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Abstract—The dynamic behavior of bundled conductors 

following ice shedding from one subconductor is examined 

numerically using the finite element method. An existing model of 

ice shedding from a single conductor is improved by developing a 

model of spacers which connect subconductors in the span. The 

resulting system makes it possible to simulate vibrations following 

ice shedding from one span of an overhead transmission line with 

twin, triple or quad bundles. Vibration characteristics are 

evaluated as the following parameters are varied: thickness of 

shed ice, distance between adjacent spacers and number of 

subconductors in the bundle. Simulation results will provide 

information on how the amplitude of vibration and the transient 

dynamic forces change with the application of spacers. The 

maximum jump height of the ice-shedding cable, the maximum 

drop of the loaded cable, and the maximum cable tension are 

approximated as power functions of ice thickness and the distance 

between adjacent spacers. 

 
Index Terms—bundle conductors, finite element methods, 

modeling, ice, load shedding. 

I.  INTRODUCTION 

VERHEAD transmission lines are exposed to different 
types of loads, some of which may lead to severe 

damages. A serious and frequently arising problem in cold 
climate regions is the ice accreted on cables and on other line 
elements. Ice accumulation is akin to a heavy static load, 
whereas ice shedding from cables results in high-amplitude 
free vibrations and excessive transient dynamic forces. High-
amplitude vibrations may cause flashover between adjacent 
cables, while excessive forces applied at the suspension 
contacts may break the insulators or, in extreme cases, damage 
the towers. Therefore, it is important to predict the maximum 
cable displacement and the maximum cable tension arising 
during vibrations following ice shedding. 

Great efforts have been made to date in order to attenuate 
high-amplitude cable vibrations and, thereby, protect the 
transmission lines, since such vibrations are peculiar not only 
to cold regions but to windy areas as well. A widely used 
protection method is the application of spacer dampers, which 
help to maintain the distance between the bundled 
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subconductors and reduce the amplitude of aeolian vibrations 
and sub-span oscillations. A numerical approach has been 
applied successfully in recent developments to study vibrations 
induced by wind, ice shedding or conductor breakage: the 
finite element method. In one of the first studies on ice 
shedding, a series of load-dropping tests simulating ice 
shedding were performed on a five-span section and the 
maximum jump height of the cable was measured [1]. In a 
later study, numerical and experimental investigations were 
carried out on the vibration of a two-span section of a 
transmission line with a single cable as a result of ice shedding 
[2]. Reference [3] examined the dynamic response of a similar 
two-span section after ice sheds from one span, varying several 
characteristics of the span. Their model was also used to 
simulate a tower failure which occurred in a 220 kV 
transmission line following ice shedding [4]. The vibration of 
a two-span section due to ice shedding from one span was 
investigated in [5] by considering different types of ice. 
Reference [6] proposed a model to simulate the mitigation of 
ice failure and ice shedding in a one-span section due to pulse-
type excitation. These models were all elaborated using a 
commercial finite element analysis software, ADINA [7].  

Extensive research has already been done on galloping of 
bundled conductors, and on ice-shedding-induced vibration of 
a single cable. The objective of the present study is to develop 
a spacer model, and analyze the dynamics of bundled 
conductors following ice shedding from one subconductor, 
with a special emphasis on how the amount of ice, the distance 
between adjacent spacers, and the number of subconductors 
influence the severity of the vibration. After a brief summary 
on bundle conductor spacers, a finite element model for 
bundled conductors will be constructed using ADINA. This 
will be followed by a parametric study where the above 
mentioned parameters are varied, and power-function 
approximations are provided to predict the maximum jump 
height, the maximum drop, and the maximum cable tension. 

II.  BUNDLED CONDUCTORS WITH SPACERS 

Bundled conductors are frequently used for overhead 
transmission lines where the individual conductors are 
connected by spacers. The particular construction of each 
spacer varies depending on the manufacturer, but all of them 
are designed so as to maintain a constant distance between the 
subconductors. Though the application of spacers was for 
electrical reasons, originally, spacers also play an important 
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role from the mechanical point of view, since they help to 
reduce the severity of cable vibration induced by wind or ice 
shedding. A spacer of typical design consists of a rigid central 
frame to which arms are attached via flexible joints. Each of 
these arms grips one of the subconductors by means of a clamp 
located at the free end of the arm. The geometrical and 
physical parameters of some spacers used in bundles of four 
conductors are provided in [8] where the authors also present a 
test program aimed to compare the performance of different 
spacers. Reference [9] summarizes design requirements of 
spacers including basic engineering requirements, general 
design parameters, and physical requirements. A recent survey 
on spacers including types, materials, design characteristics, 
test methods and field experience is presented in [10]. 
Illustrations about typical spacers which are used in twin, triple 
and quad bundles are shown in Fig. 1. 

