A S T R A C T

The author describes her creation of a sound installation inspired by the phenomenon of auditory hallucinations.

Acoustic Mirage invites the listener to enter a uniquely designed sonic environment in which the boundary between aural reality and aural fantasy is dissolved. Moving through a dense noisescap...
tones provide open, non-hierarchical surface layers where much acoustical phenomena occur and where our psychoacoustical processes attempt to deal with data that prove hard to compute. When I come up with new ideas for a sounding composition, I usually conceive of it in terms of how little or how much the composed parameters will deviate from a continuously sustained tone or tones. For deviation to occur there must be an absolutely explicit reason; deviation for the sake of contrast is, for me, a tedious approach toward artistic creativity. What interests me in composing is extremely gradual, linear pitch movement that does not draw attention to the act of deviation but rather continues to present environments where we focus upon an active surface layer.

I use simple convergent or divergent pitch structures, similar to those used by composers such as Phill Niblock and Peter Adriaansz, to create evolving surface layers where much acoustical processes attempt to deal with data that prove hard to compute. Over extended-duration sustained tones, human performers naturally deviate in pitch, dynamic, bow/lip pressure and so forth, which results in changes in the surface layer of the sound, consequently affecting our perceptual experience of the music. The nature of human fallibility in this respect is celebrated within the music in its relation to the indeterminate effect upon the acoustics of the sound. Many more things remain to be explored within sustained tone environments, and the nature of acoustical effects and how we process them will remain at the center of my own future investigations.

Richard Glover is a Research Fellow at the University of Huddersfield, U.K. His music is performed internationally and is being recorded by EXAUDI and Quatuor Bozzini for separate CD releases. He has chapters in forthcoming publications on the music of Phill Niblock and the Ashgate Research Companion to Minimalism, and is currently working on a book exploring the temporal experience in minimalist and experimental music.

Sound Is Not Enough

Henry Gwiazda (artist, composer), 555 40th St, SW #228, Fargo, ND 58103, U.S.A. E-mail: henry@gwiazda@ cableone.net. Web site: <www.henrygwiazda.com>.

Abstract

The artist describes the use of virtual audio for spatial music composition.

As a high school student, I remember bringing in a sketch for a spatial work for orchestra to my first composition teacher only to have him respond that it wasn’t “music.” I didn’t know much about music at the time and was confused by his statement. I always liked sound and secretly preferred it to music. But I thought that I was wrong because almost all of the avant-garde music that I listened to had pitches and rhythms. Fast-forward 25 years—I am now completely engaged with sampling and sound effects as my palette. I have finally accepted my artistic predilections. I am looking to expand my work and I don’t know how. I want it to be “bigger” but not louder. In 1999, I ran across an advertisement for a product called Roland Sound Space. I received a demo version and thought it was fantastic. One could place, accurately, sounds in physical space using only two speakers. This was what I was looking for. Unfortunately, the “sweet spot” was tiny, and the system cost $20,000. Fortunately, I was referred to engineer/artist Bo Gehring. He had software called Focal Point for the Mac [1]. Focal Point did a similar thing to Sound Space but not as effectively.

Bo explained the software as a kind of “super” Eq (Equalization) process. Each dot was assigned a specific Eq, and as you moved the mouse, the sound appeared to move. It was an illusion, of course, but it worked. I could move the sound up, down and from side to side in any configuration. I set up my speakers 14 ft apart, 8 ft from the listener and angled about 45°. I found that I could make the sounds appear to move toward and away from me. The sounds were so vivid; I could almost see a bird flying over my head. The sound became visual. I removed everything in front of me—books, pictures—to better “see” the sound. I could not, however, place a bird sound at a low spatial location. The engineers I talked to explained that we humans expect high sounds to be just that. I also couldn’t place any sounds behind me. Because of the reflection of the wall behind me, however, sometimes I could get away with it. I found that the perfect space for this work was a super dry room. Any reverberation interfered with the Eq, which in turn made the spatialization less effective. Also, the “sweet spot” was a circle about 3 ft in diameter. And only one person could hear the work at one time.

I created two works using Focal Point, one for speakers (two) and one for headphones. Buzzingreynold’sdreamland [2] was the speaker piece, named after a Coney Island amusement park. My normal composition process uses CDs of sound effects as source (musical) material. A sound effect is a pitch and rhythm idea to me. I never process any of the sounds, unlike almost everyone else I know. Why would anyone need to tweak a bird sound? I can’t understand that. If I am not artistically pleased with a sound (musical idea), I find a new one that works. It enlarges my sound vocabulary and produces nice surprises. The spatialization of the music became an important compositional element. First, I would choose the