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 

Abstract— This paper introduces a novel discrete-time model-

reference based control of the tool-work-piece interaction force 

in a milling process. The novelty of the scheme relies on the use 

of a fractional order hold (FROH) instead of a traditional zero 

order hold (ZOH) used in the manufacturing literature to 

obtain a discrete-time model of the continuous system. The 

additional degree of freedom introduced by the FROH 

through its correcting gain allows the designer to improve the 

closed-loop behavior of the time-varying unknown system by 

an adequate choice of its value. Simulation examples showing 

the influence of the correcting gain in the closed-loop response 

are presented and compared.   

I. INTRODUCTION 

Milling is a cutting process widely used in the 

manufacturing of mechanical components. It consists of the 

relative movement between feeding a work-piece clamped 

on a table and rotating multi-tooth cutter. In order to avoid 

machine malfunctions such as tool wear or breakage and to 

achieve a certain degree of quality in the finishing of the 

working-piece, the peak cutting force on the working piece 

has to be maintained below a prescribed safety upper-

bound. This fact implies that a control strategy has to be 

implemented on the system in order to fulfill such safety 

and performance requirements. Moreover, cutting 

parameters may be unknown or time-varying as a 

consequence of a complex milling geometry. Thus, the 

control law should be able to attain the desired objectives 

even in the presence of uncertainties or variations in the 

system parameters. In this way, the nature of the system 

suggests to use an adaptive controller to address the milling 

force control problem. 

In this work, it is presented the design of an adaptive 

control law for milling processes which improves the 

behavior, specially the quality of the finishing of the 

working piece through a more precise tool-work-piece 

interaction force control, in comparison with previous 

approaches. 

The key point to achieve such an improved behavior of 

the system is the use of fractional order holds (FROH) to 

obtain a discrete-time model of the system. The advantage 

of using a FROH instead of a traditional ZOH is that 

 
 

FROHs incorporate an additional degree of freedom, the 

gain of the FROH, which can be used to modify the overall 

closed-loop response of the system, improving, for instance, 

the stability of the discrete zeros or reducing the overshoot 

or bad transient responses which could lead, for example, to 

break the cutter shank, tool breakage or tool wear, [1, 2]. 

Hence, the model reference control is the designed from the 

so obtained FROH based discrete model.  

The use of this kind of more complex hold devices is 

supported by the actual tendency in manufacturing 

environments consisting in optimizing the selection of 

machining parameters, through optimization algorithms, 

and in controlling the machining process on-line in contrast 

with the traditional CNC based systems, where the 

machining constant parameters are usually selected 

according to handbooks or operators´ experience leading to 

an ‘ad-hoc’ tuning of the control system. 

Thus, the influence of the FROH gain in the system’s 

behavior is studied showing that an adequate tuning of it 

can lead to an improved closed-loop performance. The 

study is carried out by means of a cost function which 

compares the system transient responses when different 

gains of the FROH are used.  

Previous works can be found in references [3-9]. In those 

papers, linear and time varying parameters models are 

widely used. Those models are cutting parameters 

dependent. Then, they will be time varying when complex 

parts are going to be milled. For this reason, the adaptive 

control techniques are mainly employed to control the 

milling process. A successful application of the adaptive 

control to milling process has potential machining-time 

savings, among other advantages. 

II. SYSTEM DESCRIPTION 

A. Continuous Model 

The milling system can be modeled as the series 

decomposition of a Computerized Numerical Control 

(CNC), which includes all the circuitry involving in the 

table movement (amplifiers, motor drives), and the tool-

work-piece interaction model itself. A feed rate command 

cf  (which plays the role of the control signal) is sent to the 

CNC unit. This feed rate represents the desired velocity for 

the table movement. Then, the CNC unit manages to make 
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the table move at an actual feed velocity of af  according to 

the CNC dynamics. Even though the machine tool drive 

servos are typically modeled as high order transfer 

functions, they can usually be approximated as a second 

order transfer function within the range of working 

frequencies. Besides, they are tuned to be over-damped 

without overshoot, so that they can be modeled as the first 

order system [5]:  
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(1) 

where af and cf  are the actual and command  velocity 

values of the table in  smm respectively and s  is an 

average time constant, which depends on the type of the 

machine tool. In this study, it is assumed to be 0.1 ms. 

In addition, the chatter vibration and resonant free cutting 

process can be approximated as the first order system [5]: 

 
 

 
 

1

1,,




scnN

NexstbacK

saf

spF
spG



   

(2) 

where cK  2mmN  is the cutting pressure constant, b  mm  

is the axial depth of cut,  Na exst ,, is an adimensional 

immersion function, ranging between 0 and N~  depending 

on the immersion angle and the number of teeth in cut, N is 

the number of teeth on the milling cutter and  srevn / is the 

spindle speed. The axial deep of cut function b in (2) may 

be time-varying leading to a potential time-varying system. 