 

 

 
 
Fig. 1.  Spacers in transmission lines (a) twin bundle, (b) triple bundle, (c) 
and (d) quad bundle 

 
Spacers are subject to various types of loads due to 

mechanical tensions in the cables, short circuits or high-
amplitude vibrations. The highest cable tension and stress 
during cable vibration usually develop near the suspension 
clamps as well as in the neighborhood of the spacer clamps. 
References [11], [12] determined the forces acting at the 
spacer clamp and developed a mathematical model for vortex-
induced vibrations in bundled conductors with spacer dampers. 
The severity of wake-induced oscillations of bundled 
conductors was examined on a full-scale experimental line in 
[13]. In the present study, a finite element model of spacers is 
constructed and is integrated to the model of one span of an 
overhead transmission line with bundled conductors as 
discussed in the subsequent section. This model makes it 
possible to calculate the forces acting at any part of the 

conductors including the vicinity of the spacer during the 
vibration induced by ice shedding from one subconductor. 

III.  FINITE ELEMENT MODEL OF A SINGLE SPAN OF 

TRANSMISSION LINES 

The finite element model of a single span of bundled 
conductors with ice load is constructed using ADINA [7]. The 
cable model and ice model are based on the ones developed in 
[2] and [3], and will be described below together with the 
spacer model. 

A.  Cable Modeling 

Two-node isoparametric truss elements with large 
kinematics are used for cable modeling. A constant initial pre-
strain corresponding to the installation conditions is prescribed 
as an initial condition for all cable elements. This initial strain 
is obtained from the following formula: 

AE

T0
0� =  (1) 

where A is the cross-section of the cable, E is the Young’s 
modulus, and 0T  may be determined from the equilibrium of 

the cable under its own weight [14]. Cable material properties 
are defined for tension only, not allowing compression and 
assuming Hookean small strain behaviour in tension. The 
cable is assumed to be perfectly flexible in bending and 
torsion. The mesh selected for the cable contains 100 truss 
elements in each cable which was found to be adequate for the 
span length considered in the model (200 m). 

Cable damping is considered in the model by defining 
nonlinear spring elements. The damping force is given in the 

form 
N

D UCF �= , where U�  is the relative velocity between 

the element end nodes [7]. The structural damping of the cable 
is modelled by applying viscous dashpot elements in parallel 
with each cable element with exponent N = 1 and viscous 
damping constant: 

AEmCS �2=  (2) 

The ξ is the damping ratio, m is the mass per unit length of the 
cable or the cable-ice composition, and the subscript S refers 
to structural damping. The damping ratio is chosen as 2% for 
the bare cable and 10% for the iced cable following the 
recommendation in [3]. Aerodynamic damping is considered 
by defining dashpot elements between each cable-element 
node and the ground, and applying them to the vertical motion 
of the cable. The exponent N is equal to 2 in this case, while 
the damping constant is calculated as follows 

PDA ACC �
2

1
=  (3) 

where DC  is the drag coefficient, ρ is the air density, PA  is 

the projected area, and the subscript A refers to aerodynamic 
damping. The drag coefficient, DC , is assumed to be 1.25, as 

proposed in [15]. 

B.  Modeling Ice Load and Ice Shedding 

Ice load is taken care of by assuming that cable element 
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density in the static analysis increases proportionally with the 
weight of ice load. This configuration defines the static 
equilibrium of the ice-loaded cables. In order to simulate ice 
shedding, density of the subconductor where ice sheds from is 
decreased in the dynamic analysis [3]. Thus, the density of an 
ice-shedding cable is different in the static than in the dynamic 
case, which causes an abrupt change in the mass matrix and 
leads to vibrations. The dynamic analysis is carried out to 
simulate transient vibrations only. In order to obtain the final 
steady state, it was found more effective to perform an 
additional static analysis. Since ice failure due to the resulting 
vibrations is not considered, ice sheds from one subconductor 
only, while the other subconductors always bear the same 
amount of ice. 

