
University of Huddersfield Repository

Hinks, J. A. and Donnelly, S. E.

Copper indium diselenide: crystallography and radiation-induced dislocation loops

Original Citation

Hinks, J. A. and Donnelly, S. E. (2011) Copper indium diselenide: crystallography and radiation-
induced dislocation loops. Philosophical Magazine, 91 (4). pp. 517-536. ISSN 1478-6435 

This version is available at http://eprints.hud.ac.uk/id/eprint/16010/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



Copper Indium Diselenide: Crystallography and Radiation Induced 

Dislocation Loops 

 

J.A. Hinks* and S.E. Donnelly 

 

*Corresponding author 

 

Electron Microscopy and Materials Analysis (EMMA), T3/03 Technology Building, 

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, United Kingdom 

E-mail: j.a.hinks@hud.ac.uk 

 

Copper indium diselenide (CIS) is a prime candidate for the absorber layer in solar cells for use in 

extraterrestrial environments due to its good photovoltaic efficiency and ability to resist radiation 

damage. Whilst CIS-based devices have been tested extensively in the laboratory using electron 

and proton irradiation, there is still little understanding of the underlying mechanisms which give 

rise to its radiation hardness. In order to gain better insight into the response of CIS to displacing 

radiation, transmission electron microscope samples have been irradiated in situ with 400 keV Xe 

ions at the Intermediate Voltage Electron Microscope facility at Argonne National Laboratory, 

USA. At room temperature, dislocation loops were observed to form and to grow with increasing 

fluence. These loops have been investigated using g.b techniques and inside/outside contrast 

analysis. They were found to reside on {112} planes and to be interstitial in nature. The Burgers 

vector has been calculated to be b = 1/6 <221>. The compositional content of these interstitial 

loops was found to be indistinguishable from the surrounding matrix within the sensitivity of the 

techniques used. To facilitate this work, experimental electron-diffraction zone-axis pattern maps 

were produced and these are also presented along with analysis of the [100] zone-axis pattern. 

 

Keywords: radiation damage; defect analysis; dislocation structures; crystallography; semiconductors; 

TEM; electron diffraction; ion irradiation; copper indium diselenide; CuInSe2; CIS. 

 

1 Introduction 

 

Copper indium diselenide (CIS) is a chalcopyrite semiconductor with space group   ̅  . 

Along with its derivatives (Cu(In,Ga)Se2), CIS is a prime candidate for the absorber layers in 

photovoltaic devices for use in extraterrestrial environments due to its good photovoltaic 

efficiency and its ability to withstand radiation damage. Efficiencies of up to 19.9% have 



been achieved in the laboratory [1] and CIS-based modules are now being produced 

commercially with efficiencies of around 11.5% [2]. 

Investigations into radiation damage in these materials have largely concentrated on 

electron and proton irradiation of thin films and solar cells – particularly to explore the 

effects on photovoltaic properties [3–35]. Extraterrestrial testing of CIGS-based devices has 

also been conducted [29,36–43] and work using ion irradiation either to explore lattice 

damage and/or doping has been performed on single crystals and thin films [7,17,21,32,44–

64]. In particular, work by Mullan et al. using oxygen and neon ions has looked at both 

electrical and structural effects including transmission electron microscopy (TEM) of ion 

irradiated samples [17,21,45,46,49,50]. 

In non-irradiated CIS, structural defects have been reported in thin films (stacking 

faults and microtwins on {112} planes [65–68], dislocations and dislocation loops [66–70]) 

and in Bridgman-grown single crystals (dislocations on {110} planes [65]). Ion irradiation 

has been found to induce microtwins, stacking faults, dislocations, dislocation loops and 

amorphisation [17,45,46,71]. 

