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DIGITAL CONTROLLING
OF PIECEWISE LINEAR SYSTEMS

Laszl6 E. Kollar, Gabor Stépan
Department of Applied Mechanics, Technical University of Budapest
H-1521 Budapest, Hungary, e-mail: kollar@galilei.mm.bme.hu

Abstract

A mechanical model of a digital balancing system
is constructed and its stability analysis is presented.
This model describes practical problems like back-
lash and sampling delay. Stationary and periodic
solutions are determined numerically for the case of
the system without sampling. The existence and sta-
bility of periodic solutions are checked analitically.
Adding sampling delay to the system, the stabil-
ity conditions change and above a critical value of
the delay, the balancing is impossible. The stability
chart is determined again, and stable motions are
identified.

1 Introduction

Unstable equilibria of mechanical systems often have
to be stabilized by control force. A number of appli-
cations can be found in this field, e.g. thrust control
of aircraft, the articulated bus running on icy road,
the shimmying wheel or the balancing of standing
and walking robots. A typical example of stabiliza-
tion of unstable equilibria is the balancing. The sim-
plest model of balancing is that of the inverted pen-
dulum, so it has extensive specialist, literature either
about its theorotical or experimental aspects [1]-[6].

A digital balancing of the inverted pendulum is ex-
amined in the subsequent chapters. The pendulum
is placed on a cart, its angle and angular velocity
is measured and the control force is determined by
them in a way that the upper equilibrium should be
stable. Control parameters must be chosen from a
bounded region of the parameter plane. The control
is performed by a computer and time delay occurs in
the system due to the sampling of the digital proces-
sor. It causes the additional decrease of the stability
domain.

The control force is provided by a motor which is
also situated on the car. It drives one of the wheels
of the cart through an elastic teeth belt. Backlash
occuring at the driving belt makes the system piece-

wise linear. Stable periodic solutions appear instead
of stable stationary solutions.

Many mechanical problems lead to strongly nonlin-
ear systems due to the piecewise linear terms in their
governing equations of motion. Gear pairs with back-
lash, impact dampers and adjacent structures during
earthquakes are only few examples. The importance
of this phenomenon explains the high number of pub-
lications which appear in this field [7]-[11]. An analy-
sis is presented in [9]-[10] for determining the steady
state response of piecewise linear systems and inves-
tigating its stability. A similar method is used here
for the examination of periodic solutions.

2 The mechanical model and the linear
stability analysis

The above mentioned digital balancing system can be
seen in Figure 1 [12]-[13]. The system has 2 degrees
of freedom described by the angle ¢ of the pendulum
and the alongation A = rp1) — =z of the belt.
The velocity # of the cart and the angle ¢ of the
pendulum with its derivative are detected, but the
differential gain of the cart eliminates the damping
K of the motor, so the control force has the simplified
form

Q=Pp+Dgp. (1)

The linearized equations of motion assume the form
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where Ry = sA is the force in the elastic belt.



Figure 1: The inverted pendulum on a cart

The stability analysis is carried out by the Routh-
Hurwitz criterion. The trivial solution of (2) is
asymptotically stable if and only if
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and Hy >0, (3)

where H, is the maximum sized Hurwitz-determi-
nant, not presented here algebraically. The stability
chart is constructed as it is shown in Figure 2.

Tw

3 The pendulum-cart model with backlash

Backlash appears in the system as a nonlinear spring
characteristic. The force in the spring is the function
of A

s(A+ry) A< -—rg
Ry = 0 Al<ry (4)
s(A=rg) A>rg

where rg is the value of backlash.

New constant expressions appear in the equations of
motion, this means shifting of the solutions. The sta-
bility domain does not change but it is valid only if
|A| > 1. Otherwise, the control force is not trans-
mitted by the belt in the tiny zone |A] < rq.

3.1 The bifurcation analysis

Numerical analysis of this model was accomplished
in earlier works [14]-[15]. The spring characteristic
has a noncontinuous first derivative and this caused
problems during the numerical calculations. The bi-
furcation analysis was carried out by using approxi-
mate spring characteristics and the bifurcation dia-
grams were constructed.

After the bifurcation analysis carried out by AUTO,
the stability chart in the plane of the control param-
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Figure 2: The stability charts with the bifurcation
curves

eters can be constructed as it can be seen in Fig-
ure 2. It is bordered with the same straight line
and parabola as it was bordered in case of the linear
system (the system without backlash). Fix points
are stable in a little domain near the straight line.
Stable limit cycle appears at the homoclinic bifurca-
tion point indicated with the dotted line. Fix points
lose their stability at the other bifurcation point in-
dicated with the smashed line, so all the fix points
and the limit cycle are stable between the dotted and
the smashed line, and only the limit cycle is stable
in the remaining part of the stability domain.

