
University of Huddersfield Repository

Naveed, Munir, Kitchin, Diane E., Crampton, Andrew, Chrpa, Lukáš and Gregory, Peter

A Monte-Carlo Path Planner for Dynamic and Partially Observable Environments

Original Citation

Naveed, Munir, Kitchin, Diane E., Crampton, Andrew, Chrpa, Lukáš and Gregory, Peter (2012) A 
Monte-Carlo Path Planner for Dynamic and Partially Observable Environments. In: Computational 
Intelligence and Games (CIG), 2012 IEEE Conference on. IEEE Computational Intelligence 
Society, pp. 211-218. ISBN 9781467311939 

This version is available at https://eprints.hud.ac.uk/id/eprint/14233/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



A Monte-Carlo Path Planner for Dynamic and Partially Observable
Environments.

Munir Naveed, Diane Kitchin, Andrew Crampton, Lukáš Chrpa, and Peter Gregory

Abstract—In this paper, we present a Monte-Carlo policy
rollout technique (called MOCART-CGA) for path planning
in dynamic and partially observable real-time environments
such as Real-time Strategy games. The emphasis is put on fast
action selection motivating the use of Monte-Carlo techniques
in MOCART-CGA. Exploration of the space is guided by using
corridors which direct simulations in the neighbourhood of the
best found moves.

MOCART-CGA limits how many times a particular state-
action pair is explored to balance exploration of the neigh-
bourhood of the state and exploitation of promising actions.
MOCART-CGA is evaluated using four standard pathfinding
benchmark maps, and over 1000 instances. The empirical
results show that MOCART-CGA outperforms existing tech-
niques, in terms of search time, in dynamic and partially observ-
able environments. Experiments have also been performed in
static (and partially observable) environments where MOCART-
CGA still requires less time to search than its competitors, but
typically finds lower quality plans.

INTRODUCTION

Monte-Carlo Policy Rollout algorithms [1] [2] [3] approx-
imate action values using Monte-Carlo simulations. Monte-
Carlo simulations require a model that can simulate the
effects of an action using a state transition function and
assign a reward for the state-action pair. These algorithms
run several rollouts (or iterations from the current state) to
approximate the values of the action applicable at the current
state and select the action that has the highest value compared
with other actions applicable at that state. These algorithms
have been successfully applied to solve planning problems in
deterministic domains (e.g. in Go [4]) and non-deterministic
domains (e.g. Solitaire [5]).

Monte-Carlo based algorithms are also suitable for online
planning in dynamic and partially observable domains with
large state spaces such as real-time strategy (RTS) games.
The domain world of an RTS game requires online planning
within tight time constraints (e.g. there is a time-limit of
1-3 milliseconds per planning search in the titles produced
by the game company Bioware [6]). In an RTS game (e.g.
WarCraftTMand StarCraftTM), the computer player requires
AI planning to solve different tasks (e.g. path planning,
resource management and tactical assault planning). Path
planning is one of the most challenging tasks in an RTS
game because it is required by all movable characters in a
game. Many pathfinding approaches, for example A* [7],

Diane Kitchin, Andrew Crampton, Peter Gregory and Lukáš Chrpa are in
School of Computing and Engineering, University of Huddersfield, UK.

Munir Naveed is at Department of Software Engineering, Fatima Jinnah
Women University, Pakistan, Contact email: munir@fjwu.edu.pk;

navigational mesh [8] and way-points [9], are not suitable
due to partial observability and real-time constraints.

This paper addresses the single-agent path planning prob-
lem in a RTS gaming environment where the topology of
the game world changes during the problem solving process.
The environment is partially observable, i.e. the planning
agent can see only a small part of the topology of the game
world at any time during the problem solving process. The
main challenging issues for a path planner in this kind of
environment are incomplete information about the domain
world, hard real-time constraints, a non-deterministic action
model and dynamic changes in the domain world.

