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Abstract

Current autonomic computing systems tend to rely
on reactive rather than deliberative reasoning, that is,
they use a simpler form of reasoning over sets of defined
rules in order to be able to work in real-time. How-
ever, technology in areas such as automated planning
or constraints processing have been developing rapidly,
so that now it may be possible to deploy deliberative
reasoning to real-time applications. In this paper, we
introduce the problem of self-management of a road
traffic network as a temporal planning problem. We
design a road traffic model, and use it with domain
independent planners to consider the feasibility of in-
troducing it into traffic management applications.

Introduction

Autonomic control systems are an important class of
control systems, because of the desirable properties that
they offer: the ability to self-manage, self-configure,
self-protect and self-optimize. As a consequence, they
need to plan and act effectively, in order to follow these
behavioral properties. Thus, creating generic technol-
ogy that enables control systems to automatically rea-
son with knowledge of their controls, in order to gener-
ate plans and schedules to manage themselves would be
a major breakthrough in the realization of autonomic
properties in such systems.

The Automated Planning community has evidenced
a need to extend planning algorithms to be able to in-
put increasingly complex domain models which closely
approximate real problems(Hoffmann and Edelkamp
2005; Fox and Long 2006; Haslum and Geffner 2001).
The existence of such powerful planners increases the
motivation for knowledge engineers to incorporate the
technique of automated planning into the realization
of the properties of autonomic computing. The poten-
tial role of AI Planning in autonomic computing was
originally made by Srivastrava (Srivastava and Kamb-
hampati 2005), here we look to extending this vision to
the more general area of autonomic systems. As part
of this effort, we have designed a traffic control model
to optimize traffic flow and have tested it on domain
independent planners.

The long term goal of this work is to exploit a tradi-
tional control system architecture, situated in the area
of traffic control, and embed it with situational aware-
ness, together with declarative representation of goals,
actions and states of its environment, and explore the
possibility of using planning engines to support delib-
erative reasoning within this system. This paper ex-
plores the feasibility of this approach in a road traffic
domain model where the task is to effectively navigate
cars through a road network. We demonstrates some
preliminary results in enabling autonomic properties in
a road traffic management domain by diverting the flow
of regular traffic during an unplanned circumstance -
self-optimization.

This model will be embedded into a road traffic vir-
tual environment in our future work. We will evaluate
it by comparing its behavior to a traditional system
architecture, and assessing the effort and challenges re-
quired to embody such symbolic reasoning within a real
time environment.

Automated Planning

AI Planning deals with the problem of finding a se-
quence or partially ordered set of actions whose execu-
tion leads from a particular initial state to a state in
which a goal condition is satisfied. Actions in plans are
ordered in such a way that executability of every action
is guaranteed (Fox and Long 2003). Hence, an agent is
able to transform the environment from an initial state
into a desired goal state (Gupta, Nau, and Regli 1998;
Garrido, Onaindia, and Barber 2001). A planning
problem thus involves deciding “what” actions to do,
and “when” to do them. The “when” part of the
problem refers to “scheduling” (Gerevini et al. 2009;
Hoffmann and Nebel 2001). In this work we are con-
cerned particularly with temporal domain modeling.
For our purpose STRIPS representation does not pro-
vide enough expressiveness because we have to consider
resources (e.g. road use) and time. A Planning Domain
consists of a set of predicates and numeric fluents de-
scribing the environment and a set of planning opera-
tors. A Planning Operator is specified via its precondi-
tion, effects and duration. A precondition of a planning
operator is represented by a set of relational and/or



logical expressions. Every expression has assigned its
validity range which is one of the following: ‘at start’
(the expression must be valid at time the operator is
executed), ‘at end’ (the expression must be valid at
time the operator finishes its execution) or ‘over all’
(the expression must be valid at the time interval op-
erator is being executed). Effects are represented by a
set of assignments and/or set of literals (predicates or
their negations). Every assignment or literal has spec-
ified when it takes effect which is one of the following:
‘at start’ or ‘at end’. Duration of a planning operator
is represented by a number which represent the time
needed for executing the operator. A Planning Prob-
lem consists of a set of concrete objects, an initial state
and a goal situation. An initial state is represented by
a set of assignments and predicates. Moreover, timed-
literals can be included in the initial state as well which
represent in which time-stamp a predicate becomes true
or false. A goal situation is represented be a set of re-
lational and/or logical expressions. A plan is a list of
couples 〈time-stamp,action〉 (an action is an instance of
a planning operator). A plan is a solution of a given
planning problem if and only if every action is applica-
ble in the given time-stamp (its precondition is fulfilled)
and after all action are executed all expressions speci-
fied in the goal situation are satisfied.

