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Abstract – The objective of this paper is to present an open and modular expert rule-based system in 

order to automatically select cutting parameters in milling operations. The knowledge base of the system 

presents considerations of stability, machine drives efficiency and restrictions while adaptively 

controlling milling forces in suitable working points. Moreover, a novel classical cost function has been 

conceived and constructed to Pareto-optimise cutting parameters subjected to multi-objective purposes, 

namely: tool-life, surface roughness, material remove rate and stability rate parameter. Different Pareto 

optimal front solutions can be obtained modulating the weighting factors of the cost function. Additional 

rules have been added in order to manually and/or automatically modulate this cost function. 

Furthermore, a database which relates weighting factors, cutting conditions and cost function variables is 

produced for learning purposes.  Chatter detection and suppression system automatically feedback to the 

system to take into account non-modelled disturbances. Finally, since the knowledge of the system is 

basically obtained from mathematical models, the possibility of combining experience and knowledge 

from expert engineers and operators is included. In this way, best practice from mathematical modelling 

and expert engineers and operators is joined in one system obtaining a full, automated system combining 

the best of each world.  

As a result, the expert rule-based system selects Pareto optimal cutting conditions for a broad range of 

milling processes, sorting out automatically different problems such as chatter vibrations, incorporating 

model reference adaptive control (MRAC) of forces. This procedure is intuitive, being executed in the 

same way as a human expert would do and it provides the possibility to interact with expert engineers and 

operators in order to take into account their experience and knowledge. Finally, the expert system is 

designed in modular form allowing incorporating new functionalities in rule based forms to them or just 

adding new modules to improve the performance of the milling system. 

Keywords: Milling Processes, Expert System, Optimization, Manufacturing Automation, Adaptive 

Forces Control 

 

1. Introduction 

 

Despite various attempts at optimization, the selection of cutting parameters for CNC milling 

operations is still largely driven by machine operators on the shop-floor. They use their 

experience and/or handbooks in order to program adequate cutting parameters [Balakrishnan 

and DeVries, 1982, Liang, et al. 2004]. Normally, those parameters are selected in an intuitive 

way and/or using machining handbooks leading to programming cutting parameters under 

safety upper limits in order to prevent vibrations and process malfunctions. In this sense, 

automation techniques are being introduced in manufacturing environments to computerize and 
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achieve more accurate solutions due to increase competitive markets. As a first solution 

adaptive controllers substituted fixed gain controllers in order to behave better under sensible 

changes in the depth of cut [Koren, 1989]. One step ahead is the adaptive optimization of the 

cutting parameters using intelligent techniques. Those techniques present multi-function 

optimization through, for example, neural networks, genetic algorithms and other bio-inspired 

techniques [Surech, et al. 2003, Cus & Balic,2003, Zuperl & Cus 2003, Abellan et al. 2008, 

Wong and Hamouda 2003b, Zuperl, et al. 2005]. Nevertheless, those methodologies provide 

intrinsic mathematical non-linear functions, which learn in hidden “black boxes” from a series 

of examples, given useful solutions but reducing the transparency of the interfaces.   

Furthermore, expert systems have also been developed to cope with this problem. In 

manufacturing processes, expert systems propose two steps. First, a knowledge base about the 

system is addressed, and then, some pseudo-heuristic rules are used, extracted from knowledge 

or experience in order to infer a solution, often using Fuzzy Logic (FL) or reasoning. Some 

versatile approaches in the literature are, for example; Wong and Hamouda, (2003a), where an 

online knowledge based fuzzy expert system for machinability data selection using Fuzzy Logic 

as reasoning mechanism in capturing the knowledge of machining operators is developed. Also 

in Vidal, et al. 2005 computer aided process planning is used for choosing the manufacturing 

route in metal removal processes and their cutting parameters. On the other hand, Zhang and 

Lu, (1992) discussed an expert system for economic evaluation of machining planning operation 

through integration of the manufacturing and management systems, trying to plan technical 

issues tied to the economical ones such as amortization of the machine, taking into account 

labour, materials and working capacity.  In Morgan, et al. (2007), the milling system is fully 

diagnosed using FL, providing sources of machining problems and corrective actions.  Finally, 

in Iqbal, et al. (2007), tool life is enhanced and work-piece surface finish improved using 

experimental data and if-then rules through analysis of variance techniques and numeric 

optimization. Moreover, some theoretical and experimental work has been carried out in order 

to get optimal machining parameters subject to dimensional precision and surface quality, tool 
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life expectancy and production times  [Vivanco, et al. 2004,Chien & Chou, 2001 and references 

therein], in different machining processes and using different materials. 

The term expert system was originally used to denote systems using a significant amount of 

expert information about a particular domain in order to solve problems within that domain. 

Due to the important role of knowledge in such systems, they have also been called knowledge-

based systems. However, since the terminology has been applied to so many diverse systems, it 

has essentially evolved into two different uses of the term. First, the term is often used to 

describe any system constructed with special kinds of “expert-systems” programming languages 

and tools, including production systems, rule-based systems, frame-based systems, 

“blackboard” architectures, and programming languages such as LISP or Prolog. Nevertheless, 

another important feature is that, since expert systems are usually non-deterministic, a large 

number of modules may be candidates for activation at any given moment. Thus, a criterion is 

needed to determine how to select which of the applicable modules must be executed next, and 

what to do after selection. This second type is the more appropriate job of an expert system in 

the sense that it is a system that “reasons” about the problem in much the same way as humans 

do.  