In order to gain an understanding of the atomistic mechanisms which give rise to the 

radiation hardness of CIS, TEM with in situ ion irradiation has been used in this study as this 

technique enables the internal microstructure of a sample to be imaged during irradiation thus 

allowing the exploration of dynamic effects (i.e. not just end-state) whilst also controlling and 

maintaining variables such as temperature. By using heavy inert ions, in this case Xe, at an 

energy such that they cause large numbers of atomic displacements throughout the thickness 

of the sample it is possible to monitor both the creation of structural damage and any 

recovery processes. 

 

2 Experimental 

 

2.1 Sample Preparation and Analysis 

 

Copper, indium and selenium were sealed in evacuated quartz-ampoules which were then 

heated in a rocking furnace to form CIS via direct fusion of the elements. Single crystals of 

CIS were produced by refining this material using the Bridgman technique [72]. TEM 

samples were made by core-drilling material from the bulk, back-polishing, dimpling and 

then ion beam milling to electron transparency. Sample composition was examined using a 



JEOL JSM-6400 SEM equipped with a Link Analytical LZ-5 energy dispersive spectrometer 

(EDS). 

 

2.2 Transmission Electron Microscopy 

 

Samples were irradiated at room temperature with 400 keV Xe ions in the Intermediate 

Voltage Electron Microscope (IVEM) at Argonne National Laboratory, USA. The electron 

beam was operated at 100 kV and remained on during ion irradiation to allow video 

recording of the experiments. The IVEM facility consists of an Hitachi H-9000NAR coupled 

to an ion beamline with two sources capable of operating at up to 300 kV and 2 MeV with the 

ion beam forming an angle of 30° with the optical axis of the microscope [73–75]. 

Defect analysis was performed using a JEOL JEM-200CX at the University of 

Salford, United Kingdom. Scanning TEM (STEM) EDS was performed using a FEI CM200 

at the University of Leeds, United Kingdom. 

Experimental zone-axis pattern maps (ZAPMaps) were produced by tilting along 

major Kikuchi lines and recording the electron diffraction patterns of major zone-axes. 

Theoretical zone-axis patterns produced using JAVA Electron Microscopy Software (JEMS) 

[76,77] were used to identify and verify the experimental patterns. JEMS was also used in the 

indexing of diffraction spots and Kikuchi lines. All angles were calculated assuming a = 

5.789 Å and c = 11.612 Å [65]. 

The habit plane of the dislocation loops was identified using g.b analysis techniques. 

Electron micrographs were taken using underfocused bright-field two-beam imaging 

conditions for both g and –g for each diffraction vector of interest and with a positive 

deviation parameter (sg > 0). For a sample orientation where g.b = 0 (i.e. the Burgers vector 

of the dislocation loop is at a right angle to the diffraction vector) the diffraction contrast 

caused by the strain field of the loop will be zero as the distortion of the surrounding planes 

will be orthogonal to the direction required to bend the planes into the Bragg condition. 

Conversely for g.b = 1 conditions, the strain field around the loop contorts the matrix in the 

correct manner in order to strongly-excite Bragg diffraction. By establishing two non-parallel 

diffraction vectors for which the g.b = 0 condition exists, it is possible to identify the habit 

plane and thus calculate the Burgers vector of a dislocation loop. See references [78–80] for 

further details. 

In this study the chalcopyrite structure only featured one diffraction vector which was 

at 90° to the Burgers vector within the confines of sample orientation and available tilt of the 



TEM sample rod. Therefore, diffraction vectors at 82.2° and 82.5° to the Burgers vector were 

used as these come close to the ideal 90° angle required for an absolute g.b = 0 condition. 

Although technically two g.b = 0 conditions are sufficient, one g.b = 0 and two g.b ≈ 0 

conditions were used in order to ensure correct identification of the habit plane and Burgers 

vector. 