Planning Domain Definition Language (PDDL)
PDDL(McDermott D. et al. 1998) was developed with
the aim of being a neutral specification of planning
models and later improved upon and used at every In-
ternational Planning Competition. It is widely used
in the planning community due to it compatibility with
most planning engine with neutral meaning that it does
not favor any particular planning system. This has
made it to be accepted as a standard for the representa-
tion and exchange of domain model within the planning
community.

Autonomic Computing Paradigm

Human breathing, heartbeat, temperature, immune
system, repair mechanisms are all to a great extent
controlled by our body without our conscious manage-
ment. For instance, when we are anxious, frightened, ill
or injured, all our bodily functions evolves to react ap-
propriately. The autonomic nervous system has all the
organs of the body connected to the body central ner-
vous system which takes decisions in order to optimize
the effective functioning of other organs in the body.
Autonomic Computing is motivated by a metaphori-
cal parallel between computing systems and the human
autonomic nervous system, and aims at realizing com-
puting systems and applications capable of managing
themselves with minimum human intervention.

The AC initiative was introduced in 2001 with the
goal of developing self-managing systems. IBM defines
four main properties for an AC: self-configuring, self-
healing, self-optimizing and self protecting (IBM 2003;
2005; 2006; Ganek and Corbi 2003). AC is meant to

Figure 1: Illustration of AC architecture in road trans-
port system.

improve the wide-range of usability and manageability
of systems which will benefit all road transport system
at long run. AC systems should have the ability to
learn process pattern from the past and adopt, discard
or generate new plans to improve process control. The
ability to identify the task is the most important aspect
of any AC element, this enables an AC to decide on the
appropriate action when healing, optimizing, configur-
ing or protecting itself.(Hariri et al. 2006).

Strategy of an Autonomic System

We use the term “autonomic system” rather than au-
tonomic computing to emphasize the idea that we are
dealing with a heterogeneous system containing hard-
ware and software. Sensors and effectors are the main
component of this type of autonomic system architec-
ture (Ganek and Corbi 2003). AC needs sensors to sense
the environment and executes actions through effectors.
In most cases, a control loop is created: the system pro-
cesses information retrieved from the sensors in order
to be aware of its effect and its environment; it takes
necessary decisions using its existing knowledge from
its domain, generates effective plans and executes those
plans using effectors. Autonomic systems typically ex-
ecute a cycle of monitoring, analyzing, planning and
execution (Lightstone 2007).

Most system architecture elements are self-managed
by monitoring and analyzing behaviors and using the
response to plan and executes new actions that takes
or keeps the system in desired state. The plan-
ning processes inherent in autonomic systems could be
achieved by AI planning or through the use of com-
prehensive learning and adaptive algorithms. Overall
self-management is a means for a system to do self-
assessment, protection, healing, optimization, mainte-
nance and other overlapping terms (IBM 2006). Any
system that is meant to satisfy these above objectives
will need to have the following attributes:

• Self-awareness of both internal and external features,
processes resources, and constrains

• Self-monitoring it exiting state and processes and

• Self-adjustment and control of it-self to the desir-
able/required state



• Heterogeneity across numerous hardware and soft-
ware architectures

Requirements for Self-Management in
Road Traffic Support System

In this paper we consider the implementation of au-
tonomic properties of specific areas of Road Traffic
Management, in line with the EU COST ARTS ini-
tiative 1. Most existing traffic signal control methods
are based on feed-back algorithms. They make use
of traffic-demand data varying from several years of
storage to a couple of minutes prior to usage. Cur-
rent traffic control systems often operate on the basis
of adaptive green phases and flexible co-ordination in
(sub) networks based on measured traffic conditions (an
example is SCOOT, UTOPIA-spot)(Roozemond 2001;
De Oliveira and Bazzan 2009).

However, these approaches are still not optimal dur-
ing unforseen situations such as road incident, road re-
construction, car breakdown and when traffic demand
changes rapidly within a short time interval. In this sit-
uation, there arises the need for self-managing systems
that can take pro-active decision using some set of well
developed meta-rules to alter the behavior of the state
of any road traffic situation based on achievable goals.
This pro-active nature of traffic control is the heart on
which our research work is build-upon.