Despite the fashion of using bio-inspired optimization methods, this work proposes classical 

optimization methods which allow assembling self-learning and self-adaptive algorithms in a 

modular way to search for different Pareto optimal solutions. For this purpose, it is used the 

calculus of optimal working points associated with methods to calculate the stability of the dealt 

system. Then, the proposed expert rule-based system deals with stability issues and more in-

depth analysis can be added.  Furthermore, this paper makes an attempt to manage the milling 

system through reasoning of the possible states in spite of using blackboard architectures.  

In this paper, the milling system is described from the point of view of an expert system, but not 

in the traditional sense where knowledge is extracted from expert engineers’ and/or operators’ 

experience. Instead, the dynamic behaviour of the system obtained from theoretical models is 

used to develop the expert system. Those models of the cutting process consist of the relative 
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compliance between the tool and the work-piece, given by the modal parameters of the used 

tool. The advantage of this methodology is that the use of mathematical models gives universal 

solutions in contrast to linguistic solutions which give particular solutions. Moreover, the 

proposed expert system can be supplemented by semantic-based solutions added in parallel to 

the modelled expert system, giving the potential to act with the best qualities of each. While this 

dual method is attractive, care has to be taken of the increase in complexity and cost to develop 

models of the system and parameterize their constants. This is mitigated in the case of milling 

since it is a well-known study in literature [Budak & Altintas, 1998, Balanchandran, 2001] and 

it is possible to take advantage of this extensive literature.   

The paper is scheduled as follows. A brief introduction of the dynamic delay differential 

equation which governs milling systems is initially given. The transfer function which relates 

forces and programmed feed rates is then explained. This is followed by the development of 

seven modules which are composed by rules. The first module gives advice about robustness of 

the system and allowable input cutting parameters; the second one introduces model reference 

adaptive control of milling forces; the third covers constraints of the spindle and feed drives 

capabilities; the fourth suggest initial cutting parameters; the fifth model is composed of a novel 

cost function which measures the performance of the system giving Pareto optimal cutting 

parameters depending on the milling process to carry out and, the possibility to program 

different cutting parameters corresponding to different Pareto optimal fronts automatically 

through the modification of the weighting factors of the cost function; module 6 gives automatic 

feedback to the system due to non-modelled facts; finally module 7 provides the possibility to 

interact with expert engineers or operators to input to the system their experience and 

knowledge. Results clarify the developed work and conclusions and discussion will end the 

paper.   
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2. System description 

Milling processes are well characterized as mechanical systems which are particularly 

sensibility to acquiring vibrations. In this section, the milling process is modelled as a second 

order differential equation, which is excited by forces whose inherent terms excite the modal 

parameters of the system. This fact results in the conversion of resultant energy into vibrations 

of the system. Those vibrations are generated under certain cutting conditions depending on the 

process being carried out, clamping of the workpiece, tool and workpiece materials, etc. [Budak 

& Altintas,1998, Landers & Ulsoy, 1993].   

In this frame of mind, the standard milling system responds to a second order differential 

equation excited by the cutting forces,  ( ) ,[ Budak & Altintas,1998, Landers & Ulsoy, 1993], 

   ̈( )     ̇( )     ( )   ( )       (1) 

where  ( )  { ( )  ( )}   are the relative displacements between the tool and the workpiece 

in the X-Y plane,  ( )  {  ( )   ( )}
 
, and     and   are the modal mass, damping and 

stiffness matrices, all of them represented in two dimensions. The milling cutting force is 

represented by a tangential force proportional with the instantaneous chip thickness, and a radial 

force which is expressed in terms of the tangential force [Budak & Altintas, 1998, 

Balanchandran, 2001] 

  ( )           ( ) and   ( )       ( )                  (2) 

where    and   , the tangential and radial specific cutting constants which are dependent on the 

tool material for any geometry,    , the axial depth of cut and,   ( ) , the chip thickness, 

obtaining the cutting forces in Cartesian coordinates [Balanchandran, 2001]. The most critical 

variable in the equation of motion, the chip thickness,   ( ), consists of a static part and a 

dynamic one. The static’s is proportional to the feed rate and it is attributed to the rigid body 

motion of the cutter. The dynamic one models two subsequent passes of the tool through the 

same part of the work-piece. The phase shift between two consecutive passes of one tooth on 
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the working-piece can be seen in figure 1. It is widely modelled as [Budak & Altintas, 1998, 

Balanchandran, 2001], 

  ( )           [ (   )   ( )]        [ (   )   ( )]         (3) 

where    is the feed rate,   the immersion angle and   is a delayed term defined as   
  

    
,     

is the number of teeth and    the spindle speed in    . 

The equations of motion (1, 2 and 3) correspond with a second order delay differential equation. 

It can be solved numerically [Budak & Altintas, 1998, Insperger & Stepan, 2002] or analytically 

[Stepan, 1989].  
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Figure 1: Cross-sectional view of a milling tool [Altintas, 2000]. 

On the other hand, the transfer function of the system, in chatter and resonant free zones, can be 

separated as a series decomposition of the transfer function which relates the resultant force and 

the actual feed delivered by the drive motor, which models the deflection of the tool, and the 

transfer function which represents the Computerized Numerical Control (CNC). Then,  a 

continuous transfer function which relates both signals, measured resultant force and the actual 

feed delivered by the drive motor can be showed as a first order dynamic [Altintas, 2000],  

  ( )  
  ( )

  ( )
 

      (          )

    

 

     
        (4) 
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where   (    ⁄ ) is the resultant cutting pressure constant,    (  ) is the axial depth of cut, 

 (          )is a non-dimensional immersion function, which is dependent on the immersion 

angle and the number of teeth in cut,    is the number of teeth in the milling cutter,   (    ⁄ ) 

the spindle speed and     
    

⁄ . At the same time, the relationship between the machine tool 

control, the CNC and, the motor drive system can be approximated as a first order system 

within the range of working frequencies [Altintas, 2000]. This transfer function relates the 

actual,   , and the command,    , feed velocities,  

  ( )  
  ( )

  ( )
 

 

     
         (5) 

where    represents an average time constant. 