In order to determine whether the loops were interstitial (extrinsic) or vacancy 

(intrinsic) in nature, the inside/outside contrast technique was utilised. For a given 

combination of diffraction vector direction and sign of deviation parameter there will be a 

particular sense of planar rotation required to approach the Bragg condition. Only certain 

regions of the strain field around a dislocation loop will bend the planes of the surrounding 

crystal towards the Bragg condition and this causes diffraction contrast to be generated either 

on the inside or the outside of the projection of the dislocation loop. This is illustrated in 

Figure 1 where the direction of planar distortion is indicated for four different combinations 

of loop nature and inclination. Also shown are two combinations of diffraction vector and 

deviation parameter with the direction of planar rotation required to approach the Bragg 

condition indicated for each situation. Comparison of the rotation required to approach the 

Bragg condition with the rotation due to the strain fields around the loops reveals that 

diffraction contrast will form inside the projection of the dislocation for the examples on the 

left of the diagram and outside for those on the right. 

Once the habit plane of a dislocation loop is known then the direction of inclination 

can be determined using knowledge of the crystallography, sample orientation and the 

mechanical tilt performed using the goniometer and TEM sample rod. Then by reversing the 

diffraction vector or deviation parameter it is possible to establish the nature of a loop by 

comparing the images produced and noting the relative shift in the position of the diffraction 

contrast. See references [78–80] for further details. 

 

3 Results 

 

3.1 Zone-Axis Pattern Maps 

 

The experimental ZAPMaps produced to facilitate the characterisation of dislocation loops 

are shown in Figures 2 and 3. Theoretical patterns were generated by JEMS and used for the 

identification and verification of the experimental zone-axis patterns. When tilting between 

zones in the TEM it is useful to know the angles between zones and these can be calculated 



using Equation 1 for tetragonal systems such as CIS. The experimental ZAPMaps reproduced 

here are complimentary to the CIS ZAPMap published previously by Kiely et al. [65] which 

was cornered on the [001], [021] and [221] zones. 
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3.2 [100] Diffraction Pattern 

 

Table 1 lists the allowed reflections in the chalcopyrite structure of CIS. Comparison with the 

indexed [100] zone-axis pattern reveals the presence of forbidden reflections as shown in 

Figure 4. These can be explained by various double-diffraction events such as those listed in 

Equations 2 to 7. Reflections arising from double diffraction events have also been identified 

in the [001] and [021] zone-axis patterns of CIS by Kiely et al [65]. 
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Using the fractional coordinates of the atoms in the lattice basis of CIS listed in Table 

2, it is possible to calculate the structure factor via Equation 8. The intensity of the 024-type 

reflections in the [100] zone-axis pattern are comparatively high especially considering their 

greater angular displacement from the 000 relative to the other reflections shown in Figure 4. 

This is due to the intensity contributed by the scattering factor of selenium which is 

reinforcing in these reflections but subtractive in other reflections such as the 020 and 004 as 

demonstrated in Equations 9 to 11. 
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3.3 Dislocation Loops 

 

3.3.1 Loop Development 

 

Dislocation loops were found to form in copper-rich indium-poor selenium-rich TEM 

samples when irradiated at room temperature with 400 keV Xe ions as shown in Figure 5. 

Three samples were irradiated to fluences of 1.3×10
13

, 7.5×10
13

 and 1.3×10
14

 

ions.cm
–2

 (corresponding to approximately 0.25, 1.5 and 2.6 displacements per atom at a 

depth of 50 nm from the irradiated surface, respectively) resulting in typical dislocation loops 

sizes of 5, 40 and 50 nm, respectively. The loops were seen to form and grow under 

irradiation and on occasions disappear in a period of less than 1/30
th

 of a second (one frame 

of video). On occasions, loops also appeared to merge although it is hard to be definitive 

based on the evidence of the two-dimensional projection of the regions of the strain fields 

satisfying the Bragg condition – it can be difficult to conclusively distinguish between two 

strain fields overlapping in projection and two loops amalgamating. However, as the loops 

were growing it is highly likely that some would have come sufficiently close to amalgamate. 