Ideally, the following abilities would be incorporated
into a road traffic model within the process of imple-
menting this research work.

• Ability to retrieve information on the current state
of traffic based on information from road sensors

• Ability to detect current traffic problems by evaluat-
ing current traffic trends with the use of traffic control
rules on an existing ideal model of the surrounds

• Ability to estimate the next optimal cycle mathemat-
ically

• Ability to take decision and operate the entire traffic
control signals based on the generated optimal plan

Resources and Constraints: In every system de-
sign, there are resources available for execution. These
resources come with associated limitations (constraints)
which must be identified and optimized for effective im-
plementation of the system. A list of resources and
constraints that are considered for a potential model
are discussed in this section.

1. Resources from the component of road traffic system
which includes: road intersections, traffic lights, vari-
able message signs, ramp metering and state switch-
ing at the intersection.

2. Resources from road sensors which includes: status
of roads and intersections, capacity of the road and
length of queues.

1www.cost-arts.org

Figure 2: Layout of the road route showing the rela-
tionship between junctions

3. Constraints in this model could be further broken
down into two parts:

Resource Constraint The execution of activity
needs certain resources which must be optimized
at every resulting state from/during and after ev-
ery action within the domain.

Temporal Constraint Every actions have their
own duration which must be valid within any ac-
tion in the execution frame work. For instance, the
duration of allowed action for vehicle movement is
according to the road’s queue length in relation to
the road capacity of neighboring routes.

The Design of a Road Traffic
Model(RTM)

This section describes the design of a Road Traffic
Model (RTM) in order to explore the role of automated
planning in enabling some of the requirements described
in the section above. The model was tested with dif-
ferent domain independent planners and the resulting
output is evaluated.

RTM Design The model architecture is divided into
four part:

• The properties of the road represented by road layout
segment.

• Controlled intersections are represented by the road-
junctions relationship within the road network

• The road users properties represented by the road
capacity and queue length



• Route properties that span several adjoining road
segments.

RTM Specification

A Road Network can be represented by directed graph,
where edges stand for roads and vertices stand for ei-
ther junctions or entry or exit points. Entry points are
points where cars enter the network, while exit points
are point where cars exit the network. In junctions we
must be aware of conflicting ways on which cars can-
not go simultaneously. Every road has its own length
and capacity (i.e. a maximum number of cars it can
serve). The network model can be enhanced by consid-
ering time intervals when a road is closed for mainte-
nance.

Definition 1 Let (V,E) be a directed graph such that
∀v ∈ V : (indeg(v) = 0 → outdeg(v) = 1) ∧
(outdeg(v) = 0 → indeg(v) = 1). Edges in E repre-
sent one-way roads. A vertex v ∈ V represents:

• entry point if indeg(v) = 0

• exit point if outdeg(v) = 0

• junction otherwise

Let M = {M1, . . . ,Mn} be a set of sets of conflicting
ways such that Mi is defined as a set of triples in form
(eix , vi, eiy ) such that a junction vi is a tail of eix and
a head of eiy .
Let C : E → < be a function representing road capacity
and l : E → < be a function representing road length.
Let T be a mapping from edges (E) to sets of time
intervals representing road blockage. Then N =
〈V,E,M, C, l, T 〉 is a road network.

A Road Planning Problem addresses the problem of
efficient navigation of cars through a given Road Net-
work from entry points to exit points. Initially, it is
given the number of cars in each entry point and fre-
quency of their releasing. This can be represented by a
set time-stamps in which the entry points are ‘opened’.
The goal situation is determined by numbers of cars in
exit points. Hence, we consider two actions (planning
operators) which are defined as follows:

RELEASE-CARS — In a given time-stamp, the ac-
tion releases a pre-defined number cars if the capac-
ity of the road adjacent to the corresponding entry
point would not be exceeded. After executing the ac-
tion the cars are present on the road adjacent to the
corresponding entry point.

FLOW — The action navigates cars through a junc-
tion if the capacity of the road on which cars are
being navigated would not be exceeded. After exe-
cuting the action the cars are ‘relocated’ from one
road (leading towards the junction) to another (lead-
ing from the junction). Note that the actions cannot
be executed simultaneously for the same junction.