The density of ice depends on the type of ice that 
accumulates on the cable. The types of ice or snow that may 
accrete on cables are rime ice, glaze ice, frost, dry snow and 
wet snow. In general, wet snow, rime ice and glaze ice appear 
most often on transmission lines, and glaze ice causes the 
highest ice load. Since investigating the effects of ice type is 
out of the scope of the present study, the model considers 
glaze ice accretion which is assumed to have a constant density 
of 900 kg/m3. 

C.  Spacer Modeling 

A spacer model was already presented in our former study 
[16], where spacers were modeled by two-dimensional beam 
elements. This approach is improved here by considering the 
flexibility and damping properties of the spacer. Two-node 
truss elements associated with nonlinear elastic material are 
applied in order to achieve this goal. The calculation of mass, 
damping, stiffness matrices and load vector, as well as the 
construction of the equations of motion for truss elements are 
discussed briefly in [16], and in detail in [17]. A cubic stress-
strain curve describes the material of spacer arms which are 
allowed to rotate a few degrees around the joint with 
increasing resistance until the rotation is blocked. Further 
deformation may occur only by the elongation of the material, 
which is modeled by a linear stress-strain curve. Thus, the 
force – deformation relationship, ( )lF

s
∆ , which describes the 

flexibility of the spacer, is given by the following formula: 

�
�
�

∆+

∆
=

lcc

lc
F

ss

s

s

10

3

3    
cr

cr

ll

ll

∆≥∆

∆<∆

if

if
 (4) 

where 
cr

l∆  is the increase of spacer length at the maximum 

angle of arm rotation. The constants, 0s
c , 1s

c  and 3s
c  are 

obtained from the conditions that the tangent of the force – 
deformation relationship at the connection, 

cr
l∆ , should be 

equal to 
sss

lAE / , and that the cubic and linear functions take 

the same value at the connection. The parameters, 
s

E , 
s

A  and 

s
l  are the Young’s modulus, cross section and length of 

spacer, respectively. The stress-strain relationship may readily 
be deduced from (4). 

Spacers for a twin bundle are simple rods clamped to a 
conductor at each end. The geometry of spacers for triple and 

quad bundles is shown in Fig. 2. The envelope dimension of 
spacers is determined by the distance between two 
subconductors, which is 0.5 m. Spacers for a triple and for a 
quad bundle consist of 6 and 8 truss elements, respectively. 
Dimensions are chosen so that mass and inertia are in a 
realistic range in accordance with the spacers examined in [8]. 
The elements modeling the frame have linear elastic material 
properties, and a cross section of 8 cm in height and 4 cm in 
width. The elements applied for the arms are associated with 
the nonlinear elastic material described in the previous 
paragraph, and they have a cross section of 6 cm in height and 
2 cm in width. The material properties are defined to be 

similar to those of aluminum (density of 2700 3kg/m , Young’s 

modulus of 70 GPa and Poisson’s ratio of 0.35). 
The damping properties of spacers are modeled by 

nonlinear spring elements with N = 1, and the damping 
constant may be obtained from (2) after substituting the 
material properties of the spacer. An average Young’s 
modulus was determined, which is the tangent of the line 
connecting the origin and the connection point of the two 
functions describing the stress-strain relationship. The 
damping ratio was chosen to be 0.2, which is based on the 
values reported in [8]. 

 

 
 
