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Large-scale Parallel Stratified Defeasible Reasoning
Ilias Tachmazidis1,2 and Grigoris Antoniou1,3 and Giorgos Flouris1 and Spyros Kotoulas4

and Lee McCluskey3

Abstract. We are recently experiencing an unprecedented explo-
sion of available data from the Web, sensors readings, scientific
databases, government authorities and more. Such datasets could
benefit from the introduction of rule sets encoding commonly ac-
cepted rules or facts, application- or domain-specific rules, common-
sense knowledge etc. This raises the question of whether, how, and
to what extent knowledge representation methods are capable of han-
dling huge amounts of data for these applications. In this paper, we
consider inconsistency-tolerant reasoning in the form of defeasible
logic, and analyze how parallelization, using the MapReduce frame-
work, can be used to reason with defeasible rules over huge datasets.
We extend previous work by dealing with predicates of arbitrary ar-
ity, under the assumption of stratification. Moving from unary to
multi-arity predicates is a decisive step towards practical applica-
tions, e.g. reasoning with linked open (RDF) data. Our experimental
results demonstrate that defeasible reasoning with millions of data is
performant, and has the potential to scale to billions of facts.

1 Introduction

Currently, we experience a significant growth of the amount of avail-
able data originating from sensor readings, scientific databases, gov-
ernment authorities etc. Such data are mainly published on the Web,
providing easier knowledge exchange and interlinkage [21]. This
yields the need for large and interconnected data, as shown by the
Linked Open Data initiative5 [5].

The study of knowledge representation has been mainly targeted
on complex knowledge structures and reasoning methods for pro-
cessing such structures. This raises the question whether such rea-
soning methods can be applied on huge datasets. Reasoning should
be performed using rule sets that would allow the aggregation, visu-
alization, understanding and exploitation of given datasets and their
interconnections. Specifically, one should use rules able to encode in-
ference semantics, commonsense and practical conclusions in order
to infer new and useful knowledge based on the data. This is usually
a formidable task when it comes to web-scale data: for example, as
described in [24] for 78,8 million statements crawled from the Web,
the number of inferred conclusions (RDFS closure) consists of 1,5
billion triples.

In this work, we study nonmonotonic rule sets [2], [18], which are
suitable for encoding commonsense knowledge and reasoning, and
providing supplementary advantages. Particularly, in case of poor
quality data, the use of such rule sets can prevent triviality of in-
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ference. The occurrence of low quality data is common when they
are fetched from different sources, which are not controlled by the
data engineer.

Over the last years, parallel reasoning has been studied extensively
e.g., in [20], [24], [12], [10] scaling reasoning up to 100 billion triples
[23]. It could be addressed by the use of parallel reasoning techniques
that would allow simultaneous processing over distinct chunks of
data, with each chunk being assigned to a computer in the cloud.

Parallel reasoning can be based either on rule partitioning or on
data partitioning [15]. Rule partitioning assigns the computation of
each rule to a computer in the cloud. However, balanced work dis-
tribution in this case is difficult to achieve, as the computational bur-
den per rule depends on the structure of the rule set. On the other
hand, data partitioning assigns a subset of data to each computer in
the cloud. Data partitioning is more flexible, providing more fine-
grained partitioning and allowing easier distribution among nodes in
a balanced manner.

Current approaches have focused on monotonic reasoning, such
as RDFS and OWL-horst, or have not performed scalability evalu-
ation [19]. Our paper deals with nonmonotonic approaches, and is
therefore novel. Nonomonotonic reasoning has been chosen because
it allows to overcome triviality of reasoning caused by inconsistent
or incomplete data.

In particular, we consider defeasible rules and reasoning, and ex-
amine how nonmonotonic (defeasible) reasoning over huge datasets
can be performed using massively parallel computational techniques.
We adopt the MapReduce framework [6], which is widely used for
parallel processing of huge datasets.

Previous work [22] described how defeasible logic with unary
predicates can be implemented with MapReduce. Here we extend
that work by considering predicates of arbitrary arity. From the appli-
cability perspective, this is a decisive step, as most real-world data re-
quire multi-argument predicates. In particular, it opens the possibility
of reasoning with semi-structured data, e.g. linked data expressed in
RDF, where binary predicates are needed to express properties. From
the technical perspective, reasoning with MapReduce turns out to be
far more difficult, requiring multiple passes instead of the single-pass
approach of [22]. In fact, for reasons explained later, our solution
works under the requirement that the defeasible theory is stratified.