The combined transfer function of the system is given by [Altintas, 2000], 

  ( )  
  ( )

  ( )
 

  

(     )(    )
 (6 )with   (    

  ⁄ )  
        

     
⁄ . 

3. Knowledge base identification 

 

Milling processes basically consist of three possible phases: roughing, medium and finishing the 

surface [Juneja, et al. 2003]. The selection of optimal cutting parameters, for each phase, plays 

an important role in manufacturing. In roughing phases, large amounts of material are removed 

with the emphasis on speed, but the tendency of the system to propagate and amplify vibrations 

limits the process. In medium phases, a trade-off between removal rate and form generation of 

the workpiece is balanced. Finally, finishing cuts demand more accurate control programs, 

adequate cutting conditions and selection of the milling process to achieve accurate products.  

Further to the above constraints of the system, the life of the tool can represent an important 

performance index to take into account when selecting cutting conditions.  One reason is that an 

increase in the cost of tooling will decrease the benefits of rapid production. Another reason is 

that wear changes the geometry of the tool, which can either lead to degradation in cutting 

accuracy and speed or more frequent tool changes which increases production time [Kalpakjian 

& Schimidt, 2000]. 
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Of significant and increasing importance for many components is the surface finish. Roughness 

is one measure of the texture of the surface and is another indicator of quality of the final 

product [Baek, et al. 1997] that is affected by both tool wear and vibrations. The main source of 

vibrations in milling arises from the regenerative effect [Altintas, 2000, Balanchandran, 2001] 

known as chatter vibrations which are typically modelled by the equations (1), (2) and (3). They 

can be solved in the time domain and frequency domain. Frequency domain outputs the well-

known stability charts, which gives stability frontiers in the cutting space parameter [Altintas, 

2000, Balchandran, 2001]. Other sources of vibrations are couple-mode [Tlusty and 

Koenigsberger, 1970] and forced vibrations [Sutherland & Andrew, 1968].  

Furthermore, controlling the forces is required in mechanical systems in order to govern the 

system under variation in system parameters. Keeping the forces under a prescribed safe upper 

limit prevents the system from having deflections on the tool and avoids tool damage and 

breakage [Altintas, 1992]. Conversely, the bigger the permitted force is, the more material can 

be removed in a single pass. From this we can see that there is a trade-off between deflection of 

the tool and material remove rate when programming the reference forces [Zuperl. et al, 2005, 

Rubio, et al. 2007a and 2007b, Altintas, 2000].   

Finally, since milling processes can be defined as the relative movement between feeding a 

workpiece while rotating a multi-tooth tool, the feed and spindle servo-drives restrictions are 

considered in order to give more robustness and efficiency to the system. 

Then, the knowledge base presented in this section is transcribed as a series of rules which 

operates in an open and modular way. In this way, the expert system can be applied in modules 

adapting it to every machine and conditions.  

 3.1 Module I: Stability robustness and allowable input space parameter   

 

In this section, some robustness considerations are discussed, after which, the allowable input 

space parameter is declared. For this purpose, the following algorithmic methodologies are 

taken into consideration and programmed in the expert system: 
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Rule 1: Stability robustness.  

This rule deals with the regions (axial depth of cut and spindle speed pairs) where there exist 

uncertainty in the stability due to the model of chatter vibrations.   

Rule 1.1: Stability region inexactitude 

The stability lobes are calculated from a linear approximation [Budak & Altintas, 1998, 

Altintas, 2000], so that the nominal stability frontier and its neighbourhood are inaccurate as 

stable regions of the real nonlinear problem. For this reason and in order to calculate secure 

stability lobes, an accurate stability margin is prescribed. The Laplace transform imaginary axis 

is translated a   value to the left part, allowing minimization of the approximations when 

stability charts are calculated in the frequency domain using equations (1)-(3); it is supposed 

that the chatter vibrations happen at       (   ) instead of at      when the stability 

border line is calculated.  

By examining the influence of   in the stability lobes (figure 2), it is concluded that large   

values are necessary in order to get appreciable stability margins in lobes.  

 

Figure 2: Influence of   in stability lobes. 

Rule 1.2: Influence of the axial depth of cut in robustness 

The expression of the value of the axial depth of cut which limits stable and unstable zones is 

multiplied by a factor, ,       , aimed at improving the robustness of the system  when 
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lobes charts are calculated using equations (1)-(3). Then, a refinement on this parameter, 

                  , allows better control capacity in the spindle speed, but limits the amount 

of material to be removed. From figures 2 and 3, it can be concluded that    has more influence 

in stability charts than  , in absolute terms.  

Figure 3: Influence of   in stability charts. 

Rule 2: Allowable cutting space parameter. 

Better knowledge about feasible cutting input space parameters allows programming more 

successful cutting conditions. This rule gives the steps followed in this paper to calculate the 

allowable cutting space parameter. Rule 2 has been split into two rules:  

Rule 2.1: Border line data extraction 

This first sub-rule calculates the value of the pair, axial depth of cut and spindle speed, which 

compose the border line between stable and unstable zones, equations (1)-(3), satisfying rule 1. 

The purpose of this rule is to identify the border line between stable and unstable cutting 

parameters. 