Fig. 2.  Model of spacers (a) triple bundle, (b) quad bundle 

IV.  RESULTS AND DISCUSSION 

Five different configurations of a single span of an 
overhead transmission line with fixed end-points are modeled 
in the present study: single cable, twin bundle with spacers in 
the horizontal plane, twin bundle with spacers in the vertical 
plane, triple bundle and quad bundle. Ice sheds from one 
subconductor of the bundle, which is the upper cable in the 
triple bundle case (subconductor 1 in Fig. 2a), and one of the 
upper cables for the quad bundle (subconductor 1 in Fig. 2b). 
Ice shedding from lower cable and ice shedding from upper 
cable are both simulated for the twin bundle with spacers in 
the vertical plane. The conductors used for the simulations are 
Condor ACSR 54/7 and Bersfort ACSR 48/7, which are made 
of 54 and 48 aluminum alloy strands, respectively, reinforced 
with a seven-wire steel core. Cable data and parameters 
describing the span in static equilibrium are listed in Table I. 
Six load cases are examined with different ice thickness 
ranging from 10 mm up to 60 mm. The maximum ice thickness 
was chosen to correspond with the ice load considered as the 
extreme case under natural conditions. Table II and Table III 
summarize the ice loads in the different load cases, the 
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increased cable densities due to ice load and the coefficients of 
structural and aerodynamic damping for the Condor and 
Bersfort conductors, respectively. The number of spacers or 
the distance between adjacent spacers in the span under 
scrutiny is also varied in consecutive simulations. Since span 
length is constant, the application of 1, 2, 3, 4 and 5 spacers 
corresponds to a respective distance of 100, 67, 50, 40 and 33 
m between adjacent spacers. It should be noticed that these 
values cover the range of 40 to 60 m which is generally used 
on the Hydro-Quebec transmission lines, although with 
unequal sub-span lengths. The reason of this fact is that spans 
divided into equal sub-spans are more easily subjected to 
oscillation, since all the sub-spans vibrate at the same time 
with the same horizontal frequency. In this section, we will 
discuss the effects of three parameters, (i) ice thickness, (ii) 
distance between adjacent spacers, and (iii) number of 
subconductors in the bundle, on the characteristics of the 
vibration induced by ice shedding, more precisely, on (i) the 
 

TABLE I 
GEOMETRICAL AND MATERIAL DATA OF CABLE AND SPAN 

 

 
 

TABLE II 
DENSITY AND DAMPING VALUES FOR DIFFERENT ICE LOADS FOR CONDOR 

CONDUCTOR 
 

 
 

TABLE III 
DENSITY AND DAMPING VALUES FOR DIFFERENT ICE LOADS FOR BERSFORT 

CONDUCTOR 
 

 

maximum jump height of the cable which ice sheds from, (ii) 
the maximum drop of the cable (or cables) which remain 
loaded, and (iii) the maximum cable tension arising during the 
vibration. 

A.  Maximum Jump Height of the Cable which Ice Sheds from 

Ice thickness was varied between 10 mm and 60 mm, and 
the conductor bundle was connected by 3 spacers in the first 
set of simulations. Fig. 3a shows values of maximum jump 
height of the ice-shedding cable above its unloaded position, 
which arises during one of the first few cycles of vibration. It 
is clear from this figure that there is a steep increase in jump 
height for a single cable with increasing ice thickness, that 
increase being significantly slower for twin bundles, and less 
than 0.1 m for triple and quad bundles, for ice thickness of 30 
mm and more. The results obtained for twin bundles in 
horizontal plane are so close to those in vertical plane that only 
the latter ones are presented in Fig. 3a. Likewise, due to 
similarity between maximum jump heights in triple and quad 
bundles, the figure shows only those obtained for quad bundle. 
If the increase in jump height is approximated by a power 
function of ice thickness, then the power in the best-fit 
function decreases from 2 to 0.1 – 0.2 as the number of 
subconductors is increased from 1 to 4 (see Table IV). The 
jump height of a single cable in the extreme case, i.e. after the 
shedding of 60-mm-thick ice chunk is not shown in Fig. 3a, 
but it was calculated as 5.84 m, and 10.25 m, for the Bersfort 
and the Condor conductor, respectively. Thus, the jump height 
of a single Condor conductor is significantly greater than that 
 

 
(a) 

 
(b) 

 
Fig. 3.  Maximum jump height of the ice-shedding cable above unloaded 
position, C – Condor conductor, B – Bersfort conductor, (a) distance between 
adjacent spacers: 50 m, (b) ice thickness: 50 mm 
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of a Bersfort one, due to the different geometrical and material 
properties of these cables. However, the jump heights of 
bundled conductors are in the same range for the two types of 
conductors considered. 

The number of spacers was varied between 1 and 5, while 
ice thickness was set to 50 mm in the next series of 
simulations. The increase in maximum jump height of the ice-
shedding cable above its unloaded position as a function of 
adjacent spacer distance is shown in Fig. 3b. Jump height 
decreases as the number of subconductors increases. The 
increase in jump height with adjacent spacer distance becomes 
slightly steeper as the number of subconductors increases, as 
shown numerically by the approximate functions in Table V. 
 