The paper is organized as follows. Section 2 introduces briefly
MapReduce Framework and Defeasible Logic. An algorithm for
multi-argument defeasible logic is described in Section 3, while ex-
perimental results are presented in Section 4. We conclude in Section
5.



2 Preliminaries
2.1 MapReduce Framework
MapReduce is a framework for parallel processing over huge datasets
[6]. Processing is carried out in two phases, a map and a reduce
phase. For each phase, a set of user-defined map and reduce func-
tions are run in parallel. The former performs a user-defined opera-
tion over an arbitrary part of the input and partitions the data, while
the latter performs a user-defined operation on each partition.

MapReduce is designed to operate over key/value pairs. Specifi-
cally, each Map function receives a key/value pair and emits a set of
key/value pairs. All key/value pairs produced during the map phase
are grouped by their key and passed to reduce phase. During the re-
duce phase, a Reduce function is called for each unique key, pro-
cessing the corresponding set of values.

Probably the most well known MapReduce example is the word-
count example. In this example, we take as input a large number of
documents and the final result is the calculation of the number of oc-
currences of each word. The pseudo-code for the Map and Reduce
functions is depicted in Algorithm below.

map(Long key, String value):
// key: position in document (ignored)
// value: document line
for each word w in value
EmitIntermediate(w, "1");

reduce(String key, Iterator values):
// key: a word
// values : list of counts
int count = 0;
for each v in values
count += ParseInt(v);

Emit(key , count);

During map phase, each map operation gets as input a line of a
document. Map function extracts words from each line and emits
that word w occurred once (”1”). Here we do not use the position of
each line in the document, thus the key in Map is ignored. However,
a word can be found more than once in a line. In this case we emit
a <w, 1> pair for each occurrence. Consider the line ”Hello world.
Hello MapReduce.”. Instead of emitting a pair <Hello, 2>, our sim-
ple example emits <Hello, 1> twice (pairs for words world and
MapReduce are emitted as well). As mentioned above, the MapRe-
duce framework will group and sort pairs by their key. Specifically
for the word Hello, a pair <Hello, <1,1>> will be passed to the
Reduce function. The Reduce function has to sum up all occur-
rence values for each word emitting a pair containing the word and
the final number of occurrences. The final result for the word Hello
will be <Hello, 2>.

2.2 Defeasible Logic
A defeasible theory D is a triple (F,R,>) where F is a finite set of
facts (literals), R a finite set of rules, and > a superiority relation
(acyclic relation upon R).

A rule r consists (a) of its antecedent (or body) A(r) which is a
finite set of literals, (b) an arrow, and, (c) its consequent (or head)
C(r) which is a literal. There are three types of rules: strict rules,
defeasible rules and defeaters represented by a respective arrow→,
⇒ and ;. Strict rules are rules in the classical sense: whenever the

premises are indisputable (e.g., facts) then so is the conclusion. De-
feasible rules are rules that can be defeated by contrary evidence. De-
featers are rules that cannot be used to draw any conclusions; their
only use is to prevent some conclusions.

Given a set R of rules, we denote the set of all strict rules in R
by Rs, and the set of strict and defeasible rules in R by Rsd. R[q]
denotes the set of rules in R with consequent q. If q is a literal, ∼q
denotes the complementary literal (if q is a positive literal p then ∼q
is ¬p; and if q is ¬p, then ∼q is p).

A conclusion of D is a tagged literal and can have one of the fol-
lowing four forms:

• +∆q, meaning that q is definitely provable in D.
• −∆q, meaning that we have proved that q is not definitely prov-

able in D.
• +∂q, meaning that q is defeasibly provable in D.
• −∂q, meaning that we have proved that q is not defeasibly prov-

able in D.

Provability is defined below. It is based on the concept of a deriva-
tion (or proof) in D = (F, R, >). A derivation is a finite sequence
P = P(1), ..., P(n) of tagged literals satisfying the conditions shown
below. The conditions are essentially inference rules phrased as con-
ditions on proofs. P(1..ı) denotes the initial part of the sequence P
of length i. For more details on provability and an explanation of the
intuition behind the conditions below, see [17].