We present a Monte-Carlo policy rollout algorithm that
performs a rollout under a tight time bound and applies a
selective action sampling at each state of the look-ahead
search. To balance the trade-off between the exploration of
new actions and exploitation of the best action, we define
the convergence of an action value by imposing a limit on
the number of times the action value remains unchanged
during simulations. If an action value exceeds the limit,
then the action is assumed to be converged with respect
to the limit. Converged actions are not sampled during the
simulations. The exploration of new actions in a simulation
is limited within a group of actions (called a corridor) which
are local to the current best action. This ensures that sampling
is performed in the neighbourhood of current promising
solutions. The algorithm is called MOnte-CArlo Real-Time
Corridor based Greedy Action sampling (MOCART-CGA).

We present empirical results that demonstrate MOCART-
CGA has stronger performance than a state-of-the-art Monte-
Carlo path planner [10], both in time to search for the
next action and in plan quality. We also demonstrate that
MOCART-CGA takes a smaller amount of time to search
than current state-of-the-art path planning algorithms [11],
[12]. In these cases, the plan quality of MOCART-CGA is
comparable, and in certain cases higher. By searching faster,
MOCART-CGA is a more responsive real-time algorithm
than its competitors.

RELATED WORK

Tesauro [2] explores a policy rollout algorithm in a
stochastic board game called Backgammon. The simulation
model in Tesauro’s work takes several iterations per move
to decide an action at the current move. This approach is
expensive for a real-time application. Kearns et al. [13]
present a sparse sampling based approach that generates a
look-ahead tree of fixed depth H but each action applicable
at a state (seen during the look-ahead search) is sampled C



times in a simulation. The number of samples in a simulation
is exponential in H . To avoid exploring all actions in a sparse
sampling scheme, Auer et al. [14] demonstrate an adaptive
action sampling approach (called Upper Confidence Bounds
or UCB) that selects only one action per state in the look-
ahead search in a simulation. It selects the best action as a
sample at a state. To balance the exploration of new actions
and exploitation of the best action, Auer et al. present upper
bounds on the selection of an action as a sample at a state.
However, this approach continues the exploration of new
actions forever.

Kocsis and Szepesvári [3] present a variation of UCB,
called Upper Confidence Bounds applied to Trees (UCT),
that performs selective action sampling in a policy rollout
fashion. The default rollout policy is random. UCT has been
successful in Go [4] and Solitaire [5] games. However, UCT
and UCB are only applicable in a domain if the action
values are in the range [0,1]. Balla et al. [15] present a
variation of UCT in an RTS game to solve the tactical
assault problem. The variation of UCT uses a reward function
that can optimise one parameter (time or health factor) in a
simulation model.

The concept of using focussed rollouts in UCT has been
explored by Laviers and Sukthankar [16] in a real-time
stochastic but fully observable and static domain world,
called Rush Football Simulator. In this domain world, two
teams play football on a rectangular field of fixed size where
the topology of the field remains the same during a game.
In [16], the UCT simulations determine the best action for
each key player in a subgroup of a team. The UCT rollouts
for each player are kept focussed in a small region. The
focussed region is determined offline using a large set of
training examples. The approach also has to re-compute the
focussed region of each player if the playing field is changed
or if the game is played on a new field. In MOCART-CGA,
the rollouts are focussed using a corridor of actions which is
the same for all planning agents and does not depend on the
topology of the map. Therefore, MOCART-CGA does not
need to re-compute a corridor if a map is changed.

CadiaPlayer [17] is a variation of UCT that has been
explored in general game playing where each game world
is represented in a first-order logic language. CadiaPlayer
has been successful in general game playing competitions.
MOCART-CGA is similar to CadiaPlayer in the sense that
the action values are maximised to synthesize a plan, how-
ever, CadiaPlayer also uses the average action values to
guide the look-ahead search towards potentially useful but
unexplored actions.