TABLE IV 

PARAMETERS IN A FUNCTION OF THE FORM p
axy =  APPROXIMATING 

MAXIMUM JUMP HEIGHT IN M, Y, AS A FUNCTION OF ICE THICKNESS IN M, X 

 

 
 

TABLE V 

PARAMETERS IN A FUNCTION OF THE FORM p
axy =  APPROXIMATING 

MAXIMUM JUMP HEIGHT IN M, Y, AS A FUNCTION OF DISTANCE BETWEEN 

ADJACENT SPACERS IN M, X 

 

 
 

B.  Maximum Drop of the Cables which Remain Loaded 

The lowest position during vibration of the cable system is 
reached by one of the cables which remain loaded. Fig. 4a 
shows that the maximum drop below the unloaded position 
increases proportionally with ice thickness, and it is about 30-
40% greater for Condor conductor than for Bersfort conductor. 
The curves representing the maximum drop for different 
bundles of the same conductor almost coincide, which can be 
explained by the following fact. The drop below the loaded 
position is significantly lower than the increase in the sag due 
to ice load (around 10-15%), and the increase of the sag due to 
ice load is approximately the same for each configuration. 
However, the decrease of maximum drop below the loaded 
position with the number of subconductors is significant. Table 
VI provides the coefficients and powers in the best-fit power 
functions approximating the maximum drop below unloaded 
position as a function of ice thickness. 

A similar tendency may be observed in Fig. 4b, where the 
maximum drops below the loaded position are shown as a  

 

TABLE VI 

PARAMETERS IN A FUNCTION OF THE FORM p
axy =  APPROXIMATING 

MAXIMUM DROP BELOW LOADED POSITION IN M, Y, AS A FUNCTION OF ICE 

THICKNESS IN M, X 
 

 
 

function of the distance between adjacent spacers. The 
maximum drop in absolute value decreases with the number of 
subconductors in the bundle. However, the difference between 
Figs. 3b and 4b is striking. The maximum jump height 
increases with the distance between adjacent spacers, while the 
maximum drop is significantly greater for distances of 40 and 
67 m (4 and 2 spacers, respectively), than for distances of 33, 
60 and 100 m (5, 3 and 1 spacer(s), respectively). This result is 
due to the fact that there is no spacer at mid-span when the 
number of spacers is even, so that the maximum drop occurs at 
mid-span where the cable drop can be considerably greater. It 

should be clear that a power function of the form paxy =  is 

not applicable to approximate the maximum drop below 
loaded position as a function of the distance between adjacent 
spacers. If we consider the maximum drop below the unloaded 
position, then its value varies by a maximum of 5% only, for 
an odd number of 
 

 
(a) 

 
(b) 

 

Fig. 4.  Maximum drop of the cable which remains loaded (a) below unloaded 
position, C – Condor conductor, B – Bersfort conductor, distance between 
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adjacent spacers: 50 m, (b) below loaded position, Bersfort conductor, ice 
thickness: 50 mm 

spacers, and is about 5-15% greater when the number of 
spacers is even. 

If ice sheds from the lower subconductor while the upper 
one remains loaded, then the possibility of contacts between 
the vibrating conductors will increase as compared with the 
case when ice sheds from the upper subconductor (in case of a 
heavy ice load, they will be in contact even in static 
equilibrium). However, since the maximum jump and the 
maximum drop usually do not appear at the same location 
along the span, the distance between two corresponding points 
involving two subconductors should be calculated during 
vibration in order to know when the above-mentioned contact 
may occur. The selected points are the mid-points of the sub-
spans closest to the middle of the span, because that is where 
the vibration is expected to have the highest amplitude. The 
minimum distance between these points as ice thickness and 
spacer distance vary are shown in Figs. 5a and 5b, 
respectively, in the case of a twin bundle in vertical plane. In 
this context, it is clear that the distances should be positive. 
However, negative values appear in the graphs, because they 
provide information as to what extent the spacing between the 
conductors should be increased in order to prevent contacts. 
According to Fig. 5a, vibrating conductors will contact if ice 
thickness is at least 30 mm even if the spacer distance is only 
33 m. Furthermore, if this distance is increased to 100 m, 
impact will occur for the lowest ice loads considered, and 
obviously for all the other load cases which are not shown in 
the diagram. Fig. 5b confirms the severity of the problems 
arising during vibration. Only the two curves, for ice thickness  
 

 
(a) 

 
(b) 

