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Abstract- Increasing competence makes to develop and 

implement more complex control schemes on manufacturing 
environments. In this paper, a discrete time model reference 
control for practical milling using different discretization of the 
continuous-time plant is presented. The different models of the 
scheme are obtained from a set of different discretizations of a 
continuous-time milling system transfer function under a 
fractional-order-hold of correcting gain [ ]1,1−∈β  ( )FROH−β . 
The objective is to design a supervisory scheme which is able to 
find the most appropriate value for the gain β in an intelligent 
design framework. A tracking performance index evaluates each 
possible discretization and the scheme chooses the one with the 
smallest value of the index in order to generate the real control 
input to the plant. Two different methods of adjusting this value 
are presented and discussed. The first one selects it among a fixed 
set of possible values, while the second one the value of β is 
updated by adding or subtracting a small quantity. 

I. INTRODUCTION 

Milling is a cutting process widely used in the 
manufacturing of mechanical components. It is carried out by 
feeding a work-piece clamped on a table against a rotating 
multi-tooth cutter. In order to avoid machine malfunctions such 
as tool wear or breakage and to achieve a certain degree of 
quality in the finishing of the working-piece, the peak cutting 
force on the working piece has to be maintained below a 
prescribed safety upper-bound. This fact implies that a control 
strategy has to be implemented on the system in order to fulfill 
such safety and performance requirements.  

Job-shops environments requires adaptive techniques since 
tool-part combinations are different at each operation, batch 
and high volume environments are characterized by fixing or 
varying within a known range tool-part combinations [1]. In 
this paper, the design of a discrete time control of milling 
forces is presented considering high volume operations, where 
the milling system model is perfectly characterized and the 
plant parameters are known or varied in a known way, even 
though sudden changes in the tool-part combinations happen. 

On the other hand, different kinds of holds increase control 
designer attention due to their enhanced properties respect to 
the traditional zero order holds (ZOH), which are commonly 
used in manufacture floors. In this work, the strategies for 
controlling the milling system are based on the use of 
fractional order holds devices of the correcting 
gain [ ] ( )FROH−−∈ ββ ,1,1 . Then, the continuous milling 
system described in [2] is discretized under a FROH−β , 
obtaining a series of discrete-time models of the system. The 
use of a FROH−β  to discretize the continuous system leads 
to modify the properties of the discrete zeros of the sampled 

system [3,4].   Each different discretization of the plant has an 
associated controller [5,6].  

Hence, two strategies for controlling the system, based on a 
fractional order hold discretization of the correcting 
gain [ ] ( )FROH−−∈ ββ ,1,1  are proposed. The objective of 
both strategies is to design a supervisory scheme which is able 
to select the most appropriate value for the gain β  in an 
intelligent design framework. A tracking performance index 
evaluates each possible discretization and the scheme chooses 
the correcting gain leading to a smaller tracking performance 
index, for implementing the FROH−β  device and the control 
law.  

This fact modifies the overall closed-loop response of the 
system, improving, for instance, the stability of the discrete 
zeros or reducing the overshoot, avoiding tool breakage and 
tool wear and achieving the required surface on the working-
piece in the milling process and better inter-sample behavior 
[7]. Hence, the model reference control is the designed from 
the so obtained scheme based discrete model.   

Finally, the tracking performance of the continuous-time 
signal is studied. It is carried out by means of a cost function. It 
is applied to two cases, one when the multi-model scheme is 
used, and the other when just a ZOH device in a basic model 
reference control scheme is utilizing. 

II. SYSTEM DESCRIPTION 

A. Continuous-time Model 
The milling system can be modeled as the series 

decomposition of a Computerized Numerical Control (CNC), 
which includes all the circuitry involving in the table 
movement (amplifiers, motor drives), and the tool-work-piece 
interaction model itself. A feed rate command cf  (which plays 
the role of the control signal) is sent to the CNC unit. This feed 
rate represents the desired velocity for the table movement. 
Then, the CNC unit manages to make the table move at an 
actual feed velocity of af  according to the CNC dynamics. 
Even though the machine tool drive servos are typically 
modeled as high order transfer functions, they can usually be 
approximated as a second order transfer function within the 
range of working frequencies [8]. Besides, they are tuned to be 
over-damped without overshoot, so that they can be modeled 
as the first order system of transfer function [2]:  
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where af and cf  are the actual and command  velocity values 

of the table in ( )smm respectively and sτ  is an average time 



constant, which depends on the type of the machine tool. In 
this study, it is assumed to be 0.1 ms. 