The MOCART-CGA planner has similarities with real-
time heuristic search planning algorithms in the sense that
these algorithms interleave planning and plan execution e.g
Local Search Space-Learning Real-Time A* (LSS-LRTA)
[11] and Real-Time D*-Lite (RTD) [12]. LSS-LRTA and
RTD solve path planning problems under tight real-time
constraints and interleave planning and plan execution. LSS-
LRTA expands the look-ahead search of fixed depth using

A* and updates the heuristic value of each state of the look-
ahead search by using Dijkstra’s shortest-path algorithm [18].
RTD is a combination of LSS-LRTA and D*-Lite [19]. D*-
Lite is a global path planning algorithm with a backward
incremental heuristic search.

aLSS-LRTA [20] is a modification of LSS-LRTA such that
the greedy action selection is avoided if the planner gets stuck
in a heuristic depression. aLSS-LRTA has been evaluated
using the static settings of the pathfinding benchmarks. The
results show that aLSS-LRTA produces solutions with better
quality than LSS-LRTA.

f-LRTA* [21] is a variation of Learning Real-Time A*
[22] that updates the estimate of the cost of reaching the
goal location along with learning the cost of moving from the
start location to the current state. f-LRTA* is similar to LSS-
LRTA in terms of learning the heuristic values. The results
show that f-LRTA* expands fewer states than LSS-LRTA to
solve path planning problems.

The MCRT planner [10] is a Monte-Carlo Planner based
on Rapidly-exploring Random Trees (RRT) [23], applied to
an RTS game. MCRT performs better than LSS-LRTA for
solving path planning problems in a typical RTS game when
collecting resources. The advantage gained by MCRT in
these problems arises from the fact that as the resources are
collected, the same parts of the map have to be repeatedly
traversed. MCRT, therefore, is more effective than LSS-
LRTA for multiple-journey path planning problems.

PROBLEM DESCRIPTION

In this paper, we address the single-agent path planning
problem where a planning agent is equipped with very
limited information about the game world. The planning
agent has a sensor that can provide local information in the
current neighbourhood of the agent. This sensor information
contains the current position and velocity of the planning
agent, the position of the goal state(s), and the set of locations
(and their status) that are within the line of the sight of
the planning agent. The status of a neighbouring location
can be either occupied or empty. If a location is passable,
it is called empty otherwise it is occupied. The planning
agent also knows about the size of the world and the set of
actions it can perform. The topology of the world can change
during problem solving. There are two kinds of obstacles in
the domain world: static obstacles and dynamic obstacles.
Static obstacles stay in one place for the whole game while
dynamic obstacles are the movable characters in the game.
The presence of dynamic obstacles make the action model
non-deterministic. The main challenging issue for a path
planner in this kind of setting is to respond within a short
time to solve a global path planning problem in an initially
unknown and dynamically changing game world. Figure 1
shows an example of a planning problem in a partially
observable environment of Arena2 (a benchmark). Figure
1(a) shows the agent’s viewpoint at the start of planning
where only a small part of the map is visible to the agent.
The actual topology of the game world for the same problem
is shown in Figure 1(b). With such limited visibility, the



planning agent is also bound to respond within a fixed time
interval (no matter how small the interval is). The main
motivation of using the Monte-Carlo planning techniques in
this kind of environment is to approximate an answer for
a given planning problem by running simulations within a
predefined time-limit.

(a) Agent’s viewpoint (b) Actual topology

Fig. 1. A viewpoint of a planning agent in a partially observable
environment of Arena2.

NOTATION

We are interested in solving path planning problems in a
domain world that is partially visible, real-time and dynamic
(like a typical RTS game). The planning agent knows about
its current location and the goal location. Initially, the plan-
ning agent can see only a limited part of the domain world
near its current position.

A state is constructed using a rectangular octile grid of
size w × h (w is the width and h is the height) where each
cell of the grid is either empty, blocked or unknown in a
state. A cell is unknown only until the agent sees the cell
(the cell is in the agent’s visibility range). Then the cell can
be declared blocked or empty and the agent is aware of the
status of the cell even though the cell is out of the agent’s
visibility range. The number of unknown cells is therefore
monotonically decreasing.