 
Fig. 5.  Minimum distance between selected corresponding points involving 
two subconductors (the mid-points of the sub-spans closest to the middle of 

the span) during vibration (twin bundle in the vertical plane), C – Condor 
conductor, B – Bersfort conductor, (a) parameter is distance between adjacent 
spacers, (b) parameter is ice thickness 

of 10 and 20 mm, are plotted in this graph. If the ice thickness 
is 30 mm or higher, contact occurs in all cases examined. Figs. 
6a and 6b represent the minimum distance between two 
conductors in static equilibrium when the lower conductor is 
bare and the upper one is still loaded. If the spacer distance is 
33 m, the conductors will not touch each other even for the 
highest ice load; otherwise, if the distance increases, contact 
may occur even in static equilibrium. Fig. 6b provides the 
maximum spacer distance for different ice loads when contact 
is avoided in static equilibrium. If the spacer distance is 
greater than the value given by the intersection of a curve with 
the horizontal line drawn at the diameter of the conductor, then 
conductors will touch each other. It can also be observed in 
Figs. 5 and 6 that the minimum subconductor distance is, in 
general, greater for the Bersfort conductor, i.e. the threat of 
contact between conductors is less severe. We must keep in 
mind, however, that the above discussion refers to the case 
when ice sheds completely from one conductor while the other 
one remains fully loaded. It should be noted, however, that the 
model may easily be adapted to simulate ice shedding from 
more than one subconductor, or to simulate partial shedding, 
by changing the material properties of some cable elements in 
the dynamic analysis. 
 

 
(a) 

 
(b) 

 
Fig. 6.  Minimum distance between the two subconductors in static 
equilibrium when the lower conductor is bare, and the upper one is still 
loaded (twin bundle in the vertical plane), C – Condor conductor, B – 
Bersfort conductor, (a) parameter is distance between adjacent spacers, (b) 
parameter is ice thickness 
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C.  Maximum Cable Tension 

The calculation of cable tension is also important, since 
high transient dynamic forces may damage the cable or other  
 

 
(a) 

 
(b) 

 
Fig. 7.  Maximum cable tension, C – Condor conductor, B – Bersfort 
conductor, (a) distance between adjacent spacers: 50 m, (b) ice thickness: 50 
mm 

 
elements of the transmission line. The maximum tension 
during vibration occurs near a suspension or a spacer. Figs. 7a 
and 7b show the increase in cable tension as a function of 
shedding-ice thickness and spacer distance, respectively. Cable 
tension is lowest for a single cable because there are no 
constraints from other cables. It is highest for a twin bundle, 
and it decreases with the number of subconductors in the 
bundle. This tendency is also observed in the best-fit 
approximate power functions given in Tables VII and VIII. 
The cable tension of the Bersfort conductor is greater than that 
of the Condor conductor due to the former’s greater weight 
(see Table I). The critical load at which the suspension 
structure fails was estimated at 100 kN in [18], although this 
value depends on the particular suspension structure. For the 
Condor conductor, this value is exceeded only after the 
shedding of a 60-mm ice chunk from a twin-bundled 
subconductor. For the Bersfort conductor, however, it is 
exceeded for all configurations after the shedding of a 60-mm 
ice chunk, and it is also exceeded in some cases after the 
shedding of a 50-mm ice chunk.  

V.  CONCLUSIONS 

Vibration of bundled conductors following ice shedding 
from one subconductor has been the subject of this study. In 
particular, three parameters, thickness of ice load, distance 

between adjacent spacers and number of subconductors in a 
bundle were varied, whereas the maximum jump height of the 
cable which ice sheds from, the maximum drop of the cables  
 

TABLE VII 

PARAMETERS IN A FUNCTION OF THE FORM 0yaxy
p +=  APPROXIMATING 

CABLE TENSION IN N, Y, AS A FUNCTION OF ICE THICKNESS IN M, X 

 

 
 

TABLE VIII 

PARAMETERS IN A FUNCTION OF THE FORM 0yaxy
p +=  APPROXIMATING 

CABLE TENSION IN N, Y, AS A FUNCTION OF DISTANCE BETWEEN ADJACENT 

SPACERS IN M, X 

 

 
 

which remain loaded and the maximum cable tension were 
compared for different ice-shedding scenarios. The latter 
variables were approximated as simple power functions of the 
former ones for two types of conductors. Although these 
power functions depend on further parameters such as span 
length, they were found to be useful tools to express 
qualitative relationship between the parameters examined. The 
following main conclusions are drawn from this study: 
1) The displacements and the cable tension during vibration 

increase with ice thickness. The maximum cable tension 
for the highest ice loads (50 and 60 mm) may damage the 
suspension structure. This problem warrants further 
investigation because cable tension also depends on some 
parameters which were not varied or considered in this 
study such as the sag to span ratio or the flexible 
suspension structures. 