Rule 2.2: Broad input cutting parameter space  

Since it is a requirement to work in a stable and robust region where the system will not be 
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cut and spindle speed which are in the stable region of the lobes satisfying rule 1. Then, the 

pairs which are below the border line according to rule 1 are calculated. 

 3.2 Module II: Model reference adaptive control of milling forces  

 

A model reference adaptive control scheme is proposed to control the forces of the system and 

considerations of the sampling time are added. 

Rule 3: Considerations about controlling the forces 

The control of forces in milling machines occupies an extensive amount of literature [Altintas, 

2000, Lauderbaugh & Ulsoy, 1998A and 1998B, Peng, 2004, Rubio et al. 2007a and 2007b]. 

The reasons for this are that keeping forces below prescribed safety upper bounds avoids 

spindle, tool and/or work-piece deflections which deteriorate resultant geometric accuracy and, 

can cause the breakage of the tool or damage machine components [Altintas, 

1992,Campomanes & Altintas, 2003]. Then, the upper limit of the total cutting force,   , that 

results from machining operation must not exceed the allowed cutting force,   , that the tool can 

resist. 

In this paper, an adaptive control is proposed to program the feed rate according to the transfer 

function of equation (6). The use of adaptive controllers is due to the variation of cutting and 

intrinsic parameters and, possible external perturbations in the system during machining.   

Since the transfer function of the system is continuous and machine process is controlled at each 

spindle speed period, the zero order hold (   ) equivalent of   ( ) is considered, using a 

recursive least square estimator to update the estimation parameter vector [Rubio et al. 2007a 

and 2007b].  

Rule 4: Sampling time selection and computer resources maximization 

The selection of the sampling time is typically selected as       
  

⁄  ,    in     . Since this 

rule is intended to give a compromise between reconstructing clear digital output signals and 
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optimizing computer resources during steady state operation, the following algorithmic 

methodology is proposed: 

If         and    remain constant        
  

⁄  where      predefined by the designer, else 

   . 

 3.3 Module III: Drives constraints 

 

Milling, basically, consists of feeding a workpiece relative to a rotating multi-tooth tool. 

Therefore, there are two main types of drives, namely, the spindle motor and feed drives. 

Rule 5: Spindle power consumption 

Power draw from spindle motor and the efficiency of the motor are machine tool specific values 

where the net power can be calculated to ensure that the machine in question can cope with the 

cutter mass and operation. Therefore, the power drawn from the spindle motor constrains the 

machining efficiency [Maeda, et al. 2005]. The cutting power is found from equation 7 

[Altintas, 2000, Maeda, et al. 2005] as, 

          ∑    (  )
  
           (7) 

where  is the tool diameter,    the spindle speed and    the tangential cutting force. The cutting 

power       required for the spindle motor is the maximum value among the instantaneous 

power    in one tooth period,            (  ) (8) [Altintas, 2000, Maeda, et al. 2005]. 

Rule 6: Feed drive restrictions 

Feed drive motor must have enough torque to accelerate the table and workpiece and to cover 

frictions and forces acting in the feeding directions of the table. For simplicity, in this case it 

will suppose that feed drives are limited by its upper maximum feed, given by feed drive system 

or force upper. In this case it is represented by      which can be affected by, for example, the 

weight and size of the workpiece, depending upon machine configuration.  
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 3.4 Module IV: Initial cutting parameter selection 

 

This module gives assistance in the selection of the initial cutting parameters which can 

potentially lead to saving machining times. 

Rule 7: Initial cutting parameter space selection  

This rule provides guidance to propose initial cutting parameters: 

Rule 7.1: Initial cutting parameters subjected to constraints 

The admissible input parameter-space subject to cutting force control and spindle motor power 

availability and feed drive constraints is obtained. The initial cutting parameter space is given 

by the triple- (         ) so as fulfill rule 1,                  , where            is the power 

available in the spindle motor and          where      is given by feed drive system or 

force restrictions. 

Rule 7.2: Selection of initial spindle speed 

Spindle speeds associated with the modal frequencies are selected as initial candidate working 

points. Those spindle speeds are associated with the areas in the stability lobes where deeper 

axial depth of cuts can be programmed.  

4. Module V: Cost function definition and rules to inference with it 

This section defines a classical cost function to Pareto optimise multi-purpose objectives.  

4.1 Cost function definition 

 

A novel cost function has been conceived to allow an inference engine to carry out the selection 

of suitable cutting parameters. The tool cost model for a single milling process can be calculated 

using the following equation, (9): 

 (                    (        ))
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The cost function has four terms. Each term is composed of a weighting factor (  ), a 

normalisation factor (   ) and the function which delimits the process efficiency. These 

functions are: the life of the tool,    ; the material remove rate,    ; the surface finish, 

    ; and the robustness of the system ,    . The tool cost function is designed to be directly 

proportional to the life of the tool, material remove rate and robustness of the system and 

inversely proportional to surface roughness. So, optimal solutions will maximise    ,     

and     while minimising     . These parameters play an important role when selecting 

cutting parameters since they are usually used as benchmark indices in industries to measure the 

performance of the system. They are defined as following: 

4.1.1 Life of the tool (TOL) 

 

    is a measure of the length of time a cutting tool will cut effectively. According to some 

studies [Wong & Hamouda, 2003 ,Ginta, et al. 2009, Alauddin, et al. 1997], an increase in the 

cutting speed, feed rate and axial depth of cut will decrease the tool life. In this paper, the 

Taylor Equation for Tool Life Expectancy, a model typically used in literature, is used to 

evaluate     in the expert system. This model is represented by the equation [Wong & 

Hamouda, 2003, Ginta, et al. 2009]: 

                 
      

           (10) 

where      is a model constant,       and   , are model parameters and       and   , the 

cutting speed (    ⁄ ), axial depth of cut (  ) and feed per tooth (       ⁄ ) . 