+∆: We may append P(ı + 1) = +∆q if either
q ∈ F or
∃r ∈ Rs[q] ∀α ∈ A(r): +∆α ∈ P(1..ı)

−∆: We may append P(ı + 1) = −∆q if
q /∈ F and
∀r ∈ Rs[q] ∃α ∈ A(r): −∆α ∈ P(1..ı)

+∂: We may append P (ı + 1) = +∂q if either
(1) +∆q ∈ P(1..ı) or
(2) (2.1) ∃r ∈ Rsd[q] ∀α ∈ A(r): +∂α ∈ P(1..ı) and

(2.2) −∆ ∼q ∈ P(1..ı) and
(2.3) ∀s ∈ R[∼q] either

(2.3.1) ∃α ∈ A(s): −∂α ∈ P(1..ı) or
(2.3.2) ∃t ∈ Rsd[q] such that
∀α ∈ A(t): +∂α ∈ P(1..ı) and t > s

−∂: We may append P(ı + 1) = −∂q if
(1) −∆q ∈ P(1..ı) and
(2) (2.1) ∀r ∈ Rsd[q] ∃α ∈ A(r): −∂α ∈ P(1..ı) or

(2.2) +∆ ∼q ∈ P(1..ı) or
(2.3) ∃s ∈ R[∼q] such that

(2.3.1) ∀α ∈ A(s): +∂α ∈ P(1..ı) and
(2.3.2) ∀t ∈ Rsd[q] either
∃α ∈ A(t): −∂α ∈ P(1..ı) or t ≯ s

3 Algorithm description
For reasons that will be explained later, defeasible reasoning over
rule sets with multi-argument predicates is based on the dependen-
cies between predicates which is encoded using the predicate de-
pendency graph. Thus, rule sets can be divided into two categories:
stratified and non-stratified. Intuitively, a stratified rule set can be
represented as a hierarchy of dependencies between predicates, while
a non-stratified not. We address the problem for stratified rule sets by
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providing a well-defined reasoning sequence, and explain at the end
of the section the challenges for non-stratified rule sets.

The dependencies between predicates can be represented using a
predicate dependency graph. For a given rule set, the predicate de-
pendency graph is a directed graph whose:

• vertices correspond to predicates. For each literal p, both p and ¬p
are represented by the positive predicate.

• edges are directed from a predicate that belongs to the body of
a rule, to a predicate that belongs to the head of the same rule.
Edges are used for all three rule types (strict rules, defeasible rules,
defeaters). For a predicate p, edges with solid lines correspond to
rules that support p while edges with dotted lines correspond to
rules that support ¬p.

The superiority relation is not part of the graph. Figure 1a depicts
a stratified rule set, while Figure 1b depicts a non-stratified rule set.

R TS U

Q V

W

(a) Stratified

X Y

Z P O

N

(b) Non-stratified

Figure 1: Predicate dependency graph

Stratified rule sets (correspondingly, non-stratified rule sets) are
rule sets whose predicate dependency graph is acyclic (correspond-
ingly, contains a cycle). Stratified theories are theories based on strat-
ified rule sets.

As an example of a stratified rule set, consider the following rule
set:

r1: R(X,Z), S(Z,Y)⇒ Q(X,Y).
r2: T(X,Z), U(Z,Y)⇒¬Q(X,Y).
r3: Q(X,Y), V(Y,Z)⇒W(X,Z).

r1 > r2.

The predicate dependency graph for the above rule set is depicted
in Figure 1a. The predicate graph can be used to determine strata
for the different predicates. In particular, predicates (nodes) with no
outgoing edges are assigned the maximum stratum, which is equal to
the maximum depth of the directed acyclic graph (i.e., the size of the
maximum path that can be defined through its edges), say k. Then,
all predicates that are connected with a predicate of stratum k are
assigned stratum k−1, and the process continues recursively until all
predicates have been assigned some stratum. Note that predicates are
reassigned to a lower stratum in case of multiple dependencies. The
dashed horizontal lines in Figure 1a are used to separate the various
strata, which, in our example, are as follows:

Stratum 2 : W
Stratum 1 : Q, V

Stratum 0 : R, S, T, U

A defeasible theory D is called decisive iff the predicate depen-
dency graph of D is acyclic.

