeghian, A. and Wu, B., 2006, “Mechanical Fault Diagnosis for Induction Motor 

with Variable Speed Drives using Adaptive Neuro-fuzzy Inference System,” Electric Power 

Systems Research, Vol. 76, pp. 742~752. 

 



 16

�����

����� �����

��	�
� ��	�
� ��	�

 ��	�
�

 
(a) Binary decision tree 

 

 

(b) Feature space partitioning  

Fig. 1 Decision tree (Jang, 1994) 

 

 

�

�

1
w

���


�


�

x a>µ

y b>µ

y c>µ

���

���





4w

�

� �

������� ������� ������
 �������

�

�

�

�

1
w

2w

3w

4w

1 1w f

2 2w f

3 3w f

4 4w f

�������
 

Fig. 2 ANFIS architecture of first-order Sugeno fuzzy model 
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Fig. 3 Proposed system for fault diagnosis 
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Fig. 4 Faults on the induction motors 
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(a) Vibration                            (b) Current 

Fig. 5 Vibration and current signals of each fault condition 

 

 

Fig. 6 Decision tree of features obtained from vibration signal 
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Fig. 7 Decision tree of features obtained from current signal 

 

 

 

Fig. 8 Topology of ANFIS architecture for vibration signals 
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Fig. 9 The network RMS error convergence curve  
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(a) Initial (before training) 
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(b) Final (after training) 

Fig. 10 Bell shaped membership functions for vibration signals 

 

Table 1 The description of faulty motors 

Fault condition Fault description Others 

Broken rotor bar Number of broken bar:12 ea Total number of 34 bars 

Bowed rotor Max. shaft deflection: 0.075mm Air-gap: 0.25mm 

Faulty bearing A spalling on outer raceway #6203 

Rotor unbalance Unbalance mass on the rotor 8.4g 

Eccentricity Parallel and angular misalignments Adjusting the bearing pedestal 

Phase unbalance Add resistance on one phase 8.4% 

 

 

Table 2 Feature parameters 

Signals Position Feature parameters 

Time domain Frequency domain 

Vibration 

 

 

Current 

Vertical 

Horizontal 

Axial 

Phase A 

Phase B 

Phase C 

Mean 

RMS 

Shape factor 

Skewness 

Kurtosis 

Crest factor 

Entropy error 

Entropy estimation 

Histogram lower 

Histogram upper 

RMS variance frequency 

Frequency center 

Root variance frequency 
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Table 3 Descriptions of data sets 

Label of  

classification 

Condition Number of  

training samples 

Number of  

testing samples 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 

Angular misalignment 

Bowed rotor 

Broken rotor bar 

Bearing outer race fault 

Mechanical unbalance 

Normal condition 

Parallel misalignment 

Phase unbalance (30°) 

Phase unbalance (50°) 

20 

20 

20 

20 

20 

20 

20 

20 

20 

10 

10 

10 

10 

10 

10 

10 

10 

10 

Total samples 180 90 

 

 
Table 4 The confusion matrix for CART-ANFIS of 800 epochs 

Output/ 

desired 

Confusion matrix (vibration/current signals) 

C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 

10/7 

0/0 

0/1 

0/0 

0/0 

0/0 

0/0 

0/2 

0/0 

0/0 

10/8 

0/0 

0/0 

0/0 

0/0 

0/0 

0/2 

0/0 

0/0 

0/0 

7/9 

0/0 

0/0 

0/0 

0/0 

1/1 

2/0 

0/0 

1/0 

0/1 

9/8 

0/0 

0/0 

0/0 

0/1 

0/0 

0/0 

1/0 

0/1 

0/1 

8/7 

0/0 

0/0 

1/0 

0/1 

0/0 

0/0 

0/2 

0/0 

0/0 

10/7 

0/1 

0/0 

0/0 

0/0 

1/1 

0/0 

0/1 

0/0 

0/0 

9/7 

0/0 

0/1 

0/0 

0/1 

0/0 

0/1 

0/0 

0/0 

0/0 

10/8 

0/0 

0/0 

0/0 

1/2 

0/0 

0/0 

0/0 

0/0 

0/0 

9/8 

 

 

Table 5 The value of statistical parameters 

Datasets 

label 

Statistical parameters (vibration/current signals) 

Sensitivity (%) Specificity (%) Total classification accuracy (%) 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 

100/70 

100/80 

70/90 

90/80 

80/70 

100/70 

90/70 

100/80 

90/80 

100/100 

96.5/97.5 

98.75/91.25 

100/96.25 

100/100 

100/100 

100/98.75 

97.5/92.5 

97.5/97.5 

91.11/76.67 

 

 

 

 

 

 

 

 

 


