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Abstract

The physiological importance of weak interactions between biological macromolecules
(molar dissociation constants >10uM) is now well recognised, particularly with regard
to cell adhesion and immunological phenomena, and many weak interactions have been
measured for proteins. The concomitant importance of carbohydrate-carbohydrate
interactions has also been identified, although no weak interaction between pure
carbohydrate systems has ever been measured. We now demonstrate for the first time
using a powerful probe for weak interactions - sedimentation velocity in the analytical
ultracentrifuge - that at least some carbohydrates (from the class of polysaccharides
known as heteroxylans and demonstrated here to be biologically active) can show well-
defined weak self-interactions of the 'monomer-dimer' type frequently found in protein
systems. The weak interaction between the heteroxylans is shown from a temperature
dependence study to be likely to be hydrophobic in nature



Introduction

Weak interactions between macromolecules underpin many cellular processes, and are
particularly important where transient assembly processes and reversible cell adhesion
and immunological recognition phenomena are involved (1-4). For example transient
interactions between leucocytes have long been known to be critical for the normal
function of the immune system (5, 6). Cell-cell adhesion involves the formation of
multiple cell adhesion molecule complexes at the cell surface and if cell de-adhesion is
to occur, these complexes need to be disrupted. The affinities of cell adhesion molecular
interactions must be weak to allow this reversible de-adhesion of cell-cell interactions
(2, 3) and this is precisely what has been observed (7-20). Much of the attention of
researchers has been devoted to protein-protein interactions (PPIs) although the
significance of carbohydrate-protein interactions (CPIs) and carbohydrate-carbohydrate
interactions (CCls) has also been identified (21).

Molecular interaction strengths are conveniently represented in terms of equilibrium
dissociation constants K;, whose units are conventionally M, uM or nM: the larger the
K, the weaker the interaction. The CCIs measured so far have been found to be
generally in the 'tighter' end of the binding range as compared to PPI/CPIs, being in the
“moderate strength” region 10 pM down to 100 nM or “strong” (1) (<100nM) and
nothing has been observed in the important “weak” region (10’s and 100’s of uM level)
associated with — and reported for - cell adhesion and immunological phenomena (7able
I). One of the reasons given for the absence of data in this important physiological
region has been the difficulty in measuring such interaction strengths in this range (4)
although the greater availability of hydrodynamic methods — preferred tools for looking
at weak interactions (22, 23) - now renders this region accessible for study. Using this
technology we can now demonstrate for the first time that carbohydrates from a class of
polysaccharide known as the heteroxylans can show well-defined weak self-interaction
at the level frequently found in protein systems. This observation is particularly
interesting in that many of these hemicellulose polysaccharides exhibit
immunostimulatory and complement activation properties (24-30). The demonstration
that weak interactions are possible in carbohydrates may help towards a proper
understanding of the mechanisms involved in such behaviour.

Heteroxylans

Hemicelluloses are the second most abundant group of biopolymers on this planet and
of these the heteroxylans are one of most important polysaccharides of this group. They
consist of P(1—4) linked D-xylopyranosyl residues backbone with side chains of
a(1—3) linked L-arabinofuranose residues (31) (Figure I) and are often conjugated
with phenolic acids such as ferulic acid and p-coumaric acid (32-35). In the extraction
and purification of these polysaccharides alkali treatment followed by ultrasound-
assisted water extraction is normally required to remove starch and proteins (36, 37), a
process which also reduces the phenolic acid content. Although heteroxylan is mainly



used as a dietary fibre, it has recently been reported that heteroxylans can act as
immunostimulators and activate human macrophages, and that they can inhibit
microbial adhesion (25, 28-30, 38-40) .

<Figure 1 near here>

Three heteroxylans (PO2, POS5, PO6) were chosen with different bioactivities (Figure 2)
and different severities of extraction (PO6>PO5>P02). The particular approach we have
adopted to investigate possible self-association phenomena in these substances is
sedimentation velocity analytical ultracentrifugation (41).

Polysaccharides are more difficult molecules to study compared to proteins because of
their polydispersity (i.e. they are characterised by sedimentation coefficient distributions
rather than by single values). But provided that the average sedimentation coefficient s,,
can be reasonably defined, this enables us to study the effect of variation in solute
concentration on s,, and thus help us assess associative behaviour in terms of K, — the
molar association constant, or more conventionally, K;. Such a computation requires
that non-specific or “non-ideality” interaction effects (42), need to be taken into account.
We take advantage of newly written software to achieve optimal fitting via a non-linear
least squares (Levenberg-Marquadt (43)) approach, improving on a ‘trial and error’
fitting algorithm approach used earlier to study the weak interaction between the cell
adhesion molecules CD2 and CDA48 (15).