Proposition 1. [4] If D is decisive, then for each literal p:
(a) either D ` +∆p or D ` −∆p
(b) either D ` +∂p or D ` −∂p

Taking into consideration that stratified rule sets correspond to
acyclic predicate dependency graphs, we can deduce using Propo-
sition 1 that stratified rule sets provide decisive defeasible theories.
Thus, for stratified rule sets, each literal p is:
(a) either +∆p or −∆p
(b) either +∂p or −∂p

In general, there are three possible states for each literal p:
(a) +∆p and +∂p
(b) −∆p and +∂p
(c) −∆p and −∂p

Reasoning is based on facts. According to defeasible logic algo-
rithm, facts are +∆ and every literal that is +∆, is +∂ too. Having
+∆ and +∂ in our initial knowledge base, it is convenient to store
data and perform reasoning only for +∆ and +∂ predicates.

This representation of knowledge allows us to reason and store
more efficiently provability information regarding various facts. In
particular, if a literal is not found as a +∆ (correspondingly, +∂)
then it is −∆ (correspondingly, −∂). In addition, stratified defeasi-
ble theories have the property that if we have computed all the +∆
and +∂ conclusions up to a certain stratum, and a rule whose body
contains facts of said stratum does not currently fire, then this rule
will also be inapplicable in subsequent passes; this provides a well-
defined reasoning sequence, namely considering rules from lower to
higher strata.

3.1 Reasoning overview
During reasoning we will use the representation (<fact, (+∆,+∂)>)
to store our inferred facts. We begin by transforming the given facts
into (<fact, (+∆,+∂)>). This transformation is carried out in a sin-
gle MapReduce pass.

Now let’s consider for example the facts R(a,b), S(b,b), T(a,e),
U(e,b) and V(b,c). The initial pass on these facts using the aforemen-
tioned rule set will create the following output :

<R(a,b), (+∆,+∂)> <S(b,b), (+∆,+∂)>
<T(a,e), (+∆,+∂)> <U(e,b), (+∆,+∂)>
<V(b,c), (+∆,+∂)>

No reasoning needs to be performed for the lowest stratum (stra-
tum 0) since these predicates (R,S,T,U) do not belong to the head
of any rule. As is obvious by the definition of +∂, −∂, defeasi-
ble logic introduces uncertainty regarding inference, because certain
facts/rules may ”block” the firing of other rules. As explained above,
this can be prevented if we reason for each stratum separately, start-
ing from the lowest stratum and continuing to higher strata. This is
the reason why for a hierarchy ofN strata we have to performN −1
times the procedure described below. In order to perform defeasible
reasoning we have to run two passes for each stratum. The first pass
computes which rules can fire. The second pass performs the actual
reasoning and computes for each literal if it is definitely or defeasi-
bly provable. The reasons for both decisions (reasoning sequence and
two passes per strata) are explained in the end of the next subsection.

3.2 Pass #1: Fired rules calculation
As far as the first pass is concerned, we calculate the inference of
fired rules based on techniques used for basic and multi-way join as
described in [8] and [1]. Basic join is performed on common argu-
ment values. Consider the following rule :

r1: R(X,Z), S(Z,Y)⇒ Q(X,Y).
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The key observation is that relations R and S can be joined on their
common argument Z. Based on this observation, during Map op-
eration we emit pairs of the form <Z,(X,R)> for predicate R and
<Z,(Y,S)> for predicate S. The idea is to join R and S only for liter-
als that have the same value on argument Z. During Reduce opera-
tion we combine R and S producing Q.

In our example, the facts R(a,b) and S(b,b) will causeMap to emit
<b,(a,R)> and <b,(b,S)>. MapReduce framework groups and sorts
intermediate pairs passing <b,<(a,R),(b,S)>> to Reduce opera-
tion. Finally, at Reduce we combine given values and infer Q(a,b).