The loops were stable once irradiation ceased. Figure 6 shows dislocation loop evolution in 

one area over several minutes as a function of fluence. 

 

3.3.2 Habit Plane and Burgers Vector 

 

The sample irradiated to the highest fluence of 1.3 × 10
14

 ions.cm
–2

, and hence with the 

largest defects, was used for determination of dislocation habit plane and Burgers vector. 

Figure 7 shows eight TEM micrographs which demonstrate the habit plane of the dislocation 

loops to be {112}. The micrographs taken with g =   ̅ ̅ and  ̅   produce twin lobed contrast 

features consistent with end-on loops which are pure edge in character. All six of the 

diffraction vectors which are orthogonal (or nearly orthogonal) to the   ̅ ̅ and  ̅   result in 

invisibility of {112}-type loops. This conclusion is further illustrated in Figure 8 using 

annular dark field (ADF) TEM and in Figure 9 using weak-beam dark-field (WBDF) TEM; 

both techniques generate contrast corresponding to the most heavily distorted planes which 

are located closest to the centre of a dislocation loop and thus give better information on the 



actual dislocation rather than about the more widely dispersed regions of the associated strain 

field. As can be seen in Figures 8 and 9, for both ADF and WBDF the observed contrast is 

consistent with loops residing on the {112} planes. 

Based on this habit plane, the Burgers vector can therefore be calculated as b = 1/6 

<221> as illustrated in Figure 10 using the Finish-Start/Right-Hand (FS/RH) convention. 

 

3.3.2 Loop Nature 

 

The loops were demonstrated to be interstitial in nature. As can be seen in Figure 11, a 

reversal of the diffraction vector from   ̅ ̅ to  ̅   resulted in a shift from outside to inside 

contrast which is verified by the intensity-linescan data plotted in Figure 12 for one of the 

dislocation loops shown in Figure 11. The situation is represented schematically in Figure 13. 

 

3.3.3 Loop Contents 

 

No variation in composition between the contents of the dislocation loops and the 

surrounding matrix was detected by STEM EDS as demonstrated in Figure 14. The 

instrument used is estimated to be capable of detecting a variation of 5 at.% in a single end-

on interstitial loop of this size. This suggests that the interstitial planes in the loops are close 

to being stoichiometric – as ideal {112} planes are stoichiometric (containing Cu, In and Se 

in a ratio of 1:1:2) this is not an unreasonable situation. No other elements were detected in 

either the loops or the surrounding matrix. 

Additional analysis using electron energy loss spectroscopy on SuperSTEM 2 at 

Daresbury Laboratory, United Kingdom, also did not detect any variation in composition. 

 

4 Discussion 

 

As the loops grew and did not appear instantaneously, they must have formed through the 

agglomeration of point defects or defect clusters rather than forming as the remnants of 

individual collision cascades. The most likely causes for the sudden disappearance of any 

given dislocation loop was the proximity of a surface (a situation reached through loop 

growth or migration) or the disordering effects of a nearby ion induced collision cascade and 

thermal spike. 



Because the loops were extrinsic in nature they must have been formed through the 

agglomeration of mobile interstitial defects. However, this raises the question as to the fate of 

the vacancies whose creation must necessarily have been concurrent with that of the 

interstitials which went on to constitute the loops. Vacancies could be are relatively immobile 

in CIS and/or they could have become entangled in defect complexes as discussed below. 

The migration mechanisms for copper, indium and selenium in CIS are not completely 

understood with the literature containing a complex picture featuring a range of proposed 

mechanisms and migration energies often influenced by composition [81–115]. However, 

despite the ambiguities in this area it is clear that selenium is immobile at room temperature 

by any migration mechanism and therefore so too must its vacancies [81,105–107]. 