Materials and Methods

Heteroxylans. Samples PO2, POS5 and PO6 were prepared from wheat bran by the multi-
step extraction procedure described by Hromadkova and co-workers (44). After
separation of mechanically non-removed starch particles from wheat bran by cold water
decantation, the de-starched bran (PO) was treated in succession with 1 % NH4OH and
0.5 % NaOH at room temperature for 2 hours yielding the fraction known as PO2 and
after dialysis used to separate salts and low-molecular products. The de-starched bran
was refluxed with isopropanol and the residue was successively treated with pectinase in
acetate buffer of pH 6.1 at 25 °C for 52 hrs and then finally heated at 100 °C for 15 min
to solubilise pectic substances. A part of the solid residue was extracted using 0.5 M
NaOH at room temperature for 2 hrs and from the extract fraction POS5 was recovered
by dialysis of the neutralized extract and then freeze-dried. From the second part of the
residue, fraction PO6 was prepared by the same procedure but with saturated Ca(OH),
as the extracting agent.

Prior to all experiments, samples were dissolved in a phosphate-chloride (pH 7.0, I =
0.1M) buffered solution (45) in screw-capped tubes with constant stirring at low speed.
During this period the temperature was raised to 80.0 ‘C for 10 minutes to obtain
maximum solubility. Stirring continued at room temperature (20.0 °C) overnight at low
speed. Samples were then subjected to preparative centrifugation at 40,000 rpm for 15
min (Beckman L8- 55 M Ultracentrifuge, Beckman Instruments, Palo Alto, USA) to



remove any insoluble particles or aggregates. Solution concentrations were estimated
using a differential refractometer (Atago DDS5, Jencons Scientific, Leighton Buzzard,
UK) and a refractive index increment, dn/dc of 0.151 mL/g (46).

Composition analysis. Residual protein content was calculated as % Nitrogen x 6.25
using an Elemental Analyser (Perkin-Elmer, Model 240, Wellesley, USA). Samples
were hydrolysed in 2M TFA (2,2,2 trifluoroacetic acid) for 2 hrs to measure the
monosaccharide composition (47) using paper chromatography and GLC of alditol
trifluoroacetates (Hewlett-Packard, Model HP 5890, Palo Alto, USA). The amount of
feruloyl groups (mg FA /g sample) was determined using a spectrophotometer (48) by
direct absorbance measurement at 375 nm of freshly prepared solutions of
hemicelluloses (0.5 mg/mL) in 0.07 M glycine-NaOH buffer (pH 10.0) with the
SPECORD M-20 UV-VIS spectrophotometer (Zeiss, Jena, Germany). A calibration
curve was constructed using ferulic acid as standard.

Lymphocyte transformation test. The method described by Iribe and Koga (49) was
followed to study the level of bioactivity (29, 50). Rat thymocytes (strain Wistar, males
weighing about 200 g) in RPMI-1640 medium supplemented with 5% fetal calf serum
were cultivated at 1.5 x 10° cells in 0.2 mL per well with or without 25 pg/mL of the T-
mitogen phytohaemagglutinin (PHA). Test compounds were added at final
concentrations of 3, 10, 30, 100, 300, and 1000 pg/mL. After 72 hrs of cultivation,
thymocyte proliferation was measured by incorporation of *H-thymidine expressed in
counts per minute (cpm). In each of 3 independent experiments, mean cpm for each set
of 4 replicas was used to calculate the stimulation indices (SI).

Complement fixation activity. The procedure of Michaelsen et al. (51) and Nergard et
al. (52) was followed and is based on the inhibition of hemolysis of antibody-sensitized
sheep erythrocytes by human sera. The % inhibition of lysis = 100 X (Acontro—
Asample/ Acontrol)-