As the map is an octile grid, the possible actions are
moving to one of the eight compass directions, (N, NE, ...,
NW). The effects of actions are non-deterministic due to
the dynamic changes in the domain world during problem
solving.
Definition 1
The domain world has a finite set of states S and a finite
set of actions A.
Definition 2
App(s) is a function (App : S → 2A) that determines a set
of applicable actions at s.
Definition 3
Next(s, a) is a function (Next : S × A→ 2S) that defines
the set of states which are possible to reach from s by
taking action a ∈ App(s).
Definition 4
P (s, a, s′) is a function (P : S ×A× S → [0, 1]) that gives
the probability of reaching a state s′ from a state s if action
a is taken at s.

Definition 5
Transition(s, a) is a stochastic transition function
(Transition : S × A → S) that selects a next state
s′ ∈ Next(s, a) for a state-action pair (s, a) using the
probability distribution P . Transition prioritises the
selection of the most likely next state.
Definition 6
R(s, a) is a reward function (R : S × A → R) that assigns
a value to a state action pair (s, a) in a simulation model.

MOCART-CGA uses a simulation model of the domain
world. The simulation model uses the function Transition
to randomly select the next state s′ of a state-action pair (s, a)
for all s ∈ S and a ∈ App(s) and then uses R to assign a
reward value for the pair. If P is not available in a domain,
MOCART-CGA updates the probabilities using the online
interaction with the environment (as shown in Figure 5). The
probability of moving to an occupied state sx from s with
any action a ∈ App(s) is always zero i.e. P (s, a, sx) = 0.
V (s) is the state value and Q(s, a) is the estimated value

for action a ∈ App(s) at state s. These values are computed
using the simulation model of MOCART-CGA. The best
action ab ∈ App(s) at s has the highest estimated value
at s. It is computed using equation (1) (adapted from [2]).

ab = argmaxa(Q(s, a)) (1)

CORRIDORS IN MONTE-CARLO PLANNING

The main contribution of this work is to introduce the
notion of a corridor to Monte-Carlo based path planning.
Corridors are a method for directing simulations in a way
that creates diversity in the selected actions and that restricts
undesirable artifacts (such as cycles) from simulations. The
concept of a corridor relies on the underlying domain having
a concept of ‘orientation’ or another measure of action
relatedness: path-planning domains are therefore obvious
candidates.

After an action, a, is executed within a simulation, the
subsequent action must be drawn from a subset of the
applicable actions. In our work, this subset is determined
by the orientation of the agent after executing action a.
The following action must be in the same direction, or
deviating by only a small, fixed amount. However, in general,
this subset of applicable actions may be computed by any
function that determines relatedness of two actions.

We now define the concepts of a corridor and relatedness
more formally:
Definition 7
A relatedness function is defined as a function Rel : S ×
A×A→ {0, 1}. Rel(s, a, a′) returns 1 if and only if a and
a′ are related by some definition in state s.

Given this definition of relatedness, we can now define
what we mean by a corridor:
Definition 8
A corridor Ac(a, s) is a function (Ac : A × S → 2A) that
determines a restricted set of actions relevant to a (in s) such
that Ac(a, s) = {a′|a′ ∈ App(s), Rel(s, a, a′) = 1}.



The actions are grouped in the form of a corridor to restrict
the possible action choices and therefore speed up explo-
ration of new actions in simulations during online planning.
In our work, we define relatedness as the closeness of two
compass directions. Recall that all actions in our domain
are selected from the eight compass directions. An action
is related to the set of three actions that contain a and the
actions to each side of a. For example, the related set of an
action “NORTH” is the set {“NORTH-WEST”, “NORTH”,
“NORTH-EAST”}. Note that in a different problem domain,
a different relatedness function would be relevant. For ex-
ample, in trajectory planning, speed limits and other factors
would need to be taken into account.

Corridors in MOCART-CGA

One motivation for the use of corridors in planning is
that each corridor creates a simulated path that continually
extends from the current state, and this leads to a greater
number of new actions being sampled. In Monte-Carlo
simulations, the exploration of new actions is an important
and essential part of the search because action values are
estimated using locally sampled information. More diverse
sampling leads to more information per simulation.