RTM PDDL Code

Modeling an RTM problem in PDDL holds several chal-
lenges. The most critical of these is that in the real-
world drivers have true agency and are therefore not
strictly under our control. The flow of traffic is there-
fore best modeled as a complex hybrid process. How-
ever, this process is difficult to define and would lead to
a problem too challenging for contemporary planners.
Therefore we have taken the approach of modeling the
processes as closely as possible using PDDL 2.1. In all
considered models, the goal of the planning problem is
to route a certain number of vehicles through the net-
work to the exit points, whilst minimizing the makespan
of the plan.

The modeling of a simple RTM problem requires a
method of periodically introducing vehicles at the en-
try points, and also of restricting how the vehicles can
move around the network. We look at these two issues
in turn, starting with periodic entry into the network.
Each road has a use fluent, representing the number of
cars currently on the road. One approach that we ex-
plored was to use timed initial literals in order to define
particular times when these use fluents are refreshed.

Therefore, several statements of the form:

(at 0 (= (use a) 10))
(at 10 (= (use a) 10))

....

could be added to the initial state. We believed that
this was an attractive approach as it ensures the flow of
traffic into the system in a staggered way, and this mod-
els the real-world problem better than simply adding all
vehicles at time 0. Unfortunately, the use of fluent as-
signments in timed initial literals is not supported in
PDDL (or at least by the planners we experimented
with), and so another approach was necessary.

The final model is shown in the RELEASE-CARS
action in Figure 3. We use the unary predicate ready
to denote that an entry point is ready to release cars.
For the duration of a RELEASE-CARS action, this
is deleted to ensure that only a single instance of the
ground action can be executed at any one time. At the
end of the action, the entry point is set to ready again.
The duration is set to the amount of time successive
waves of vehicles can enter the network. A weakness
of this approach is that a planner is free to schedule
RELEASE-CARS actions as far apart as it chooses. In
this respect the domain does not adequately model the
fact that the vehicles should enter the network at regu-
lar intervals, regardless of when the planner chooses to
release them. We do not know of a remedy to this situ-
ation other than the use of timed initial literals; and as
previously discussed, this proves impractical with cur-
rent planners. Pragmatically this problem is reduced
by the fact that for the makespan to be optimized it is
sensible to release the cars as early as possible.

The FLOW action (again, shown in Figure 3) is the
action that deals with moving cars from one road to an-
other. This action moves a single car from one road to



(define (domain transport)

(:requirements :typing :durative-actions :fluents)

(:types road)

(:predicates

(ready ?road - road)

(operational ?road - road)

(connected ?road1 - road ?road2 - road)

)

(:functions

(flowrate ?road - road)

(capacity ?road - road)

(use ?road - road)

)

(:durative-action RELEASE-CARS

:parameters (?r - road)

:duration (= ?duration 10)

:condition (and (at start (ready ?r)) (at end (< (use ?r) (capacity ?r))))

:effect (and (at end (increase (use ?r) 5))

(at start (not (ready ?r))) (at end (ready ?r)))

)

(:durative-action FLOW

:parameters (?road1 ?road2 - road)

:duration (= ?duration (/ 1 (flowrate ?road1)))

:condition

(and

(at start (connected ?road1 ?road2))

(at start (>= (use ?road1) 1))

(at start (< (use ?road2) (capacity ?road2)))

(at start (operational ?road2))

(at start (operational ?road1))

)

:effect

(and

(at start (not (operational ?road1)))

(at end (operational ?road1))

(at start (decrease (use ?road1) 1))

(at end (increase (use ?road2) 1))

)

)

)

Figure 3: A domain model for the Road Traffic Man-
agement problem.

another providing they are connected and that there are
sufficient cars and capacity to support the operation.
In the example that we are using, the road-network is
a one-way system in which each junction has a maxi-
mum of two different choices for the traffic lights. Thus,
each flow action prevents the first road from being used
simultaneously to feed more than one road.

RTM Analysis The model shows a road layout of
five junctions and eleven connected roads. A declar-
ative representation of the road layout and the traffic
switching rules and policies is modeled in PDDL. The
initial road queue length of each roads and the desire
queue length are given as the initial and goal state re-
spectively. The maximum number of vehicles and the
traffic flow rate limitations of each roads are part of
the resource constraints in the problem file. Vehicle
are allow to enter and leave the system at appropriate
intervals.