To support defeasible logic rules which have blocking rules, this
approach must be extended. We must record all fired rules prior to
any conclusion inference, whereas for monotonic logics this is not
necessary, and conclusion derivation can be performed immediately.
The reason why this is so is explained at the end of the subsec-
tion. Pseudo-code for Map and Reduce functions, for basic join,
is depicted in Algorithm below. Map function reads input of the
form <literal, (+∆,+∂)> or <literal, (+∂)> and emits pairs of
the form <matchingArgumentValue, (nonMatchingArgumentValue,
Predicate, +∆, +∂)> or <matchingArgumentValue, (nonMatchin-
gArgumentValue, Predicate, +∂)> respectively.

map(Long key, String value):
// key: position in document (irrelevant)
// value: document line (derived conclusion)
For every common argumentValue in value
EmitIntermediate(argumentValue, value);

reduce(String key, Iterator values):
// key: matching argument
// value: literals for matching
For every argument value match in values
If Strict rule fired with +∆ premises then
Emit(firedLiteral, "+∆, +∂, ruleID");

else
Emit(firedLiteral, "+∂, ruleID");

Now consider again the stratified rule set described in the begin-
ning of the section, for which the initial pass will produce the follow-
ing output:

<R(a,b), (+∆,+∂)> <S(b,b), (+∆,+∂)>
<T(a,e), (+∆,+∂)> <U(e,b), (+∆,+∂)>
<V(b,c), (+∆,+∂)>

We perform reasoning for stratum 1, so we will use as premises all
the available information for predicates of stratum 0. Map function
will emit the following pairs :

<b, (a,R,+∆,+∂)> <b, (b,S,+∆,+∂)>
<e, (a,T,+∆,+∂)> <e, (b,U,+∆,+∂)>
<b, (c,V,+∆,+∂)>

MapReduce framework will perform grouping/sorting resulting in
the following intermediate pairs :

<b, <(a,R,+∆,+∂), (b,S,+∆,+∂), (c,V,+∆,+∂)>>
<e, <(a,T,+∆,+∂), (b,U,+∆,+∂)>>

During reduce we combine premises in order to emit the firedLit-
eral which consists of the fired rule head predicate and the non-
MatchingArgumentValue of the premises. However, inference de-
pends on the type of the rule. In general for all three rule types (strict
rules, defeasible rules and defeaters) if a rule fires then we emit as

output<firedLiteral, (+∂,ruleID)>. However, there is a special case
for strict rules. This special case covers the required information for
+∆ conclusions inference. If all premises are +∆ then we emit
as output <firedLiteral, (+∆,+∂,ruleID)> instead of <firedLiteral,
(+∂, ruleID)>.

For example during the reduce phase the reducer with key :

b will emit <Q(a,b), (+∂, r1)>
e will emit <¬Q(a,b), (+∂, r2)>

As we see here, Q(a,b) and ¬Q(a,b) are computed by different re-
ducers which do not communicate with each other. Thus, none of
the two reducers have all the available information in order to per-
form defeasible reasoning. Therefore, we need a second pass for the
reasoning.

Let us illustrate why reasoning has to be performed for each stra-
tum separately. Consider again our running example. During the re-
duce phase we cannot join Q(a,b) with V(b,c) because we do not have
a final conclusion on Q(a,b). Thus, we will not perform reasoning for
W(a,c) during the second pass, which leads to data loss. However, if
another rule (say r4) supporting ¬W(a,c) had also fired, then during
the second pass, we would have mistakenly inferred ¬W(a,c), lead-
ing our knowledge base to inconsistency.

3.3 Pass #2: Defeasible reasoning
We proceed with the second pass. Once fired rules are calculated,
a second MapReduce pass performs reasoning for each literal sepa-
rately. We should take into consideration that each literal being pro-
cessed, could already exist in our knowledge base (due to the initial
pass). In this case we perform a duplicate elimination by not emitting
pairs for existing conclusions. Pseudo-code for Map and Reduce
functions, for stratified rule sets, is depicted in Algorithm below.

map(Long key, String value) :
// key: position in document (irrelevant)
// value: inferred knowledge/fired rules
String p = extractLiteral(value);
String knowledge = extractKnowledge(value);
If p starts with "¬"
p = eliminateComplementarySign(p);
knowledge = "¬" + knowledge;