Sedimentation velocity experiments. An Optima XL-1 analytical ultracentrifuge
(Beckman Instruments, Palo Alto, USA) was employed equipped with a Rayleigh
interference optical system. Solutions (380 pL)/ reference solvent (400 ulL) were
injected into double sector, carbon filled 12mm path length centrepieces, and then
loaded into an 8-hole titanium rotor. Solutions of PO2, PO5 and PO6 were run at a rotor
speed of 40,000 rpm and a temperature of 20.0 °C. POS5 solutions were also measured at
temperatures of 5.0 °C and at 30.0 °C. Changes in the concentration distribution in the
ultracentrifuge cell as a function of time were analysed using the so-called least
squartes g*(s) methods incorporated into the finite-difference algorithm SEDFIT (53,
54). The weight average s for a particular component was then corrected to standard
solvent conditions (density and viscosity of water at 20°C) to yield s29,, (S) (55). The
S20w Was measured at a range of concentration, ¢, for all samples. The 559, Vs ¢
dependence was then analysed using the routine MONOMER-DIMER to yield estimates
for the zero concentration or “ideal” value SOZO,W and the dissociation constant k; (g/mL).
MONOMER-DIMER is a locally written algorithm defined within the software pro
Fit™ (Quantum Soft, Ziirich). It derives from the original work of Gilbert and Gilbert



(56), adjusted to take into account the hydrodynamic dependence (non-specific or “non-
ideality” effects) of the s value of the sedimenting species (57). ks for the monomer
species was computed independently, knowing the molecular weight and s”5,, values,
and the partial specific volume. The &, for the dimer was assumed to be identical, and
both were fixed in the fitting (58).

Molecular weight determination. A value for the (weight average) molecular weight M,,
for each of PO2, PO5 and PO6 was required to enable conversion of &, values to molar
dissociation constants, K;. Size exclusion chromatography (SEC) coupled with multi-
angle laser light scattering (MALLs) was used. The chromatographic assembly
consisted of an HPLC pump (Model PU-1580, Jasco Corporation, Tokyo, Japan), a
Rheodyne injection valve (Model 7125, Rheodyne, St Louis, USA) fitted with a 100 puL.
loop, a Phenomenex guard column (Phenomenex, Macclesfield, UK), TSK (Tosoh
Bioscience, Tokyo, Japan) Gel G4000 PW connected in series with TSK Gel G3000
PW. The angular scattering envelope was recorded using a Dawn DSP multi-angle laser
light scattering photometer and concentration was determined using an Optilab 903
interferometric refractometer (both instruments from Wyatt Technology, Santa Barbara,
USA) with PBS as mobile phase. The SEC-MALLSs system was equilibrated overnight
with the phosphate-chloride buffer at flow rate of 0.8 mL/min and room temperature.
Samples (100 pL) with accurately know concentration and filtered through 0.45 pm
filters (Whatman, Maidstone, UK) were injected at the same flow rate. The primary data
obtained form the light scattering photometer and the refractometer were captured and
analyzed on a PC using the ASTRA™ (for Windows 98) software supplied by the
manufacturer. Because of the low loading concentrations used followed by further
dilution on the columns, thermodynamic non-ideality effects were not taken into
consideration.

Results and Discussion

Integrity and bioactivity

The monosaccharide composition of the PO2, PO5 and PO6 fractions is summarized in
Table 2. Using the data from Table 2 the ratio of arabinose/xylose was calculated to give
values of 0.73, 0.89, and 0.86 for PO2, PO5 and PO6 respectively. In addition to
arabinose and xylose, all the fractions contain considerable amount of glucose and very
small amount of galactose and rhamnose. The amount of ferulic acid was also measured
using spectrophotometer with the highest levels detected in the POS5 fraction. Only small
amounts of protein impurity were detected as manifested by the low levels of nitrogen.

<Table 2, Figure 2 near here>

Both mitogenic-comitogenic and complement fixation experiments (Figure 2a) showed
that all three preparations of heteroxylan were bioactive but to different extents. The
direct mitogenic effect was expressed as Sl = mean counts per minute (cpm) for test
compound / mean cpm for the control without stimulant. The comitogenic effect was
expressed as Sl.omit = mean cpm (test compound + PHA) / mean cpm for PHA. The
mean cpm for control cultures without any addition was 924 (704 — 1143). For cultures



incubated with PHA, the mean cpm was 1341 (1081 — 1601). The eventual
contamination of the samples by endotoxin was checked in a parallel test performed in
the presence of polymyxin B, which inhibits the biological effects of endotoxin
including its mitogenic activity (59): this was negative for all our samples. These
results are reinforced by the complement fixation activity experiments for the
heteroxylans. In Figure 2b dose-dependent response curves are used to represent the
concentration of test sample able to give 50% inhibition of lysis (ICH50), where low
ICH50 means high complement fixing activity. Here, low ICHS50 means high
complement fixing activity. It is evident from Figure 2b that all three samples show
clear activity.