RTM Result
Figure 5 shows the plan generated by LPG for the in-
stance defined in Figure 4. This is a simple problem
where 5 cars are routed from one entry point to a sin-
gle exit point. Table 1 shows the outcome of solving

(define (problem problem1)

(:domain transport)

(:objects

a b c d e f g h i j k - road

)

(:init

(connected a g)

(connected b g)

(connected c g)

(connected d b)

(connected d k)

(connected e c)

(connected e f)

(connected f d)

(connected f k)

(connected g h)

(connected g i)

(connected i j)

(connected i d)

(connected g i)

(connected g i)

(= (flowrate a) 5)

...

(= (flowrate k) 4)

(= (capacity a) 100)

...

(= (capacity k) 100)

(= (use a) 0)

...

(= (use k) 0)

(operational a)

...

(operational k)

(ready a)

(ready e)

)

(:goal

(and

(>= (use j) 0)

(>= (use k) 0)

(>= (use h) 5)

)

)

(:metric minimize (total-time))

)

Figure 4: An example problem file modeling the trans-
port network from Figure 2. In this problem, five cars
must be routed to exit point h

five different problems of varying difficulty. Three plan-
ners were used in this analysis: LPG (Gerevini, Saetti,
and Serina 2006), Crikey (Coles et al. 2009) and Optic
(Benton, Coles, and Coles 2012). In the examples, Op-
tic performs the best on the example instances that we
have provided. LPG takes less time to generate plans.
Within an autonomic framework, planning will occur in
a control-loop and so there will be a practical trade-off
between quality and speed, depending on size of prob-
lem and time available.

Both Crikey and Optic are capable of solving prob-
lems with required concurrency and durational inequal-
ities and Optic supports time-dependent costs. We en-
vision that more realistic models of the RTM problem
will require these capabilities.

Discussion

In reality, it is not possible to directly control the ve-
hicles in a road traffic network. We do not expect that
the plan generated is to be executed in the traditional
sense. Therefore, the results of the planning process
should be seen as a guide (or a kind of heuristic) saying
what traffic is going to do under idealized conditions.



; States evaluated: 23
; Cost: 13.510
; Time 0.10
0.000: (release-cars a) [10.000]
10.001: (flow a g) [0.200]
10.202: (flow g h) [0.500]
10.703: (flow a g) [0.200]
10.904: (flow g h) [0.500]
11.405: (flow a g) [0.200]
11.606: (flow g h) [0.500]
12.107: (flow a g) [0.200]
12.308: (flow g h) [0.500]
12.809: (flow a g) [0.200]
13.010: (flow g h) [0.500]

Figure 5: The plan generated by the Optic planner for
the problem instance defined in Figure 4

CARS LPG CRIKEY3 OPTIC

5 13 13 13
10 40 26 13
15 37 38 24
30 55 63 38
45 83 89 54

Table 1: Quality of plans generated by several planners
for instances with varying number of cars in the net-
work. The underlying network in all examples is that
defined in Figure 2. Optic tends to produce better plans
in the domain.

There are situations in which a planner is useful in
answering questions for a traffic support system. One
particular example is during road closures, either ex-
pected or unexpected. During road maintenance traf-
fic flow rates may change due to slower moving traffic.
Whenever there is a road block due to car break down,
road maintenance or an accident, the traffic support
system automatically generate plans which ca divert
traffic from such routes. Road closures are modeled
with the use of timed initial literals. Modeling changes
in traffic flow at specified times is more problematic,
though using dummy actions it is possible within PDDL
2.1.

Conclusion
In this work we have demonstrated some preliminary
results in enabling autonomic properties in a road traf-
fic management domain by diverting the flow of reg-
ular traffic during an unplanned circumstance - self-
optimization. In a real world scenario where road
queues and road capacity lengths are uploaded in real
time from road sensors, we hope to possibly sense and
divert road traffic with little or no human intervention.
Other factors such as a change in weather conditions,
priority vehicles and road construction interruption can
also be taken into account while generating plans in or-

der to facilitate pro-active decisions.
In this paper we designed a road traffic domain model

which allows to navigate cars throughout the road net-
work. We plan to embed our model into a road traffic
virtual environment in our future work. We plan to
evaluate it by comparing its behavior to a traditional
system architecture, and assessing the effort and chal-
lenges required to embody the model within a real time
environment. Other aspects of improvement would in-
clude: incorporating the actual road policies; increase
interaction with road users; build a knowledge base
from generated (optimal) plans and consider various
speed limits.
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