4.1.2 Material or metal remove rate (MRR) 

 

The     measures the amount of material removed from the workpiece. Its definition  is,  

              ,          (11)  

where     is the axial depth of cut (  ),     the radial depth of cut (  )and   the feed 

velocity (    ). 
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4.1.3 Surface roughness (SURF) 

 

The variations of the surface roughness are widely used criteria for the assessment of the surface 

quality. Some research works use the empirical relationship of the equation (12), [Wong & 

Hamouda, 2003, Kalpakjian, 2000]. This approach is adopted in this paper: 

                 
      

           (12) 

where      and      are the cutting velocity (     ), the feed velocity (    ) and axial 

depth of cut (  ) , and       is a model constant and,       and     surface roughness model 

parameters.   

4.1.4 Robustness of the system (ROS) 

 

The robustness of the system is a non-conventional measure to evaluate how close cutting 

parameters are to the border line in the stability lobe diagrams. For this purpose, a non-

dimensional parameter is defined by: 

        (    {(       )
  (      )

 
})         (13) 

where         is the length of the axial depth of cut to the lobe and        is the length of the 

spindle speed to the lobe, considering them to be non-dimensional.  

Finally, the weighting factors,              have the restriction that the sum of the parameters 

is the unity, i.e. ∑      
   . Their declaration depends on process constraints. Normalization 

factors,               , equalize the magnitude order of each term in the cost function. They 

are defined as: 

    
       

         
            (14) 

where   , represents each term of the cost function of the equation (9), which eventually, can be 

represented as 

   ∑        
 
                                                                                                                  (15) 
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4.2 Rules of inference with the cost function 

 

The following rules are proposed in order to modulate the cost function: 

Rule 8: Initial weighting factors selection.  

The weighting factors can be selected by an expert engineer or operator who can judge the 

importance of each term in the cost function with respect to the phase of the operation to be 

carried out. The initial weighting factors are selected in a heuristic way and only experience and 

expertise in their programming will make the expert system more efficient.  

Rule 9: Declaration of normalized factors 

In the definition of the normalization factors,     
       

         
, the pairs (         ) are 

computed as the maximum and minimum values of each term in the cost function, being   the 

number of potential terms in the cost function.  

Rule 10: Pareto optimal cutting parameter selection 

The Pareto optimal concept is introduced here in order to clarify the selection of weighting 

factors. This concept requires optimisation of different control objectives, known as multi-

objective optimization, and in general there is no single optimal solution, instead a set of 

possible solutions exits called a Pareto optimal front [Su and Hou, 2008, Zhang et al. 2011]. 

Which solution is chosen from the front depends on the weights that are given to the different 

objectives.   

Rule 10.1: Coarse selection 

The selected cutting parameters will be the values of        and    corresponding to the 

minimum value of the cost function according to selected values of the   parameters. It can be 

expressed mathematically as follows, 

   (  
     

    
 )            { (   (  )    (  )     (  )    (  )       )}, (16) 

obtaining the 3-tuple of candidate input cutting parameter, (  
     

    
 ).  
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Rule 10.2: Fine selection 

In order to have a more accurate solution, the cutting parameters are searched with a finer 

integration step around the point where the cost function gives its minimum value. In this case, 

the cutting parameter space is given by a 3-tuple    (  
 ( )

    
 ( )

   
 ( )

)
 
around   , for   

      , where   is the number of points to be considered, according to rules 1 and 2. The 

procedure for obtaining the required cutting parameters is the same as used in Rule 12.1 through 

equation (16) for the above defined new cutting parameters. Mathematically, it is expressed as,  

            ( ){ (   (  ( ))    (  ( ))     (  ( ))    (  ( ))       )}          (17) 

obtaining the 3-tuple of refined candidate input cutting parameter, (  
      

     
  ).  

Rule 11: Automatic modification of weighting factors  

In order to achieve certain process or machine tool requirements in the cost function variables, 

the    parameters are automatically redefined as in equation (15):  ∑        
 
       , which 

represents the proposed cost function of the equation (9). Then, for a given operation, 

 if    ̇      ,      and                      then if  ∑    ∑   
   
  (   )

   
  (   ) , 

  ← (    
  ̅   

  ̅
)   , else if ∑    ∑   

   
  (   )

   
  (   ) ,   ← (    

  ̅   

  ̅
)     end.  

Rule 12: Automatic modification of weighting factors through the gradient ascent method 

The steepest ascendant method is based on the estimation of a parameter vector in order to 

maximize a cost function [Passino, 2004]. Here, it is applied as, from equation (9),  

∑        
 
       , then               

  

   
]     ( ), until |

  

   
]     ( )|   ,    . 

Rule 13: Re-normalisation of the weighting factors. 

After using rules 13 and 14, the weighting factors need to be normalized again to fulfil the 

constraint ∑      
   . Then, two possibilities are considered:

 

1.     ← ∑    
 
      ←

  
 ̅⁄ ⇒ ∑      . 
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2.       ←    and       ←     for             and       . 

Rule 14: Re-parameterization of the    parameters 

The    parameters and the corresponding cost function variables are saved and stored. Then, a 

database is created with those values, which relates    parameters to process variables in order 

to retain previous knowledge. In this way, the system can incorporate non responsive data 

mining algorithms, semantic rules or fuzzy rule based system to improve performance. 

Moreover, the system is open to the heuristic interaction with operators and expert engineers. 

This information can be further used for programming initial    parameters according to 

production requirements, training novel operators and searching for more accurate cutting 

parameters. 