In addition, the chatter vibration and resonant free cutting 
process can be approximated as the first order system [2]: 
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where cK ( )2mmN  is the cutting pressure constant, b ( )mm  is 
the axial depth of cut, ( )Na exst ,,φφ is a non-dimensional 
immersion function, ranging from 0 to N~ (a number 
proportional to N) depending on the immersion angle and the 
number of teeth in cut, N is the number of teeth on the milling 
cutter and ( )srevn / is the spindle speed. The axial deep of cut 
function b in (2) may be time-varying leading to a potential 
time-varying system. In particular, it is assumed in this work 
that the cutting process is piecewise constant, admitting sudden 
changes in the cutting parameters at certain time instants, while 
remaining invariant between changes. This assumption allows 
us to consider the cutting process to be described by the 
transfer function (2) with the time interval between changes.  

The combined transfer function of the system, obtained from 
(1) and (2) is  
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where the process gain is pK ( )mmsN ⋅ NnabK c= .  
Figure 1 shows the sample work-piece depicting basic 

cutting geometry features with changes in the axial depth of cut 
used in the simulations. The spindle speed remains constant, 

rpm715 ; the work-piece is made of Aluminum 6067 whose 

specific cutting pressure is assumed to be 21200
mm

NKc = .  

A 4-fluted carbide mill tool, full-immersed and rouging milling 
operation will be taken into consideration in the present paper.  

Also, note that the desired final geometry of the piece to be 
milled involves changes in the axial deep of cut which implies 
suddenly changes in its value, according to the sudden changes 
assumption presented before. On the other hand, it has been 
taken into account that the control law computes new feed-rate 
command value at each sampling interval. Furthermore, it is 
worth to be mentioned that the CNC unit has its own digital 
position law executed at small time intervals in comparison 

with the sampled time of the control law, even though if high 
speed milling tool drives are used [2]. 
B. Discrete model under FROHβ −  

In this paper, the problem of controlling a continuous plant is 
addressed by using a discrete controller. The discrete controller 
is obtained applying a model-reference pole-placement based 
control design to a discrete model of the plant (3) obtained by 
means of a FROH with a certain correcting gain β . The 
additional “degree of freedom” β  provided by the FROH can  
be used with a broad variety of objectives such as to improve 
the transient response behavior, to avoid the existence of 
oscillations in the continuous time output of the system or to 
improve the stability properties of the zeros of the discretized 
system [5, 10]. In this way, this work is especially focused on 
the use of these devices to improve the transient response of 
the closed-loop system by selecting an adequate value of the 
fractional order hold. Thus, in the following sections, a 
comparative study of the behavior of the closed-loop system 
under different values of the correcting gain is developed. 
Hence, the discretization of (3) under a FROH is calculated as 
[11]: 

( ) ( ) ( )[ ]scGshZzH ⋅= ββ    (4) 
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function of a FROH−β , where z  is the argument of the 
transformZ − , being formally equivalent to the one step ahead 

operators, q , used in the time domain representation of 
difference equations. This allows us to keep a simple 
unambiguous notation for the whole paper content. The 
sampling time T has been chosen to be the spindle speed, n, as 
it is usual for this kind of systems [2, 8, 11, 12].  Note that 
when 1=β , the FROH  hold becomes a first order hold ( )FOH  
and when 0=β , the zero order hold ( )ZOH  is obtained, being 
both particular cases of [ ]1,1−∈β . Furthermore, ( )zH β  may 
be calculated using just ZOH  devices in the following way: 
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transfer function of a ZOH  and 1=βδ if 0≠β and 0=βδ if 
0=β , which means that a fractional order hold with 0≠β  adds 

a pole at the origin. 
C. Desired response: model reference 

A second order stable system ( ) 222

2
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ωξω
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selected to represent the system model reference. This system 
is characterized by a desired damping ratio, ξ  and a natural 
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Figure 1: Work-piece profile to test control algorithms [2]. 