However, indiscriminate exploration of new actions leads
to the sampling of many actions that are not useful to solve
the current planning problem; this process is computationally
expensive within the planning search process and more
simulations are required to find useful information. It is
therefore useful to restrict the choices of actions to explore
promising areas of the search space. This is the key function
of corridors. In MOCART-CGA, the exploration of new
actions is limited to be within the corridor of the best action
at any state seen during the look-ahead search. One side-
benefit of using this type of simulation is that simulations
avoid looping behaviours. This is because each simulation
follows a trajectory restricted by a corridor, which removes
the option to return to the same state.

The exploration scheme in MOCART-CGA also gives
importance to actions that are less explored by increasing
their chance of selection. The corridors are kept overlapping
i.e. two corridors (each one by a different action) can have
one or more common actions, so the exploration of the
new actions can move from one corridor to another in two
consecutive simulations.

MOCART-CGA

MOCART-CGA uses a Monte-Carlo strategy for selecting
the best action in a current state s. For a limited number of
times (limit) it performs a greedy look-ahead search from
the current state s to a fixed depth (d). The search is guided
by using corridors restricting sets of applicable actions in
order to keep a direction of movement to avoid inefficient
zig-zag moves. For each state-action pair visited during the
look-ahead search, MOCART-CGA computes reward values
using R function (see Figure 4). If the depth d is reached
then the state in this depth is evaluated using an admissible
heuristic based on actual distance to the goal. The estimated

value of a state-action pair s × a, i.e. Q(s, a), is computed
as a sum of all reward values of state-action pairs explored
during the search including the reward for the state in the
depth d. Q(s, a) stands for the expected long term reward
of the action a sampled in the current state s. If the newly
computed value of Q(s, a) is greater than the current value
of Q(s, a) then the value is updated otherwise it remains
unchanged. If Q(s, a) consecutively remains unchanged for
nlimit times, then we say that an action a is converged
in a state s. Converged actions are no longer explored by
MOCART-CGA which means that the estimated value for
such state-action pairs cannot be modified at this stage. We
say that a state s is converged if all the applicable actions in
s (App(s)) are converged. If s is converged, then MOCART-
CGA selects the best action a at s (i.e., where Q(s, a) is the
highest).

Overview

The look-ahead expansion of a current state in MOCART-
CGA is based upon a Monte-Carlo tree search paradigm [24].
The number of expansions of the current state is limited
by a predefined constant. MOCART-CGA selects an action
in each state visited during the look-ahead search until the
search reaches a predefined depth.

Fig. 2. An example of an iteration of MOCART-CGA.

An example of an iteration of MOCART-CGA is shown
in Figure 2 on a grid of size 7 × 7 cells. A blank cell
represents a walkable position and the black cells represent
obstacles. The example shows a look-ahead search of depth
four. so represents the initial state and G is the goal state of
the planning problem. MOCART-CGA randomly chooses an
action a in so. The result of applying a in s, a state s1, is esti-
mated using the transition function i.e. Transition(so, a). A
corridor of actions is created in s1 which includes the actions
a11 and a12 such that a11, a12 ∈ Ac(a, s1). MOCART-
CGA randomly selects an action (say a12) from the corridor
and moves to a state s2 by using Transition(s1, a12).
MOCART-CGA randomly selects an action (say a22) in the
state s2 from a corridor Ac(a12, s2) = {a21, a22, a23}. The
same process continues until the look-ahead search reaches a
predefined depth (i.e. four) and the ‘leaf’ state s4 is evaluated
using the reciprocal of the shortest distance estimate between



s4 and G. The cumulative reward is calculated as a sum of
the rewards of all state-action pairs seen during the look-
ahead search and the evaluation of the ‘leaf’ state (s4). If the
cumulative reward is greater than Q(so, a), then Q(so, a) is
updated otherwise it remains unchanged. If Q(so, a) remains
unchanged for a given number of consecutive iterations then
a is not selected in so in future expansions. If so is visited for
the first time, then each applicable action in so is explored
at least once.