5. Feedback to the expert system 

 5.1    Module VI: Automatic feedback and monitoring 

 

Due to non-modelled facts such as tool wear or run-out the predicted models cannot give 

accurate predictions about chatter vibrations when the tool is, for example, worn or run out. To 

consider this fact an automatic chatter detection and suppression system has been incorporated 

to the system.   

Rule 15: Automatic chatter vibration detection  

Despite having taken into account robustness margins against unstable situations against chatter, 

tool wear and/or other non-linear phenomena in the process can lead to vibrations. To 

accommodate this eventuality, a chatter detection algorithm has been integrated to the system in 

order to take action if chatter conditions are experienced due to unexpected conditions. Some 

approaches for on-line detection of chatter can be found in [Soliman & Ismail, 1997, Li et al., 

1997 and Gradisek, et al. 1998]. In our case, the following algorithmic methodology has been 

taken into consideration [Campomanes & Altintas, 2003]: 

If   
      

      
       (8), then there exists chatter vibration. 
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Where        is the maximum uncut chip thickness during a dynamic time domain simulation 

and max,sh  is the maximum uncut chip thickness during a time domain simulation in which the 

work-piece and cutter remain rigid. The threshold of instability is selected to be 1.25 as in 

Campomanes & Altintas, (2003). 

Rule 16: Automatic chatter vibration suppression 

In the case where chatter is detected, an automatic algorithm to suppress chatter has been 

embedded into the system. Since regenerative chatter is related to the interaction of the closed 

loop between two independent entities, the structural dynamics of the machine and the 

dynamics of the process, it is necessary to influence one of them to achieve a more stable and 

robust system. The most promising among the methods of influencing the cutting process is to 

control the spindle speed on-line, which means influencing the dynamics of the process. This 

can be achieved in two ways, by selecting the spindle speed or modulating it. In the expert 

system a spindle speed is selected automatically as Smith and Tlusty (1992) proposed. Then, in 

the case where chatter vibration is detected, an automatic variation of the spindle speed to deal 

with chatter problem is suggested. The strategy consist of detecting the chatter frequency and 

readjusting spindle speed in such a way that the new tooth passing frequency equals a multiple 

value of the chatter frequency.  

 5.2 Module VII: Expert Human Machine Interface 

 

Since expert systems normally codify expert engineers and/or operators experience and 

knowledge in order to create decision support systems (DSS), this last module incorporates the 

possibility of adding to the system this experience and knowledge in order to achieve the best of 

two possibilities. Moreover, monitoring vibrations and other parameters such as system forces, 

feeds, MRR, TOL and SURF is suggested to support the interaction between expert engineers, 

operators and the system. In this way, this interaction will be more reliable.  
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Rule 17: Monitoring signals 

In order to facilitate the human machine interface, it is proposed to monitoring the most 

important signals to provide better information to the expert system. For example, there are 

some sources of vibrations which can appear when machining. For example, forced vibrations, 

mode coupled, vibrations due to run-out, and so on [Wiercigroch and Budak, 2001]. For this 

reason, it is necessary to monitory the frequencies which appear in the system in order to 

identify them, and have the chance to deal with them. In this case, straightforward Fourier 

Frequency Transform (FFT) is presented for this purpose. Also, the most signal it is possible to 

monitor in the system the better performance will be achieved, then the above proposed signals 

are taken into account in this section in order to have better interaction with Rule 18 proposal. 

Rule 18: Expert Human Machine Interface 

This last rule incorporates the possibility of introducing expert engineers’ and/or operators’ 

experience and knowledge in form of, for instance, if/then rules in order to create decision 

support systems using data mining techniques for knowledge discover and reasoning techniques 

for supporting the system with possible decisions and advises [Gilbert et al. 2010, Luau et al. 

2012, Alonso et al. 2012]. Figure 4 pictures the schematic representation of the DSS.  
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O       M
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Expert engineers 
and operators

 

Figure 4: Suggested scheme of the DSS for dealing with expert engineers and operators experience and knowledge  
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In figure 4, it can be seen that experience can become knowledge through a self-learning system 

composed by data mining techniques. Also, knowledge can be introduced directly by expert 

engineers and operators. A decision system is extracted from knowledge through a self-adaptive 

system using reasoning techniques. The so-called “self-learning” and “self-adaptive” system is 

suggested to do it automatically. This rule can be added to the whole system or to each module 

independently.  
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Figure 5: Schematic Representation of the Expert System. 

Finally, figure 5 depicts a schematic representation of the expert system composed of five main 

blocks. The first one gives the inputs to the expert system, representing the milling process 

determination, modal characteristics, tool diameter and number of teeth and tool and workpiece 

material properties and, the transfer function which relates output force and programmed feed 

rates and process restrictions. The second block represents the knowledge base of the system 

and is composed for the first four modules, all of them related to the milling process. The third 

block describes the inference of the system with the cost function and concentrates on the 

modulation of it with some expert rules. This block, it also re-parameterises those parameters 

according to knowledge base insights. The fourth block shows the outputs. It, also, reflects the 

feedback to the system, in case of not achieving adequate objectives or of changing system 

requirements. Finally, the fifth block of the figure 5 represents the modules VI and VII. The 
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feedback module detects and suppresses chatter on-line in the case where non-modelled facets 

appears in in the milling process due, for instance, to tool wear. The expert interaction module 

provides the facility to interact automatically with experience and knowledge obtained from 

expert engineers and operators.  

The proposed rules are summarized in table 1. 

Rule Knowledge base 

1. Since stability lobes are calculated from a linear approximation a stability region inexactitude is added. 

Also, a robustness factor which influences the axial depth of cut is taken into account. 