3.2 The nonlinear stability analysis of peri-
odic solutions

In case of one of the approximate spring character-
istics, unstable periodic solutions appeared for val-
ues of P to the right of the smashed line in Figure
2, while the fix points were stable [15]. The ampli-
tude of the periodic solution decreased as the ap-
proximation was more and more accurate, thus the
fixed points were supposed to be unstable without,
limit cycles around them. The analysis presented
below [10] helps to confirm the correctness of earlier
results.

3.2.1 Existence of periodic response:
Let us arrange equation (2) in the following form

My + Ky + Sy =T, (5)

where y = ( e A )T and f is the vector contain-
ing the constant expressions. Then applying the
Cauchy-transformation the equations of motion have
this form

z2=Az+f, (6)

Wherez:(go A ¢ A)T.

The general solution of equation (5) can be written
in the following form

z=¢v+E, (7)



where + contains the constants which can be deter-
mined from the initial conditions.

One type of periodic solution intersects both borders
of backlash. This periodic solution is symmetric and
must satisfy the periodicity and the matching condi-
tions

Zl(O) = —Zg(tg), VAl (tl) = ZQ(O) (8)

Al(O) = AQ(O) =T0- (9)

Index 1 concerns the zone |A| > rg, while index 2
concerns the zone |A| < ry. t; and ty are the time
spent in the corresponding zone in half a period.
Y1,7a,t1 and to are 10 unknowns, while equations
(8) and (9) represent 10 equations. However, ¢; and
t> cannot be expressed explicitly, so the unknowns
can be determined on the basis of the following pro-
cess.

The amplitude of periodic solutions obtained by us-
ing the approximate spring characteristics depends
on the correctness of the approximation, but their
period is the same if all the other parameters are
fixed. Thus #; and ¢y are determined numerically and
used in equation (8) to compute 7, and 4,. Then
the obtained result is checked by equation (9).

The other type of periodic solution intersects only
one of the borders of backlash. The same process
can be applied, but the periodicity conditions are
changed

z1(0) = z2(t2)

71 (t]) = 79 (0) . (10)

3.2.2 Stability of periodic response: Let
a perturbed periodic solution be z;, the deviations
of Z; and Z» from z; and z, at time #; and #5 are dz;
and 0z, and the deviation from the correct initial
conditions is dzg. The relation between the pertur-
bations at the beginning and at the end of the first
period can be written in the following form [10]
(5Z2 = H(SZ[) . (11)
The periodic solution is stable if and only if the ab-
solute value of all the eigenvalues of II is less than
1.

The earlier results are confirmed by applying this
analysis. Stable periodic solutions are found in the
majority of the stability domain as it is shown in Fig-
ure 2. The amplitude of unstable periodic solutions
found by the numerical analysis using approximate
spring characteristics is zero, so the assumption that
fix points are unstable and unstable periodic solu-
tions do not exist is right.

4 The digital effect

The digital effect causes time lag in the control force.
To emphasize it, the equation of motion (6) is written
in the form

z(t)=Az(t)+bu(t)+f, w(t)=Dz(t—71),
(12)
whereD=( P 0 D 0 )and 7 is the time delay.

Let us introduce the following nominations

Ad — eAT
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and then the discrete equations of motion have this
form

Zni1 = Aaz, +baty, Upr1 = Dz,. (14)

Merging z and « in one vector

_ Z _ Ad bd . fd
=(1)- o= (3 W) o= (8).
(15)
the discrete equations of motion can be obtained in

the following form

Cnt1 = BC, + 6.

Neglecting backlash (8 = 0) the upper equilibrium
of the pendulum is stable if and only if the abso-
lute value of all the eigenvalues of ® is less than
1. After applying the Moebius-transformation, the
Routh-Hurwitz criterion can be used for determin-
ing the stability conditions. The stability chart is
given in Figure 2 for 7 = 0.005[s] with the thick line.