Zhang et al have calculated creation energies for a range of defect complexes from 

first principles and found the formation of     
–

+    
   to have a particularly low energy [116–

121]. Other work by Klais et al has predicted 2VCu+InCu to be abundant throughout the 

compositions they considered and also found experimental evidence for its existence through 

positron annihilation [122]. Therefore it is quite possible that the copper vacancies could be 

become entangled in complexes such as the 2VCu+InCu which requires three VCu. 

Unfortunately, the 2VCu+InCu does not explain the fate of the indium vacancies. These could 

have similarly been immobilised by VIn consuming complexes with relative low creation 

energies such as: CuIn+2Cui [123,124]; CuIn+VSe [120]; SeCu+SeIn [125]; or any of 

CuIn+Cui+VSe, CuIn+VCu, CuIn+VCu+VSe and VSe+CuIn [122]. 

As the samples in which dislocation loops were observed were slightly selenium rich 

it is also quite possible that the selenium vacancy population was suppressed by this excess – 

a similar argument works for copper but not for indium due to the composition of the samples 

studied. However, the indium vacancy population could have been suppressed by a copper 

excess as the CuIn antisite defect has been calculated to have a relatively low creation energy 

of between 1.11 and 1.54 eV [120,126–129] (although there is one out-lying value of 1.90 eV 

[130]). 

 

5 Conclusions 

 

Dislocation loops were formed in CIS using 400 keV Xe ions at room temperature. These 

loops were interstitial in nature as shown through inside/outside contrast inversion and 

resided on {112} planes as demonstrated using g.b, weak beam dark field and annular dark 



field techniques. The Burgers vector has been calculated as b = 1/6 <221>. The loops grew 

through the agglomeration of mobile interstitial defects. They sometimes disappeared 

instantaneously either due to a local ion induced collision cascade and thermal spike or by 

growing/migrating into the proximity of a surface. Whilst the interstitials produced by 

displacing radiation clearly formed dislocation loops, the fate of the vacancies requires 

further study but could have been suppressed by the excess copper and selenium in the 

sample composition and/or entanglement in the defect complexes known to offer stable 

structures in defected CIS. 
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Table 1: Allowed reflections, derivable from Table 2 and Equation 8, in the chalcopyrite 

structure of CIS where h, k and l are the non-zero Miller indices and n is an integer. 

 

Reflection Condition 

hkl h + k + l = 2n 

hk0 h + k = 2n 

0kl k + l = 2n 

hhl 2h + l = 4n 

00l l = 4n 

h00 h = 2n 

h ̅0 h = 2n 

 

  



Table 2: Fractional coordinates of the atoms in the lattice basis of CIS where u, v and w are 

fractions of the lattice parameters a, b and c, respectively. 

 

 u v w 

Copper 0 0 0 

 0 0.5 0.25 

 0.5 0.5 0.5 

 0.5 0 0.75 

Indium 0.5 0.5 0 

 0.5 0 0.25 

 0 0 0.5 

 0 0.5 0.75 

Selenium 0.25 0.25 0.125 

 0.75 0.75 0.125 

 0.75 0.25 0.375 

 0.25 0.75 0.375 

 0.25 0.25 0.625 

 0.75 0.75 0.625 

 0.75 0.25 0.875 

 0.25 0.75 0.875 

 

  



 

 

Figure 1: Schematic diagram showing the directions in which the planes of a crystal are 

rotated by the strain fields of (a) interstitial loops and (b) vacancy loops; (d) illustrates the 

direction in which the sample must be rotated in order for the deviation parameter (sg) to be 

reduced such that these distorted planes approach the Bragg condition (i.e. diffraction vector, 

g, approaches the scattering wavevector, K). This causes diffraction contrast to be formed on 

the inside of the dislocation loop for the situations depicted on the left and on the outside for 

those on the right as shown in (c) (after [78,80]). 



 

 

Figure 2: Quadrant of experimental [100]-centred ZAPMap. 

  



 

 

Figure 3: Experimental [221]-centred ZAPMap. 