EmitIntermediate(p, knowledge);

reduce(String p, Iterator values) :
// p: a literal
// values : inferred knowledge/fired rules
For each value in values
markKnowledge(value);

For literal in {p, ¬p} check
If literal is already +∆ then
Return;
Else if Strict rule with +∆ premises then
Emit(literal, +"∆, +∂");
Else If literal is +∂ after reasoning then
Emit(literal, +"∂");

After both initial pass and rule inference (first pass), our knowl-
edge will consists of:

<R(a,b), (+∆,+∂)> <S(b,b), (+∆,+∂)>
<T(a,e), (+∆,+∂)> <U(e,b), (+∆,+∂)>
<V(b,c), (+∆,+∂)> <Q(a,b), (+∂, r1)>
<¬Q(a,b), (+∂, r2)>
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During Map operation we must first extract from value the literal
and the inferred knowledge or the fired rule using extractLiteral()
and extractKnowledge() respectively. For each literal p we must send
both p and ¬p to the same reducer. This is achieved by eliminating
”¬” from p (using eliminateComplementarySign()) and adding it to
the knowledge (where knowledge contains inferred knowledge or
fired rule). The Map function will emit the following pairs :

<R(a,b), (+∆,+∂)> <S(b,b), (+∆,+∂)>
<T(a,e), (+∆,+∂)> <U(e,b), (+∆,+∂)>
<V(b,c), (+∆,+∂)> <Q(a,b), (+∂, r1)>
<Q(a,b), (¬, +∂, r2)>

MapReduce framework will perform grouping/sorting resulting in
the following intermediate pairs :

<R(a,b), (+∆,+∂)> <S(b,b), (+∆,+∂)>
<T(a,e), (+∆,+∂)> <U(e,b), (+∆,+∂)>
<V(b,c), (+∆,+∂)> <Q(a,b), <(+∂, r1), ( ¬,+∂, r2)>>

At Reduce the key contains the literal and the values contain all
the available information for that literal (known knowledge, fired
rules). We traverse over values marking known knowledge and fired
rules using the markKnowledge() function. Subsequently, we use this
information in order to perform reasoning for each literal.

During the reduce phase the reducer with key :

R(a,b), S(b,b), T(a,e), U(e,b), S(b,c), V(b,c) will not emit anything
Q(a,b) will emit <Q(a,b), (+∂)>

Literals R(a,b), S(b,b), T(a,e), U(e,b), S(b,c) and V(b,c) are known
knowledge. For known knowledge a potential duplicate elimination
must be performed. We reason simultaneously both for Q(a,b) and
¬Q(a,b). As ¬Q(a,b) is −∂, it does not need to be recorded. Note
that duplicate elimination affects the parallelization. This issue is
discussed in Section 4. Additionally, highly skewed datasets result
in literals with highly skewed amounts of corresponding knowledge,
decreasing the overall parallelization. We address this issue by elim-
inating identical knowledge between map and reduce phase.

3.4 Final remarks

In order to perform sound and complete reasoning for stratified rule
sets we need 2∗(N−1)+1 MapReduce passes (N being the number
of strata). The total number of MapReduce passes is independent of
the given input. As mentioned above, performing reasoning for each
stratum separately ensures that every possible conclusion is indeed
inferred. The soundness of the whole approach is based on our initial
decision on which conclusions we actually need to store. Eventually,
our knowledge base consists of +∆ and +∂ literals.

The situation for non-stratified rule sets is more complex. Rea-
soning can be based on the algorithm described in [16], perform-
ing reasoning until no new conclusion is derived. Hence, the to-
tal number of required passes is generally unpredictable, depending
both on given rule set and data distribution. Additionally, an effi-
cient mechanism for ”∀r ∈ Rs[q] ∃α ∈ A(r): −∆α ∈ P(1..ı)” and
”∀r ∈ Rsd[q] ∃α ∈ A(r): −∂α ∈ P(1..ı)” computation is yet to be
defined. Finally, we have to reason for and store every possible con-
clusion (+∆,−∆,+∂,−∂), producing a significantly larger stored
knowledge base.

4 Experimental results
We have implemented our method using Hadoop, and provide exper-
imental results on a cluster. We have evaluated our system in terms
of its ability to handle large data files, its scalability with the number
of maching and its scalability with regard to the number of rules in
each stratum.