2) The maximum jump height and the cable tension increase 
with the distance between adjacent spacers. The maximum 
drop, however, also depends on whether the number of 
spacers is even or odd assuming constant distance 
between each adjacent spacer. If the number of spacers is 
even, it means there is no spacer in the middle of the span, 
so that the maximum drop will be significantly greater 
than for the odd case. 

3) Increasing the number of subconductors reduces the 
severity of vibration. Comparing twin bundles as to the 
horizontal and vertical plane shows that the severity of 
vibration is approximately the same, although the 
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vibration was found to be slightly more severe for the 
horizontal structure in case of Condor conductor. The 
maximum jump height of a single conductor is 
significantly greater than that of a conductor bundle; the 
cable tension, however, is slightly lower for a single 
conductor during vibration, since no constraint is 
transmitted from other cables in this case. 

4) The comparison of the Bersfort and Condor conductors 
reveals that the maximum jump heights of ice-shedding 
cables in bundled conductors are in the same range. The 
maximum drops of cables which remain loaded as well as 
the jump heights of single cables are greater for the 
Condor conductor while the cable tension is greater for 
the Bersfort conductor. 

In the simulations carried out in this study, ice sheds 
completely from one subconductor while the other ones remain 
fully loaded. Naturally, high-amplitude vibration may break 
the ice accumulated on the other subconductors and thereby 
induce further ice shedding. Thus, in a future development of 
the model, the mechanical properties of ice and ice failure 
during vibration could be considered. Other recommendations 
would be to investigate the effect of ice shedding on the 
torsion of the bundle and to evaluate simulation results by 
comparing them to experimental observations. 

VI.  ACKNOWLEDGMENT 

This work was carried out within the framework of the 
NSERC/Hydro-Quebec/UQAC Industrial Chair on 
Atmospheric Icing of Power Network Equipment (CIGELE) at 
Université du Quebec à Chicoutimi. The authors would like to 
thank all the sponsors of this project, as well as Mr. P. van 
Dyke of Hydro-Québec for the pictures of line spacers. 

VII.  REFERENCES 

[1] V. T. Morgan, D. A. Swift, “Jump height of overhead-line conductors 
after the sudden release of ice loads,” Proceedings of IEE, vol. 111, no. 
10, pp. 1736-1746, 1964. 

[2] A. Jamaleddine, G. McClure, J. Rousselet, R. Beauchemin, “Simulation 
of Ice Shedding on Electrical Transmission Lines Using ADINA,” 
Computers & Structures, vol. 47, no. 4/5, pp. 523-536, 1993. 

[3] M. Roshan Fekr, G. McClure, “Numerical modelling of the dynamic 
response of ice shedding on electrical transmission lines,” Atmospheric 

Research, vol. 46, pp. 1-11, 1998. 
[4] M. Roshan Fekr, G. McClure, D. Hartmann, “Investigation of 

Transmission Line Failure Due to Ice Shedding Using Dynamic 
Analysis,” in Proceedings of the 8th International Workshop on 

Atmospheric Icing of Structures, Reykjavik, Iceland, 1998, pp. 11-16. 
[5] L. E. Kollar, M. Farzaneh, “Dynamic Analysis of Overhead Cable 

Vibrations as a Result of Ice Shedding,” in Proceedings of 6th 

International Symposium on Cable Dynamics, Charleston, SC, USA, 
2005, pp. 427-434. 

[6] T. Kalman, G. McClure, M. Farzaneh, L. E. Kollar, A. Leblond, 
“Dynamic Behavior of Iced Overhead Cables Subjected to Mechanical 
Shocks,” in Proceedings of the 6th International Symposium on Cable 

Dynamics, Charleston, SC, USA, 2005, pp. 339-346. 
[7] ADINA R & D, ADINA – Theory and Modeling Guide, Watertown, 

MA, USA, 2003, Report ARD 03-7. 
[8] C. Hardy, P. Bourdon, “The Influence of Spacer Dynamic Properties in 

the Control of Bundle Conductor Motion,” IEEE Transactions on 

Power Apparatus and Systems, vol. PAS-99(2), pp. 790-799, 1980. 
[9] A. T. Edwards, J. M. Boyd, “Bundle-Conductor-Spacer Design 

Requirements and Development of “Spacer-Vibration-Damper”,” IEEE 

Transactions on Power Apparatus and Systems, vol. PAS-84(10), pp. 
924-932, 1965. 