 

 

Figure 4: Indexed experimental diffraction pattern of the [100]-zone with reflections 

forbidden by structure factor considerations indicated with dashed boxes. 

  



 

 

Figure 5: Underfocus bright-field down-zone TEM micrograph of radiation induced 

dislocation loops in CIS. The areal density of the defects increased with sample thickness 

with the thinnest areas towards the bottom of the image being too thin to accommodate loops. 

  



 

 

Figure 6: Underfocus bright-field down-zone TEM micrographs showing the development of 

ion beam induced dislocation loops under continued ion irradiation. Attention is drawn to 

examples of loop growth (follow defect highlighted with dashed box in panel (a)) and 

destruction (follow defect highlighted with dashed box in panel (g)). Scale marker applies to 

all eight micrographs. 

  



 

 

Figure 7: Underfocus bright-field two-beam TEM micrographs (sg > 0) showing 

determination of dislocation loop habit plane using g.b analysis. Attention is drawn to the 

four dislocation loops highlighted by the dashed boxes in micrographs (a) and (b) as 

examples of {112}-type loops which lie on the (  ̅ ̅) planes as demonstrated by their contrast 

under the various g.b conditions shown – however, other instances are also evident in these 

micrographs. Note that there is no inside/outside contrast reversal for {112}-type dislocation 

loops between the micrographs in (a) and (b) as the loops are not inclined – this is contrary to 

the situation depicted in Figure 11 where the dislocation loops have been deliberately 

inclined in order to produce inside/outside contrast reversal with inversion of the diffraction 

vector. The large defect structure at the top of the micrographs is included to confirm the 

same area has been maintained. Scale markers in (a) and (c) apply to (b) and (d–h), 

respectively. 

  



 

 

Figure 8: Annular dark-field TEM micrograph of {112}-type dislocation loops, in a close to 

edge-on orientation, indicated with white arrows (image courtesy of R. Brydson, University 

of Leeds, United Kingdom). 

  



 

 

Figure 9: Underfocus TEM micrographs with g =   ̅ ̅ (sg > 0) and corresponding diffraction 

pattern. Scale marker applies to both micrographs. 

 

 

 

Figure 10: Determination of the Burgers vector using the Finish-Start/Right-Hand (FS/RH) 

convention looking at (112) planes down the [  ̅ ] direction. In the FS/RH convention, the 

Burgers vector is determined by forming a closed circuit around the dislocation (from finish 

to start) in a clockwise direction (right hand). The dislocation is then removed to leave a 

perfect crystal and the Burgers vector is the vector required to close the circuit. As shown 

here, the Burgers vector for the dislocation loops in CIS on {112} planes is b = 1/6 <221>. 

(Diagrammatic depiction of FS/RH convention after [79].) 



 

 

Figure 11: Underfocus bright-field two-beam TEM micrographs (sg > 0) showing 

determination of dislocation loop nature using the inside/outside contrast technique. Dashed 

rectangles highlight four examples of inside/outside contrast reversal for the same dislocation 

loops highlighted and identified as {112}-type in Figure 7 – however, other instances of 

equivalent inside/outside contrast reversal are also evident in these micrographs. Scale 

marker applies to both micrographs. 

 



 

 

Figure 12: Linescan of contrast against distance across a dislocation loop shown in Figure 11 

confirming change in position of contrast due to reversal of direction of diffraction vector 

from g =   ̅ ̅ (─) to g =  ̅   (─). 

 

 

 

Figure 13: Schematic diagram illustrating the combinations of dislocation loop inclination, 

nature and diffraction vectors for a positive value of the deviation parameter (sg > 0) which 

lead to the switching of the location of the diffraction contrast between the inside and outside 

of the dislocation in Figure 11. 



 

 

Figure 14: STEM EDS results for a region containing end-on interstitial dislocation loops 

showing (a) an ADF image and corresponding maps for the (b) copper, (c) indium and (d) 

selenium signals (courtesy of R. Brydson). 