4.1 Dataset
Due to no available benchmark, we based our experiments on
manually generated datasets. The generated dataset consists of a
set of +∆ literals. Each literal is represented either as ”predi-
cate(argumentValue) +∆” or as ”predicate(argumentValue, argu-
mentValue) +∆”. In order to simulate a real-world dataset, we used
statistics on semantic web data. As described in [13] and [7], seman-
tic web data are highly skewed following zipf distribution. Thus, we
used a zipf distribution generator in order to create a dataset resem-
bling real-world datasets. For our experiments, we generated a total
of 500 million facts corresponding to 10 GB of data.

4.2 Rule set
To the best of our knowledge, there exists no standard defeasible
logic rule set to evaluate our approach. For evaluation purposes, tak-
ing into consideration rule sets appearing in [16], we created an ar-
tificial rule set named blocking(n). In blocking(n) there are n/2
rules of the form ”Qi(X), Ri(X,Y) ⇒ Qi+1(Y)” and n/2 of the
form ”Qi(X), Si(X,Y) ⇒ ¬Qi+1(Y)”. Rules supporting Qi+1(Y)
are superior to rules supporting ¬Qi+1(Y), resulting n/2 superi-
ority relations. For experimental results we used blocking(n) for
n = {2, 4, 8, 16}.

4.3 Platform
We have experimented on a cluster of virtual machines on an IBM
Cloud, running IBM Hadoop Cluster v1.3, which is compatible with
Apache Hadoop v20.2. Each node was equipped with a single CPU
core, 1GB of main memory and 55GB of hard disk space. We have
scaled the number of nodes from 1 to 16, using a single master node.

4.4 Results
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Figure 2: Runtime in minutes as a function of number of rules, for
various numbers of nodes.

Figure 2 shows the scaling properties of our system for 2, 4 and 8
rules, there was not enough hard disk space to run all the experiments
with 16 rules. We observe the following: (i) even in our modest setup,
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Figure 3: Time in seconds for each map during the second pass

the runtime is in kept very low, considering the size of the knowledge
base, (ii) our system scales linearly with the number of rules; the run-
time roughly doubles for twice the number of rules, (iii) our system
scales linearly with the number of nodes; the runtime halves when
we double the number of nodes.

The above show that our system is indeed capable of achieving
high performance and scales very well, both with regard to the num-
ber of nodes and the number of rules. Nevertheless, to further in-
vestigate how our system would perform beyond this, it is critical
to examine the load-balancing properties of our algorithm, a major
scalability barrier in parallel applications in this domain [14]. Fig-
ure 3 show the load balance between different tasks for 16 nodes on
8 rules. In principle, an application performs badly when a single task
dominates the runtime, since all other tasks would need to wait for it
to finish. In our experiments, it is obvious that no such task exists.

5 CONCLUSION

In this paper we extended previous work described in [22] by propos-
ing a method to perform reasoning for multi-argument predicates
under the assumption of stratification. Multi-argument predicates
complicate significantly the implementation (compared to the one
presented in [21] for single-argument predicates), because multi-
argument predicates require multiple passes. We presented how rea-
soning can be implemented in the MapReduce framework and pro-
vided an extensive experimental evaluation. The results demonstrate
that our approach can address reasoning over millions of facts.

We consider this to be another step in the research effort towards
supporting scalable parallel reasoning. Subsequently, we intend to
support defeasible logic for multi-argument predicates without the
stratification assumption. In the longer term, we intend to apply the
MapReduce framework to more complex knowledge representation
methods, including Answer-Set programming [9], systems of argu-
mentation [3], and RDF/S ontology evolution [11] and repair [21].

Another potential area that may benefit from this work is AI Plan-
ning. Here the most competitive modern planning engines work by
first grounding planning operators (which in general are made up
of non-unary predicates) into thousands of ground operators called
actions. The pre- and post-condition structure of these actions gives
rise to planning dependency graphs also manifested as causal graphs
[Helmert 06]. Given the non-monotonic nature of planning, in our
future work we plan to apply the techniques developed here to help
stratify large action databases, in order to leverage massively parallel
computation to speed up goal achievement and hence plan construc-
tion.
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