Algorithmic Details

The algorithm MOCART-CGA is depicted in Figure 3. If
the current state sc is converged then MOCART-CGA returns
the best action applicable in sc, i.e with the highest action
value (Line 2). Otherwise MOCART-CGA performs a limit
number of rollouts to estimate the action values in sc. In
each rollout, MOCART-CGA randomly chooses an action
a ∈ App(sc) which has not yet been sampled or which has
been sampled the least number of times (Line 6). The next
state sn (a result of applying a in sc) is estimated by using
the stochastic transition function Transition(sc, a) (Line
7). The immediate reward R(sc, a) of the state-action pair
(sc, a) is computed and stored in rn (Line 8). sn is expanded
to a depth depth − 1 in the following way. Choosing an
action in sn (Line 10) is done in a similar way as before
(choosing a in sc). If the chosen action a′ has already been
sampled in sn in the previous searches, then it randomly
selects an action from the corridor of a (i.e., Ac(sn, a)).
Selection is done in the same way as before (e.g. Line
6). The immediate reward of the state-action pair (sn, a) is
computed and added to rn (Line 13). The next state snext is
determined by again using the Transition function (Line 14
and then sn := snext (Line 15). The expansion phase lasts for
depth− 1 iterations (the FOR loop). At the depth depth the
leaf node sn is evaluated using the distance estimation to the
goal dist(sn, g). The long term reward rn is then increased
by 1/dist(sn, g) (Line 17). If rn is greater than Q(sc, a),
then Q(sc, a) is updated, i.e., Q(sc, a) = rn (Lines 19-
20). Then MOCART-CGA performs another rollout until the
number of performed rollouts reaches limit (sc is the start
node for each rollout). At the end, MOCART-CGA selects
the best action in sc (Line 23) and returns it for execution
by the planner (Line 24).

The R function (Figure 4, adapted from [10]) computes
the immediate reward of a state-action pair. At first, R
estimates the result of applying an action a in a state sn
by using the stochastic function Transition(sn, a) (Line
1) (snext = Transition(sn, a)). The immediate reward is
computed as a fraction where the numerator consists of a
number of states possibly reachable from sn by applying a
(P (sn, a, st) > 0) and the denominator is computed as a
product of a scaling factor Wd and an estimated distance
from sn to the goal dist(sn, g). The scaling factor Wd

normalizes the relationship between collision-free and ‘real’
paths to the goal.

Function MOCART − CGA(sc, g)
Read access depth, limit, nlimit;
1. IF sc is converged
2. a := argmaxa∈App(sc)Q(sc, a);
3. RETURN a;
4. ELSE
5. REPEAT
6. a := RandomChoice({a | a ∈ App(sc),

∀a′ ∈ App(sc) : n(sc, a) ≤ n(sc, a
′)});

7. sn := Transition(sc, a);
8. rn := R(sc, a);
9. FOR: i = 1 to depth− 1
10. a′ := RandomChoice({a | a ∈ App(sn),

∀a′ ∈ App(sn) : n(sn, a) ≤ n(sn, a
′)});

11. IF n(sn, a
′) > 0 THEN

12. a′ := RandomChoice({ac | ac ∈ Ac(a, sn),
∀a′c ∈ Ac(a, sn) : n(sn, ac) ≤ n(sn, a

′
c)});

13. rn := rn +R(sn, a
′);

14. snext := Transition(sn, a
′);

15. sn := snext;
16. END FOR
17. rn := rn + 1/dist(sn, g) ;
18. n(sc, a) := n(sc, a) + 1;
19. IF Q(sc, a) < rn THEN
20. Q(sc, a) := rn;
21. limit−−;
22. UNTIL (limit > 0);
23. a := argmaxa∈App(sc)Q(sc, a);
24. RETURN a
End MOCART − CGA

Fig. 3. MOCART-CGA abstract algorithm

Function R(sn, a)
1. snext := Transition(sn, a);
2. rw := ‖{st:P (sn,a,st)>0 ∀st∈Next(sn,a)}‖

Wd∗dist(snext,g)
;