(16)

Adding backlash to the system, the perfect stabiliza-
tion of the upper equilibrium is impossible, but 2
kinds of stable motion are obtained. One is drawn in
Figure 3(a) which can be found only in a very little
domain for the smallest values of the control param-
eters in the stability domain. P = 0.2[Nm], D =
0.05[N'ms] in the figure. Trajectories go to a stable
set and move inside it, but there is not any limit cy-
cle inside the set, so the motion looks chaotic. Since
the phase-space is symmetric, the same kind of mo-
tion exists around the other equilibrium. Another
type of chaotic motion occurs for greater values of
the control parameters. P = 5[Nm], D = 0.5[Nm.s]
in Figure 3(b) where this type of motion is shown.
Note that the presented phase-diagrams are results
of simulations, thus chaos may be caused by numer-
ical problems. Further efforts are needed to identify
the reason of chaos.

The stability domain shrinks as the sampling delay
increases and above a critical value, the balancing is
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Figure 3: The 2 kinds of stable motion

impossible. The critical time delay depends on the
parameters describing the system [14].

5 Conclusions

Increasing time delay tends to destabilize the digi-
tally controlled dynamical systems. Backlash causes
oscillations of the pendulum around its upper equi-
librium. Numerical and analytical results show good
coincidence about its effect. Occurance sampling de-
lay and backlash together may lead to chaotic mo-
tion. The examined model is an example for the
problems of digital stabilization of unstable equilib-
ria of piecewise linear systems, but the main prin-
ciples and methods are valid for the stabilization of
unstable equilibria of any other controlled piecewise
linear systems.

Acknowledgments

This research was supported by the Hungarian Sci-
entific Research Foundation under grant no. OTKA
T030762 and the Ministry of Culture and Education
under grant no. FKFP 0380/97.

References

[1] Higdon, D. T., Cannon, R. H., On the con-
trol of unstable multiple-output mechanical systems,

ASME Publications, 63-WA-48, (1963) pp. 1-12.

[2] Mori, S., Nishihara, H., Furuta, K., Control of
an unstable mechanical system, Int. J. Control 23
(1976) pp. 673-692.

[3] Stépan, G., A model of balancing, Periodica
Polytechnica 28 (1984) pp. 195-199.

[4] Henders, M. G., Sondack, A. C., ’In-the-large’
behaviour of an inverted pendulum with linear sta-
bilization, Int. J. of Nonlinear Mechanics 27, (1992)
pp. 129-138.

[5] Kawazoe, Y., Manual control and computer
control of an inverted pendulum on a cart, Proc. 1st
Int. Conf. on Motion and Vibration Control, Yoko-
hama (1992) pp. 930-935.

[6] Stépan, G., Kollar, L. E., Balancing with Re-
flex Delay, Mathematical and Computer Modelling,
31 (2000) pp. 199-205.

[7]  Shaw, S. W., The Dynamics of a Harmoni-
cally Excited System Having Rigid Amplitude Con-
straints, Part 1: Subharmonic Motions and Local
Bifurcations, ASME Journal of Applied Mechanics
52, (1985) pp. 453-458.

[8] Kahraman, A., On the Response of a
Preloaded Mechanical Oscillator with a Clearance:
Period-Doubling and Chaos, Nonlinear Dynamics 3
(1992) pp. 183-198.

[9] Natsiavas, S., On the dynamics of oscillators
with bi-linear damping and stiffness, Int. J. Non-
Linear Mechanics, 25 (1990) pp. 535-554.

[10] Natsiavas, S., Dynamics of multiple-degree-of-
freedom oscillators with colliding components, Jour-
nal of Sound and Vibration, 165(3) (1993) pp. 439-
453.

[11] Lérdnt, G., Stépdn, G., The Role of Non-
Linearities in the Dynamics of a Single Railway
Wheelset, Machine Vibration 5, (1996) pp. 18-26.
[12] Enikov, E., Stépédn, G., Micro-Chaotic Motion
of Digitally Controlled Machines, J. of Vibration and
Control, accepted in 1997.

[13] Kollar, L. E., Backlash in Machines Stabilized
by Control Force, Proc. of First Conference on Me-
chanical Engineering Budapest, 1998. vol. 1, pp. 147-
151.

[14] Kollar, L. E., Stépén, G., Hogan, S. J., Sam-
pling Delay and Backlash in Balancing Systems, Pe-
riodica Polytechnica, accepted in 1999.

[15] Kollar, L. E., Stépan, G., Hogan, S. J.,
Backlash in Balancing Systems Using Approximate
Spring Characteristics, Proc. of 3rd European Non-
linear Oscillations Conference (http://servl.imm.
dtu.dk/documents/users/mps/ENOC /proceedings/
Kollar/), 2000.