In particular, the cutting process is assumed to be in this 

work piecewise constant, admitting sudden changes in the 

cutting parameters at certain time instants while remaining 

invariant between changes. This assumption allows us to 

consider the cutting process to be described by the transfer 

function (2) with the time interval between changes.  

The combined transfer function of the system, obtained 

from (1) and (2) is  
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(3) 

where the process gain is pK  mmsN  NnabKc .  

Figure 1 shows the sample work-piece depicting basic 

cutting geometry features with changes in the axial depth of 

cut used in the simulations. The spindle speed remains 

constant, rpm715 ; the work-piece is made of Aluminum 

6067 whose specific cutting pressure is assumed to be 

21200
mm

NKc  .  A 4-fluted carbide mill tool, full-

immersed and rouging milling operation will be taken into 

consideration in the present paper.  

Also, note that the desired final geometry of the piece to 

be milled involves changes in the axial deep of cut which 

implies suddenly changes in its value, according to the 

sudden changes assumption presented before. On the other 

hand, it has been taken into account that the control law 

computes new feed-rate command value at each sampling 

interval. Furthermore, it is worth to be mentioned that the 

CNC unit has its own digital position law executed at small 

time intervals in comparison with the sampled time of the 

control law, even though if high speed milling tool drives 

are used [5]. 

B. Discrete model under FROH  

In this paper, the problem of controlling a continuous 

plant is addressed by using a discrete controller. The 

discrete controller is obtained applying a model-reference 

pole-placement based control design to a discrete model of 

the plant (3) obtained by means of a FROH with a certain 

correcting gain  . The additional “degree of freedom”   

provided by the FROH can  be used with a broad variety of 

objectives such as to improve the transient response 

behavior, to avoid the existence of oscillations in the 

continuous time output of the system or to improve the 

stability properties of the zeros of the discretized system. 

Hence, the discretization of (3) under a FROH is calculated 

as : 

      scGshZzH      (4) 
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 is the transfer 

function of a FROH , where z  is the argument of the 

transformZ  , being formally equivalent to the one step 

ahead operators, q , used in the time domain representation 

of difference equations. This allows us to keep a simple 

unambiguous notation for the whole paper content. The 

sampling time T has been chosen to be the spindle speed, n, 

as it is usual for this kind of systems [3-5].  Note that 

when 1 , the FROH  hold becomes a first order hold 

 FOH  and when 0 , the zero order hold  ZOH  is 

obtained, being both particular cases of  1,1 . 

Furthermore,  zH   may be calculated using just ZOH  

devices in the following way: 
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Figure 1: Work-piece profile to test control algorithms. 
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where  
s

sTe
soh




1
is the transfer function of a ZOH  and 

1 if 0 and 0 if 0 , which means that a 

fractional order hold with 0  adds a pole at the origin. 
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C. Desired response: model reference 

A second order system  
222

2

nsns

nsmG
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


 (6) is 

selected to represent the system model reference. This 

system is characterized by a desired damping ratio,   and a 

natural frequency, n . It is known that small   leads to a 

large overshoot and a large setting time. A general accepted 

range value for   to attain satisfactory performance is 

between 5.0  and 1 , which corresponds to the so-called 

under-damped systems. In this way, a damping ratio of 

75.0 and a rise time, rT , equal to four spindle periods is 

usually selected for practical applications. Furthermore, the 

natural frequency is then usually suggested to 

be srad
rTn

5.2 . This continuous-time reference model is 

then discretized with the same FROH as the real system was 

in order to obtain the corresponding discrete-time reference 

model for the controller. Thus, a number of different 

discrete models obtained from a unique continuous 

reference model are considered depending on the value of 

  used to obtain the discretization.  

 

 

 

 

III. ADAPTIVE MODEL FOLLOWING CONTROLLER 

The figure depicts a schematic representation of the 

model reference adaptive control algorithm: 
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,
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the reference signal,  
 
 kzR

kzT
kzH fb

,

,
,   is the feedback 

controller,  kzH , is the discrete plant,  kzHm , is the 

model reference and rkF  is the reference force. 

The adaptive control algorithm is obtained by adding a 

RLS estimation algorithm, 
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parameter vector and  k
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  is the regressor vector. 

The transfer function of the reference model is, 

 
     

   
   
   zAzA

zAzB

zAzA

zAzBzB
zH

om

om

om

om
m 

 '

                    (8) 

where  zBm
' contains the free-design reference model 

zeros,  zB is formed by the unstable (assumed known) 

plant zeros and  zAo is a polynomial including the 

eventual closed-loop stable pole-zero cancellations which 

are introduced when necessary to guarantee that the relative 

degree of the reference model is non less then that of the 

closed-loop system so that the synthesized controller is 

casual. A basic control scheme is displayed in figure 2. 
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Figure 2: Adaptive model following control scheme. 
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k
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  . 