3. RETURN rw
End R

Fig. 4. Reward Function

PATH PLANNER

MOCART-CGA is embedded in a real-time planner. The
real-time planner interleaves planning and plan execution. At
the beginning, the planning agent is placed in the given initial
state. In each planning episode, MOCART-CGA looks for
the best action applicable in the current state of the planning
agent which is then executed (applied). After execution, the
planning agent moves to a new state. At the new state,
MOCART-CGA returns the best action which is executed
and the agent moves to another state. This process continues
until the planning agent reaches the goal state. A high level
design of the planner is given in Figure 5.
The detailed description of the algorithm follows. At the
beginning (Line 1) the planner initializes parameters (e.g.
limit, depth) and puts the initial state to s. After that the



Procedure Planner
Read(so, g);
1. initialize parameters and s := so;
2. REPEAT
3. a := MOCART − CGA(s, g);
4. s′ := Execute(a, s);
5. ne(s, a) = ne(s, a)+1;
6. ne(s, a, s′) = ne(s, a, s′)+1;
7. P (s, a, s′)=ne(s, a, s′)/ne(s, a);
8. IF ne ≥ alimit THEN Q(s, a) := 0;
9. s := s′;
10. UNTIL s.pos = g;
End Planner

Fig. 5. A high level design of the MOCART-CGA planner

planner iteratively performs the following until the planning
agent reaches the goal state g.

The planner calls MOCART-CGA (Line 3) for the state s
to select an action a ∈ App(s) to move the planning agent
towards g. The action a is executed in s and the agent moves
to a new state s′ (Line 4). After that, we update the counters
determining how many times a was executed in s and how
many times it results in s′ (Lines 5-6). The counters are used
for computing the probability of reaching s′ by executing a
in s (Line 7). If the number of executions of a in s reaches a
pre-defined limit alimit, then Q(s, a) is set to zero to prevent
further execution of a in s (Line 8). The reason for such a
limitation is to enable the agent to escape a cycle in which
it might be trapped (i.e., if executing a sequence of actions
in some state s results in reaching the same state s).

EMPIRICAL ANALYSIS

MOCART-CGA is empirically evaluated using four bench-
mark maps from a commercial game called Dragon Age:
Origins 1. The details of these benchmarks are given in
Table I. In the dynamic world of these benchmarks, dynamic
obstacles appear on the empty spaces of the map randomly,
simulating other moving agents, for example. The immedi-
ate visible range is restricted to ten cells. The immediate
visibility represents the line of sight of a moving character.
The closest rival techniques for comparison with MOCART-
CGA are MCRT, LSS-LRTA and RTD, and we provide com-
parisons with these techniques. The maximum look-ahead
depth is kept at 15 for all planners. We empirically optimize
the parameters for each of the planners, ensuring that each
planner runs in the best configuration. The dynamics of the
environment used for benchmarking are specified as follows.
Each time the agent executes an action and moves to some
other state, 10% of the cells randomly change their status
from blocked to empty or vice versa. The experiments are
performed on a machine with Intel(R) Core (TM) 2 Quad
processors each of speed 2.6 GHz and 8 GB RAM. The
experiments are run in Windows 7 Professional edition.

Performance Metrics

The performance of a planner is measured using two
parameters: sub-optimality of the solution and time per

1http://movingai.com/benchmarks

Map Size No of
Planning problems

Arena2 281 × 209 300
Orz103d 463 × 4456 300
Orz702d 718 × 939 450
Orz900d 1491 × 656 300

TABLE I
THE SELECTED BENCHMARK MAPS.

search. Time per search means the time taken by an algorithm
to select one action in one planning episode. Time per search
is represented by Ts in rest of the paper.

Sub-optimality is measured using a ratio of lp to lo (i.e.
lp
lo

) where lp is the length of the solution by the planner and
lo is the length of the optimal path given in the benchmark.
Sub-optimality is represented by Sub. Time per search is the
key performance indicator as it is important for a real-time
system to respond within a pre-defined time-limit. Smaller
values of these parameters represent better performance of
the planner.

The performance of MOCART-CGA is compared against
MCRT, LSS-LRTA and RTD for these metrics.