Sedimentation velocity and molar dissociation constants

The sedimentation distribution profiles for PO2, POS5 and PO6 revealed a nearly
homogenous distribution confirming the integrity of the sample preparation procedure
(Figure 3). The sedimentation coefficient of all three samples at 20.0 °C and of POS5 at
5.0 °C as well as 30.0 °C, were corrected to the sedimentation coefficient under the
standard conditions of the density and viscosity of water at 20.0 °C, s, It was
observed from plots for PO2 and POS5 that the sedimentation coefficient (s,,,) values
tended to increase as the concentration is elevated (Figure 4a,b), with this tendency in
the order PO2>POS5. As this is an effect of the opposite sign to what is predicted on the
basis of non-specific interaction (above), we can be confident that a specific interaction
must be present, at least for PO2 and PO5. PO6 by contrast appeared to show more
normal behaviour (Figure 4c). Since a self-association is evident the data of Figure 4
were then fitted using the algorithm MONOMER-DIMER to yield estimates for Sogo’w
and k,, the dissociation constant (g/mL), and the data is presented in 7able 3. In order to
convert k; values to molar dissociation constants, K,, we use the weight average M,,
from SEC- MALLs (~32,700 g/mol) for all samples. PO2 and POS5 are classical “weak”
interactions (K;’s ~ 340 and 660 uM respectively), with PO6 showing little or no
interaction (K; >3000 uM)

<Figures 3, 4 and Table 3 near here>

Effect of temperature

In Figure 5 we have explored the effect of temperature on the self-association. To
facilitate the comparison (performed on PO5) plots were of s;o,w/sogo,w VvS. concentration.
The 'monomer’ and ‘dimer’ lines refer to the 30.0 °C sample, which shows the highest
degree of s-c dependence as a consequence of its elevated frictional ratio. The
corresponding *monomer’ and ‘dimer’ lines for the 5.0 °C and 20.0 °C data are omitted
in the interests of clarity: they are much less steep than the 30.0 °C lines. Interestingly
the highest degree of self-association occurred at 30.0 °C with a K; of ~ 140 uM
whereas, at 5.0 °C, there was no significant self-interaction (K; >3000 uM).

<Figures 5 and 6 near here>



Concluding remarks

It is clear that the heteroxylan samples exhibit weak but clear self-association
phenomena in the order PO2>PO5>PO6, an order corresponding to different severities
of treatment. Temperature dependence studies indicate that the interaction is
hydrophobic in nature, with increasing temperature increasing the strength of the
interaction (60): there may be hydrophobic or sticky patches on the polysaccharide
backbone causing neighbouring molecules to associate in a weak or transient fashion
(Figure 6). Hydrophobic interactions are not unexpected in polysaccharides since they
can be amphiphilic in nature, possessing both hydrophobic (carbon/hydrogen atoms) and
hydrophilic (oxygen possessing) faces. It has been suggested that “carbohydrate-
carbohydrate interactions rely on this amphiphilicity as the driving force for association,
largely by removing the hydrophobic faces from bulk aqueous solution” (61, 62). What
is unexpected is the weakness of the interaction — polysaccharides generally interact
either strongly or not at all (63).

Several workers have reported interactions between carbohydrate moieties of
glycoprotein/glycolipids, but only in the presence of divalent cations (64-76) and some
also have reported effects independent of the presence of salt (61, 70, 77-80). Bucior
and Burger (76) studied the effect of Ca®" concentration and suggested that adhesion
force increases (from 310 pN to 375 pN) with increase in Ca*" concentration from 10
mM to 100 mM.

Our present finding is, to the best of our knowledge, the first report of a reversible weak
self-association both in a polysaccharide and a carbohydrate system not conjugated to a
protein. Although this particular weak interaction is not directly important for the
bioactive behaviour of these substances nonetheless the fact that we have demonstrated
that carbohydrate groups are capable of weak hydrophilic self-interactions - precisely in
the range that others have shown for proteins to be crucial for molecular recognition -
makes a significant step forward in our understanding of carbohydrates in both
bioactivity and other recognition processes: they may be capable of weak interactions
with receptor molecules, whatever they may be.
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Table 1: Summary of the range of molecular interactions in biological systems.
For other interactions see ref (3).