frequency, nω . It is known that small values ofξ  leads to a 
large overshoot and a large setting time. A general accepted 
range value for ξ  to attain satisfactory performance is between 

5.0  and 1 , which corresponds to the so-called under-damped 
systems. In this way, a damping ratio of 75.0=ξ and a rise 
time, rT , equal to four spindle periods is usually selected for 
practical applications [2,13]. Furthermore, the natural 
frequency is then usually suggested to be srad

rTn 5.2=ω . This 

continuous-time reference model is then discretized with the 
same FROH as the real system was in order to obtain the 
corresponding discrete-time reference model for the controller. 
Thus, a number of different discrete models obtained from a 
unique continuous-time reference model are considered 
depending on the value of β  used to obtain the discretization.  

III. CONTROL SCHEMES DESIGNS 

Milling force controllers are designed in this section using 
two different schemes. The design objective is to develop a 
closed-loop response which tracks a constant reference. 
D. Basic model following scheme 

The aim of the model-following control strategy is to lead 
the closed-loop system to behave as a prescribed reference 
model. Thus, the control scheme of the figure 2 is applied, 
where ( ) ( )

( )zR
zTzffH = is the feed-forward compensator, 

( ) ( )
( )zR
zSzfcH =  is the feedback compensator, ( )H zβ is the 

discrete plant, ( ),mH zβ is the discrete-time reference model 
and rkF  is the reference force.  

The transfer function of the reference model is, 
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where ( )zBm
' contains the free-design reference model zeros, 

( )zB− is formed by the transmitted unstable (assumed known) 
plant zeros and ( )zAo is a polynomial including the eventual 
closed-loop stable pole-zero cancellations which are introduced 
when necessary to guarantee that the relative degree of the 
reference model is non less than that of the closed-loop system 
so that the synthesized controller is casual. A basic control 
scheme is displayed in figure 2. Then, polynomials 

( ) ( )zSzR , and ( )zT  have to be synthesized ( ( )zT depends only 
on the reference model zeros polynomial which is of constant 
coefficients) where ( ) ( ) ( ) ( )zRzAzBzT om ,'= (monic) and 
( )zS are the unique solutions with degrees fulfilling  
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   (8) 
with ( ) ( ) ( )zRzBzR 1= at every sampling instant, where n=2 if 
a ZOH in view of the second order milling plant and reference 
model continuous-time transfer function. For FROH not being 
ZOH, n=3 since a new pole at the origin is automatically added 
to the plant.   
From (7)-(8), perfect tracking is achieved through the control 
signal: 

( )
( )

( )
( ) kpkrkc F
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Two alternative organizations of the set of discrete models are 
proposed in this paper. The structure of both architectures is 
discussed in the following section. 
E. Multi-model scheme1 
Firstly, the transfer functions composing the parallel scheme 
are obtained for pre-intended values of β . Thus, a finite set of 

possible design values ( ) ( ) ( ){ }mnβββ ,..,, 21  is considered, 
obtaining the set of discrete transfer functions as, 

( ) ( )[ ]sGshZH ⋅= ββ , ( ) ( ) ( ){ }mnββββ ,..,, 21∈  
Then, the actual control law at the previous time instant is 
applied to the above scheme by calculating the output of all the 
continuous time models ( ) ( ) ( )tFtFtF pmpp ,..,, 21 . The tracking 
performance of the set of possible models is evaluated by 
comparing these outputs and the desired reference output. 
Finally, the proposed high level supervision algorithm will 
select the most appropriate one to design the control law which 
is actually applied to the system according to the values of 
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+
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Fig.2: Basic Model following control scheme. 
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Figure 3: Multi-model scheme. 
 