From (8)-(9), perfect matching is achieved through the 

control signal: 
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Note that the zeros of the machine tool plant are always 

stable and within the unit circle. But since the RLS 

estimator does not predict accurately the parameters of the 

numerator of the plant, separate control system design are 

needed for cases when the zeros are stable or unstable.  

An additional unstable zero can be introduced by the 

process discretization. In this paper, only stable 

discretization zero cases are taken into account.    

IV. EXPERIMENTAL RESULTS 

There is an extensive literature which carefully explains 

the algorithms here developed, for example [10, 11], and 

show the robustness of the adaptive law [12]. The novelty 

of the control relies on the use of fractional order holds 

instead of the usual ZOH appearing in the manufacturing 

literature. In this paper, the correcting gain of FROH  

is handled to show that the system transient response can be 

enhanced respect to the use of ZOH. This can lead to avoid 

overloading of the insert, because the maximum removed 

chip-thickness would not increase the principal tensile 

stress in the cutting wedge beyond the ultimate tensile 

strength of the tool material, this can also lead to prevent 

fracture of the shank, and fulfill the machine tool 

requirements, such as power and torque availability [6]. 

Moreover, if the reference force is selected near the tool 

breakage limit, the large overshot lead to tool breakage [1, 

2, 6].  Then, if the overshoot of the system response is 

reduced, the reference force can be increased, improving 

the time production requirements.   

An adaptive model following controllers have been 

developed using different correcting gains of the fractional 

order hold. The milling system and the model reference are 

discretized via fractional order hold. The estimation vector 

has been initialized as the corresponding discretization from 

estimated continuous transfer function, 
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 As example, the some representative cases are plotted in 

figures 3 and 4.  The figures present the resultant force 

keeping at the reference force, which is set to a constant 

value of KN2.1 . The system registers large overshoots in 

the transient responses, depending on the  -value and the 

initial values of the parameter vector.  

The initial parameter vector has the ability that if it is 

near to the real values of the plant, the transient response of 

the system will be smooth and feasible. In contrast, if the 

initial value of the parameter vector has been selected in 

arbitrary manner the transient is normally oscillated with a 

great maximum overshoot and large setting time. In any 

case, fractional order holds can help to reduce large 

overshoots.  

 On the other hand, there are abruptly overshoots in the 

output when the axial depth of cut changes suddenly. It is 

due to the intrinsic structure of the closed-loop output. It is 

not the main purpose of this paper reducing or avoiding 

these jumps. But, in that case, some ‘a priori’ information 

about the work-piece geometry is required to design a 

successful control, as in [6], where a CAD model of the 

work-piece is used to modify the control command when 

the axial depth of cut changes in order to minimize the 

overshoots due to abrupt changes in the transfer function. 

 
Figure 3: Relevant signals corresponding to .0  

 
Figure 4: Relevant signals corresponding to .4.0  



 

 

 

V. TRANSIENT RESPONSES CHARACTERIZATION 

In order to compare time domain transient behaviors when 

the designed control scheme respect to the use of traditional 

ZOHs, a cost function is defined: 
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where pF is the output signal and mpF , is the model 

reference output signal, k is the number of periods which 

have been taken into account in the transient response 

characterization. 

The cost function calculates a good approximation of the 

area between the continuous system output and the 

continuous model reference system response. The smaller 

this area is, the smaller cost function will be. It leads to 

choose an adequate value of  which achieves the best 

output transient response behavior.   

Figure 9 shows the cost function value when  value of 

the discrete controllers varies. In the figure it can be 

appreciated that, the use of  -value near to -0.2 leads to 

minimum values of the cost function. It concludes that 

better system transient responses will be achieved if the 

adaptive control algorithm is designed utilizing a FROH 

respect to the usual ZOH using in the manufacturing 

literature. 

The cases when 6.0  have not been taken into 

consideration because the plant is non-minimum phase. In 

those cases, ‘a priori’ knowledge about the system zero is 

needed to implement a successful control.  Information 

about this case can be found in [11, 12].     

VI. CONCLUSION 

In this paper an adaptive model following force control 

scheme has been proposed to deal with unknown time-

varying milling systems. The novelty of the control scheme 

relies on the use of FROH instead of the usual ZOH 

appearing in the manufacturing literature. The FROH 

provides an “extra degree of freedom”, which can be 

manipulated by the programmer to obtain a better transient 

response as the simulations have pointed out being then 

confirmed by the proposed cost functional. There is not a 

rule of thumb to select the adequate  value, only 

operators´ experience can help to select a satisfying value 

of  , for a range of working cutting parameters.  

On the other hand, the general FROH hold can be 

implemented by means of ZOH holds, which make this 

approach fairly feasible to be implemented in the 

manufacturing industry. Then, an easily implemented 

device can lead to save machining time in the production, 

avoid some process malfunctions or damage the tool less 

than if just a ZOH device is used.  
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