Interaction Strength, K,

Enzyme inhibitor: enzyme ~0.01nM

Cytokine:receptor ~InM

Antibody:antigen ~10nM

Cell-cell recognition molecules  10-200uM
CD2:CD58 ~10uM (14)
2B4:CD48 10uM (16)
KIR:MHC I 10uM (18, 19)
CD28:CD86 20uM (17)
CD2:CDA48 50uM (15)
CD8:MHC class I 50-200uM (7-11)
CD4:MHC class 11 >200uM (12, 13)

Table 2. Composition analysis of heteroxylans PO2, PO5, and PO6".

Sample PH FA Neutral sugar composition (mass %) Ara/Xyl
molar ratio
(%) mgra/g Rha Fuc Ara Xyl Man Glc Gal
PO2 9.8 19.9 - - 388 531 09 34 38 0.73
PO5 7.4 323 1.1 1.9 446 503 - 2.1 - 0.89
PO6 8.4 27.1 0.8 - 441 513 0.7 3.1 4.0 0.86

* The protein content (% N x 6.25) of the samples was < 0.5%.
PH: Phenolics determined as ethylacetate extract after alkaline hydrolysis (81).
FA: Ferulic acid, determined according to Izydorczyk & Biliaderis (48).
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Table 3:

Measured Dissociation Constants K,

Samples Temp (°C) "2 (S) ki (g/mL) Ki (uM)
PO2 20.0 2.10+0.05 0.011 340 £ 50
PO5 5.0 2.60 £0.02 >(.100 >3000
PO5 20.0 2.20+£0.01 0.020 660 £20
PO5 30.0 1.80 +£0.04 0.004 140 + 40
PO6 20.0 2.20+£0.04 >(.100 >3000
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Figure Legends

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Chemical structure of heteroxylan (from (31)). The linear backbone of the
(cereal) heteroxylan chains consists of -(1—4)-linked D-xylopyranosyl
residues (Xylp) to which single a-L-arabinofuranosyl residues are
attached at position 3 and/or both 2 and 3 positions of the Xylp residues
as well as a small amount of 2-linked a-D-glucuronopyranosyl uronic
acid units. Some galactose- and glucose-containing disaccharide side
chains are found as well as phenolic acids (ferulic acid, p-coumaric acid,
etc.), which esterify the arabinofuranosyl residues at position C-5.

Bioactivity of heteroxylans PO2, PO5 and PO6. (a) Lymphocyte
activation test for heteroxylans (i) mitogenic activity and (ii) comitogenic
activity. The test is essentially as described by Iribe and Koga (49)
adapted for plant polysaccharides (29, 50). (b) complement fixation
activity of heteroxylans. Based on the procedure of Michaelsen et al.
(51) and Nergard et al. (52).

Plots of (a) g*(s) vs. s (S) and (b) g*(s) vs log(s) for PO2 (0.85 mg/mL),
PO5 (0.75 mg/mL) and PO6 (0.85 mg/mL). All experiments performed at
20.0°C at a rotor speed of 40,000 rpm.

Change in apparent sedimentation coefficient, s,,, with concentration.
(a) PO2 (b) POS5 (c) PO6. The solid lines are fits given by the function
MONOMER-DIMER. The broken line is the theoretical concentration
dependence for no self-association.

(a) Change in apparent sedimentation coefficient, s, with concentration
for POS5 at 5.0 °C, 20.0 °C and 30.0 °C. The solid lines are fits given by
the function MONOMER-DIMER. (b) Effect of temperature on the
change in apparent sedimentation coefficient s with concentration for
PO- 5 at 5.0 °C, 20.0 °C and 30.0 °C. The ‘monomer’ (black dashed line)
and ‘dimer’ (black dotted line) lines refer to the 30.0° C sample.

Inter-chain interactions of PO2 and PO5 are of the order 10% pM (adapted
from (82)).

17



Figures

Figure 1:
HO
o 0
OH
HO—CH
2 OH

18



Figure 2(a):

PO2

PO5

PO6

PO2

PO5

PO6

(ii)
@
m3 010
m30 B100
@300 O1000
Dose, pg/mi
40 80 120 160 200

Stimulation index, Sl

19



Figure 2(b):

120 r T T T T
c
2 8ot .
s}
N o
=
® L
40} -
—— PO-2
—e— PO-5
—~— PO-6
0 ,

1 L 1
200 400

Conc. (ug/mL)

600

20



Figure 3(a)
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Figure 4(a):
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Figure 4(c):
2.60
2.40

2.20

S20,w (S)

2.00

1.80

1.60

4104

8104 12104 16104 2103

Conc. (g/mL)

23



Figure S(a)
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Figure 6:
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