[10] CIGRE SCB2 WG11, “State of the Art Survey on Spacers and Spacer 
Dampers”, Electra No. 277, August 2005. 

[11] K. Anderson, P. Hagedorn, “On the Energy Dissipation in Spacer 
Dampers in Bundled Conductors of Overhead Transmission Lines,” 
Journal of Sound and Vibration, vol. 180, no. 4, pp. 539-556, 1995. 

[12] P. Hagedorn, N. Mitra, T. Hadulla, “Vortex-Excited Vibrations in 
Bundled Conductors: A Mathematical Model,” Journal of Fluids and 

Structures, vol. 16, no. 7, pp. 843-854, 2002. 
[13] C. Hardy, P. van Dyke, “Field Observations on Wind-Induced 

Conductor Motions,” Journal of Fluids and Structures, vol. 9, pp. 43-
60, 1995. 

[14] H. M. Irvine, Cable Structures, MIT Press, Cambridge, MA, USA, 
1981. 

[15] A. B. Peabody, G. McClure, “Modeling the overhead power line post 
spring-damper using ADINA,” in Proceedings of the 3rd MIT 

Conference on Computational Fluid and Solid Mechanics, Cambridge, 
MA, USA, 2005. 

[16] L. E. Kollar, M. Farzaneh, “Dynamic Behavior of Cable Systems with 
Spacers Following Ice Shedding,” in Proceedings of ICNPAA 2006: 

Mathematical Problems in Engineering and Aerospace Sciences, 

Budapest, Hungary, 2006. 
[17] Bathe, K-J., Finite Element Procedures, Prentice Hall, Upper Saddle 

River, New Jersey, USA, 1996. 
[18] M. Lapointe, “Dynamic analysis of a power line subjected to 

longitudinal loads,” M.S. thesis, Department of Civil Engineering and 
Applied Mechanics, McGill University, Montreal, QC, Canada, 2003. 

VIII.  BIOGRAPHIES 

László E. Kollár received a M.Sc. degree in 
Mechanical Engineering from the Budapest 
University of Technology and Economics, Hungary 
in 1997, a Ph.D. degree in Mechanical Engineering 
from the same university in 2001, and a M.Sc. 
degree in Mathematics from the University of Texas 
at Dallas, USA in 2002. 
 In 2002, he joined CIGELE/INGIVRE at the 
University of Quebec at Chicoutimi as a 
Postdoctoral Fellow, where he currently is a 

Research Professor on grant. His research interests include theoretical and 
experimental modeling of atmospheric icing processes and ice shedding from 
cables. He previously worked on the modeling of controlled unstable 
mechanical systems with time delay. 
 

Masoud Farzaneh (M' 83 - SM' 91- F’07) received 
his electrical engineering degree from the École 
Polytechnique of Iran in 1973. He received 
successively a doctoral degree in engineering from 
Institut nationale polytechnique and Université Paul 
Sabatier, in France, and a Doctorat d'État from the 
latter university. From 1980 to 1982, he was 
Associate Professor at Université des Sciences et de 
la Technologie d'Oran, Algeria. He joined Université 
du Québec à Chicoutimi (UQAC) in 1982 as a guest 

professor. Following this, he became a full professor, as well as founder and 
Director of the Master's Degree Program in Engineering. He is currently 
Chairholder of the NSERC/Hydro-Quebec Industrial Chair on Atmospheric 
Icing (CIGELE), and Chairholder of the Canada Research Chair on 
Atmospheric Icing Engineering of Power Networks (INGIVRE). He is also 
founder of the International Research Centre on Atmospheric Icing and 
Engineering of Power Networks (CENGIVRE) of which he is currently 
Director. Prof. Farzaneh is author and co-author of more than 450 scientific 
publications in the domain of high voltage, outdoor insulation and 
atmospheric icing. He is Fellow of IEEE, Fellow of the Institution of 
Electrical Engineers (IEE), Fellow of the Engineering Institute of Canada 
(EIC), Charter Member of the International Society of Offshore and Polar 
Engineers (ISOPE) as well as member of the New York Academy of Sciences 
and the American Association for the Advancement of Sciences. He is 
currently Associate Editor of IEEE Transactions on Dielectrics and Electrical 
Insulation, Chairman of the IEEE DEIS Outdoor Insulation Committee, as 



 9

well as Chairman or member of several working groups and task forces of 
IEEE and CIGRÉ dealing with atmospheric icing of HV equipment. 