2. Cutting space parameters extracted from lobes and restrictions in spindle power availability and cutting 

force controllers. 

3. Considerations about controlling the forces; using model reference adaptive control for keeping forces under 

prescribed upper limit. 

4. Sampling period considerations to maximize computer resources. 

5. Spindle power consumption restrictions. 

6. Feed drive limitations 

7. Giving appropriate the initial cutting space parameter to decrease searching time. 

Rules to inference with the cost function  

8. Initial weighting factors selection; the selection of right initial weighting factors plays an important role in 

achieving good solutions in short time. 

9. Declaration of standardizing factors. 

10. Selection of cutting parameters criterion; coarse and fine criterion. 

11. Automatic rule of weighting factors modification. 

12. Automatic weighting factors modification through gradient descendent method. An alternative way to 

modify automatically the weighting factors is proposed. 

13. Renormalization of the weighting factors if they are re-programmed automatically through rules 11 and 12 

14. Re-parameterization of weighting factors. 
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 Feedback and expert HMI rules 

15. Chatter vibration detection algorithm is added to be more reliable. 

16. Chatter suppression algorithm to lead the system to stable and reliable cutting conditions. 

17. Monitoring signals  

18.  Interaction with expert engineers and operators 

Table 1: Schematic representation of the expert rules 

6.  Case study 

For the validation of this method, an end mill has been chosen with the modal characteristics in 

the X and Y directions corresponding to table 2, with three tooth and 30 millimeter diameter. 

The work-piece is a rigid aluminium block whose specific cutting energy is          

    
 and the proportionally factor is taken to be        .  

   (   
 ⁄ )  ( ) k(      ) 

X 603 3.9 5.59 

Y 666 3.5 5.715 

Table 2 Tool modal parameters. 

Other parameters belonging to the expert system are shown in table 3. They are the stability 

margin factor,  , and the stability margin factor for the axial depth of cut,  .  

Stability margin 

factors 

Life of the tool model parameters Surface roughness model parameters 

Table 3: Cost function model parameters. 

                                  

0.05 0.95 1677110 -3.02 -0.54 -1.14 6088 0.4638 1.129 0.4461 
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Moreover, the parameters of the tool-life model (              ) and the parameters 

corresponding to the surface roughness model (              ), which have been considered 

constants in the simulations for simplicity purposes, are listed in table 3.  

Regarding to the model reference adaptive control, the transfer function of the equation (6); the 

cutting pressure of the transfer function has been selected to be constant and equal to 

     
   ⁄  in all range of cutting parameters, the CNC time constant,           and, 

    
    

⁄ . The continuous model reference system of the adaptive control is chosen to be a 

typical continuous second order plant with        and    
   

  
, where   is the sampling 

period. In this work, it is desirable for the reference force to be maintained at 600 N.  

The analytical tests for cutting parameter selection were conducted within a known range of 

spindle speeds, starting at the spindle speed corresponding to its natural frequency and its sub-

multiples. The integration in the axial depths of cuts is designed to start at its minimum value in 

the stability border line divided by a natural number designed by the engineer, with increments 

of the same size. The spindle motor is supposed to guarantee 2745.3 Watts of power at 

maximum value and, the feed motor is able to produce 25   
 ⁄  of feed velocity. The resulting 

cutting parameters are those which lead to a Pareto optimal value of the cost function depending 

on the chosen weighting factors.  

The conducted milling process is a full immersion face up-milling operation. Table 4 and figure 

6 gather the scenarios which are specified in the current example: 

1. The first point, (specified as point 1 in the table 4 and in figure 6), is associated with 

programming of initial    parameters. In this case, the initial cutting parameters are 

programmed, intuitively, to preserve the tool, ensuring enough stability margin and 

minimizing the surface roughness, while the     will not be important at first sight. 

Then, the following weighting factors are programmed                      and 

      .  They are equivalent to programming the following cutting parameters, 

   (                           )   The associated values of the material 
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removal rate, life of the tool, robustness of the system and surface roughness which are 

achieved working under those cutting parameters are           
   

 
     

                   and              . And, the values which measure the 

chatter instability and the spindle power consumption are                      .  

Finer selection of cutting parameters can be achieved through rule 10.2. In this case, 

this rule leads to program the following cutting parameters, 

    (                           ). This second Pareto optimal solution 

improves every factor of the cost function except the robustness of the system, as it can 

be seen comparing previous them with values showed in table 4. 

   (   )    (  )   (
  

 ⁄ )    (  
 

 ⁄ )    (   )     (  )         ( ) 

1. 1800 0.3693 4.24 0.0470 45.83 0.8810 1.18 1.0355 1696.5 

2. 2412 0.3609 5.58 0.0604 19.6340 0.9753 1.26 1.0224 2273.3 

3. 2010 1.5124 17.96 0.8149 3.2051 8.2557 0.0022 1.1157 1894.4 

                             ,       . 

                               ,        . 

                              ,       . 

Table 4: Weighting factors and their associated cutting parameters and cost function values. 

2. Secondly (specified as point 2. in the table 4 and in figure 6), a situation is assumed in 

which it is required to increase the productivity. In this case, the     can be delimited 

between two values bigger than the current (point 1.) MRR, for example,     
   

 
 

        
   

 
. Using rule 12, this situation leads to program the following cutting 

parameters    (                           ), which gives the performance 

indexes           
   

 
                          and      

        . This working point can be summarized in programming the following 

weighting factors                       and        , using rule 13.b. In this 
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case, the values which measure the chatter instability and the spindle power 

consumption are                      .  