these performance indexes. Figure 3 depicts a schematic 
representation of the control scheme.  
F. Multi-model scheme 2   

In the second criterion the system starts with an arbitrary 
value and its associate tracking performance is compared with 
the obtained from the use of other two close values of β . One 
being a slightly larger and the other slightly smaller than the 
active value. Then, the system only can choose a value among 
those three cases. However, these three potential values are not 
constant in general and they are updated. In case of choosing 
one of the two other close values to the current value of β . It 
becomes the active one and the other two are updated again by 
adding and subtracting a quantity. If the system chooses to 
maintain the same value of β  , then the other two possible 
values are updated as well by considering other two closer 
values of β .  

The following algorithm describes carefully this method: 
1. At thk sample the active value of β is kβ . Other two 

values, βββ ∆+= kk
sup and βββ ∆−= kk

inf  are used 
for simulation. Suppose that the last β  switching 

took place at 
th

k sample. 
2. If ( ) MTTkTk ≥−+1 , 0>M , then the tracking 

performance of the of the three possible 
discretizations are compared and one with the lowest 
value of the switching rule is used in the FROH 
device. 

3. If the system chooses to maintain the same value 
of β , first β∆ is decreased and then supβ and infβ are 
updated. (If kk ββ =+1 , m/ββ ∆=∆ , 1>m , and 

βββ ∆+=+ kk
sup

1 , βββ ∆−=+ kk
inf

1 . 
4. If the system chooses another value, β∆ maintains its 

value and supβ and infβ are calculated by adding and 
subtracting the following value: 

- if sup
1 kk ββ =+ , kkkk βββββ =∆+= ++

inf
1

sup
1 ,2  

- if inf
1 kk ββ =+ , βββββ ∆−== ++ kkkk

inf
1

sup
1 ,  

IV. SWITCHING RULE AND IDENTIFICATION PERFORMANCE 
INDEX 

The objective of the supervisor is to evaluate the tracking 
performance of the possible controllers operating on the plant 
for the given reference model with the aim of choosing the 
current controller from the set of parallel controllers. The 
proposed performance index is defined as: 

( ) ( ) ( )
( )
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−= −

− −=
k

Mkj

jT

Tj
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jkl
k dFFJ

1
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for mnl <≤1 , where ( ]1,0∈λ and 0>M are design real 
parameters and mn is the number of possible plant 
discretizations. λ is a forgetting factor which allows to weight 
optionally more recent data ( if 1≠λ  ) to the last time interval. 

 Note that there are two supervisory hierarchical levels 
of action of the intelligent system: 

1. Basic control: It consists of generating the control 
signal from (9) for each of the discrete models 
integrated in the multi-model scheme. 

2. Choice of β : The model and correcting gain β of the 
FROH is on-line selected via minimization of the 
supervisory performance index (10) and the criterion 
selected for choosing β . 

It is of interesting mention that the time interval between two 
consecutives switch times in the current controller has to be 
larger than a minimum residence time in order to guarantee the 
closed-loop stability. This value could be obtained from an ‘a 
priori’ knowledge or from experimental research. 

V. SIMULATION RESULTS 

In this section, the two above introduce control schemes are 
applied to the explained milling system to show the usefulness 
of the schemes.     

Two selected plots are used tentatively for the milling system 
output performance evaluation. The first one uses the multi-
model scheme 1letting the system to choose among any of the 
possible gains β , multi-model 1. The set of possible gains are 

( ) ( ) 10/11 −−= iiβ  for 151 ≤≤ i and the residence time is 
chosen to be one period. In the second multi-model method the 
initial value of β∆ is set to 0.2 and m to 2. Figures 4 and 6 
show the outputs, and figures 5 and 7 the on-line active value 
of β  selected via switching using (10), for the multi-models 
methods 1 and 2, respectively.   

The forgetting factor is fixed to unity so that old data are not 
forgotten in this particular simulation package. The M value is 
also selected to be one. Similar results are obtained with other 
values of those parameters.  

For the each synthesized control, four output figures are 
plotted in the group of figures 4 and 6. The first one depicts the 
model reference and the plant output signals versus sample 
time; the second one shows the evolution of the tracking error 
signal, ( )pmp FFe −= ; the third figure displays the controller 
response and, finally, the four graphic shows the continuous-
time domain system response obtained using the FROH−β . 
The figures show that the steady-state force tracks the 
reference force which is set to 1.2 KN , except for the response 
peaks appreciated when the axial depth of cut, and then the 
transfer function, is suddenly altered. It is also appreciated that 
the discrete-time transient response follows exactly the discrete 
model reference at each sampling instant as a consequence of 
the perfect knowledge of the plant parameters. The 
programmed feed rate is feasible and smooth, even though the 
axial depth of cut varies.  

Also, when a parameter of the system changes abruptly (in 
this case the axial depth of cut) the model-reference control 
leads to large output overshoots, due to the intrinsic structure 
of the output. Thus, if the reference force is selected near the 
tool breakage limit, the large overshoot would lead to tool 



breakage [8]. In that case, some ‘a priori’ information about the 
work-piece geometry is required to design a successful control, 
as in [14], where a CAD model of the work-piece is used to 
modify the control command when the axial depth of cut 
changes in order to minimize the overshoots due to abrupt 
changes in the transfer function. 

VI. CONTINUOUS-TIME RESPONSES CHARACTERIZATION 

In this section, the output of the milling system is evaluated 
under the application of the developed control schemes using 
fractional order holds. It is going to be compared with the 
output of the basic control scheme represented in section III.A 
under a ZOH discretization. For this purpose, a cost function is 
defined: 

( ) ( )
( )

τττ d
k

j

jT

Tj
mpFpFcJ

n
∑ ∫
= −

−=
1 1

,  

where pF is the output signal and mpF , is the model reference 
output signal, nk is the number of periods which have been 
taken into account in the continuous-time response 
characterization. 

This cost function calculates an approximation of the area 
between the continuous-time domain system output response 

and the continuous-time model reference response. The smaller 
this area is, the smaller cost function is, and then, the output of 
the system associated to the lowest value of this cost function 
will correspond to a signal that better follow the reference 
signal. In terms of milling, this fact implies better accuracy on 
the working-piece surface, and prevents against damaging the 
tool and machine tool components. 

The values of the cost function are 0.0277, 0.2365 and 0.083, 
for the cases where multi-model scheme letting the system 
chooses a number of possible considered β - values, multi-
model scheme 1, multi-model changing β to a close value, 
multi-model scheme 2, and for the case where the model 
reference control is applied using a ZOH device.  

The multi-model scheme 1 improves the continuous response 
respect to the scheme which uses just a ZOH, but the second 
scheme is not such efficient.  

VII. CONCLUSIONS 

In this paper, a multi-model discrete-time control strategy 
for a known continuous-time milling systems has been 
developed. The different discrete models are obtained by 
discretizing the continuous plant under a FROH device. The 
scheme is designed to find at each multiple of the residence 
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Figure 4: System responses corresponding to multi-model scheme 1.   Figure 5: Active value of β with method 1. 
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Figure 6: System response using multi-model method 2.      Figure 7: Active value of β  with method 2. 

 



time the value of the gain β  which leads to the best tracking 
performance. Two different methods have been presented for 
this purpose. The first one selects the current value of the gain 
among a fixed set of possible prefixed values. The second one 
updates β only to a close value of the current value, avoiding 
poor transients which may occur when the changing is big. 

 Simulations have showed that an appropriate choice of the 
value of β  leads to a more precise continuous-time response 
than when just a ZOH is used. Moreover, the advantages and 
disadvantages of both methods have been discussed through a 
cost function which measures the continuous-time system 
response behavior.  

 On the other hand, it is of interest to mention that the 
general FROH device can be implemented by means of ZOH 
holds, which make this approach fairly feasible implemented in 
the manufacturing industry, see for instance [4]. 
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