3. The third situation (point 3. in the table 4 and in figure 6) that has been taken into 

consideration for increasing the removed material from the workpiece is tuning the   -

values manually, by engineer or operator experience, or, automatically, through rules 11 

and 12. For example, the following values could be programmed           

           and       , which boost the increased of    ,  leads to the following 

cutting parameters:    (                      )and the following cost function 

variables values           
   

 
                         and    

       .  

Table 4 gathers the three described cases. It shows the programmed cutting parameters, the 

values of the variables of the cost function in that working point, the values which measure the 

chatter instability and the spindle power consumption and their corresponding weighting factors 

at those working points.  

Figure 6 pictures the represented cutting parameters in table 3 on the stability charts, pairs 

spindle speed and axial depth of cut for the cases 1, 2 and 3, and the programmed feed velocity 

for the three cases, represented by changes in the feed velocity. It can be observed that the 

control signal (feed velocity) is smooth and feasible except in the transient response and when 

cutting parameters change and the pairs of spindle speed and axial depth of cuts are both under 

the border line in the stable zone.  The control signal has a peak at the transitory due to selection 

of initial conditions which are not close to the real values. It also experiments not smooth 

transition when changed from working point 2 to 3.  The frequency response of the points 1 and 

3 gives the tooth pass frequency and its harmonics in each case, as with case 2 which has not 

been considered in the graphs.  

The expert system is able to move around the cutting parameter space subjected to different 

production ‘states’ or requirements. This fact can be achieved by the programming of easy and 

intuitive    parameters which leads to giving adequate cutting parameters to the milling 
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system according to production requirements. In this way, the expert system provides an 

intuitive but intelligent planning of cutting parameters giving a fast solution if changeable 

situations happen. Finally, through rule 14, the obtained    parameters are stored subjected to 

learning and adaptive skills to help improve proven solutions. 

 

Figure 6: Programmed cutting parameters in lobes chart, programmed feed rates and frequencies. 

7. Conclusions and discussion 

The paper describes, in an intuitive way but with mathematical thoroughness, the construction 

of an expert rule based system for cutting parameter selection in the milling processes.  The 

approach consists of a series of rules split into 7 modules. Each module can interact 

independently leading to a universal system in the sense that it can be applied to every machine. 

The first module gives robustness to the system and presents the rough allowable input cutting 

parameters. The second module includes the model reference adaptive control of milling forces 

functionality, keeping the forces of the system under prescribed upper limit in spite of variations 

in system parameters. Moreover, the possibility of manipulating the sampling time of the system 
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is added to preserve computer resources if necessary. The third module covers the spindle and 

feed drive motors constraints. The fourth module gives initial computational input parameters 

subjected to constraint of the motors and suggests potential initial spindle speed candidates. The 

fifth module presents a novel multi-objective cost function to evaluate the performance of the 

system. It has been devised from first principles and depends on the material to be removed, 

tool life, surface roughness and a stability margin. Weighting factors give the importance of the 

each term in the cost function. Each term is then modulated by a weighting factor, where the 

most important term is associated with the largest weighting factor to obtain Pareto optimal 

cutting parameters. Other Pareto optimal fronts can be obtained by two methods. First, by 

refining the searching cutting parameters around the selected one and, secondly, by modulating 

the weighting factors automatically if new production requirements are required or by 

interacting with system engineers or operators in order to take advantage of their experience. 

This information is stored in a database in order to register and modify previous data. Module 6 

gives automatic feedback to the system if chatter vibrations are experienced due to non-modeled 

nonlinear effects such as wear or run out of the tool. Finally, module 7 proposes to monitor key 

parameters to better inter-actuation with expert engineers and operators and a scheme to infer 

with them providing in this way the best qualities of traditional expert systems and model based 

expert systems. Nevertheless, since the presented expert system is based on mathematical 

models of the system, its outputs selection is dominated by the modal parameters of the tool, 

tool and workpiece material properties, the linear transfer function which gives the relationship 

between the resultant force and the feed velocity, stability robustness constants, the 

determination of the process and the process restrictions.  

The developed expert rule based system suggests an open and modular architecture which is 

able to automatically execute orders and reason about the milling problem in a comparable way 

to humans reasoning, giving performances of possible programmable cutting conditions through 

the cost function with the possibility of incorporating new functionalities.  Those performance 

indices are then used to select appropriate cutting parameters for the operation which leads to 
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the maximum productivity while respecting stability, spindle and feed motor consumptions and 

control constraints. Initial candidate cutting conditions are determined from the knowledge of 

the system, optimising, in this way, the process of training the system. Furthermore, the expert 

system is able to modify the values of the weighting factors automatically or interacting with 

operators with an easy interface if new constraints are required or they change, obtaining 

different Pareto optimal solutions. Finally, the system has automatic feedback if chatter 

vibrations occur due to non-modelled parameters such as wear or run out the tool. 

The developed expert rule based system uses classical mathematical approaches to calculate 

cutting conditions. In the simplest implementation the operator of the machine just has to tune 

to the system with four simple and intuitive    values in order to program cutting parameters to 

fulfill full process requirements. A simulation example which shows the behaviour of the 

system is presented. As an added benefit, the integrated database, which is provided to introduce 

experience based or knowledge based rules if necessary or, the proposed control scheme which 

is able to update with information from external sources of experience and knowledge, 

providing an open and modular architecture with learning and adaptable skills.   

Finally, the expert system scheme can be extrapolated to any kind of system, given an intuitive, 

open control architecture, where learning and adaptive resources can be added according to 

multi-objective purposes. The open and modular design of the expert system allows new 

functionalities to be incorporated as and when new research allows.  
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