Dynamic Environments

The average sub-optimality of the planners is shown in
Figure 6. Average sub-optimality is calculated using the mean
of ten runs. The results show that MOCART-CGA performs
significantly better than MCRT planner with respect to
sub-optimality. MCRT has higher sub-optimality in Arena2
than in other benchmarks. The poor performance of MCRT
planner in the dynamic benchmarks is mainly due to the
unfocussed rollouts. MOCART-CGA (due to the focussed
rollouts) produces solution quality comparable to the state-
of-the-art real-time path planners i.e. LSS-LRTA and RTD.

Fig. 6. Average sub-optimality (with Standard Error) of the planners on
four benchmarks.

A comparison of the planners, with respect to time per
search (Ts), is shown in Figure 7. The MOCART-CGA
planner performs significantly better than its rivals with
respect to time per search. RTD is the most expensive in
terms of time per search which is due to the global backward
search. RTD requires higher time per search than the other
planners in all domains but produces solutions of the highest
quality in the Arena2 benchmark instance (although not on
other maps).



Fig. 7. Average Time per search (with standard error) of the planners on
four benchmarks.

Sampling in the MCRT algorithm is more expensive than
in MOCART-CGA. The difference highlights the importance
of the use of corridors in action sampling to reduce the
searching efforts in a planning episode in a Monte-Carlo
planning technique. RTD is a promising approach that can
solve path planning problems in a dynamic environment. This
path planning algorithm can update (increase or decrease)
the heuristic value of a cell if the grid cell is passable while
LSS-LRTA cannot decrease the heuristic value of a cell if
the cell is blocked due to a dynamic change. The Monte-
Carlo planners decrease an action’s value (e.g. MOCART-
CGA does this in line 13 of Figure 3) if it leads to a blocked
location and re-estimate the action value if that location is
again passable due to a dynamic change.

Static Environments

We now compare performance on the same benchmark
maps with no dynamic obstacles. Primarily, we include these
results for completeness and to enable the reader to under-
stand how MOCART-CGA performs in this domain. Our
primary interest, as stated, is in the dynamic environments
exemplified in RTS games.

The sub-optimality of the planners in the static environ-
ments of the benchmark maps is shown in Figure 8. Every
planner solves all of the instances from the Orz702d map
but for the other maps (i.e. Arena2, Orz103d and Orz900d)
the planners could not solve all of the instances within the
global time limit. For example, in the static world of Arena2,
only RTD planner solves all 300 problems. And in Orz900d,
not a single planner could solve all planning problems. For a
fair comparison, we use the instances that all planners solve.
In Arena2, there are 265 problems that are solved by all
planners within the time limit. In the Orz103d and Orz900d
maps, the number of problems commonly solved are 295 and
286 respectively.

The results show that LSS-LRTA performs better than all
the other planners in the static benchmarks. MOCART-CGA
remains better than MCRT. MOCART-CGA performs more
poorly than RTD and LSS-LRTA in the Arena2 and Orz103d
maps. In comparison to the dynamic benchmarks, the quality
of the MOCART-CGA results degrades significantly.

Fig. 8. Sub-optimality of the planners in the static and partially observable
world of the benchmarks.

Fig. 9. A problem on the Arena2 map with a local maximum

Discussion of Results

MOCART-CGA outperforms its competitors in terms of
time per search in all benchmark domains and in both
dynamic and static partially observable environments. This is
because MOCART-CGA has more focussed rollouts due to
the use of corridors. Time per search is the key performance
indicator as it is important for a real-time system such as an
RTS game to select the next action within a very short time.

In terms of MOCART-CGA’s average solution quality, it
is much better than MCRT and comparable with LSS-LRTA
and RTD. However, in some benchmarks, the quality of the
plans produced by MOCART-CGA is lower than that of the
other planners. The cause of this reduced quality is the slow
recovery by MOCART-CGA from local maxima. Figure 9
shows a pathological problem where MOCART-CGA per-
forms worse than RTD. The focussed rollouts of MOCART-
CGA guide the planner towards the local maxima at the start
of planning. To escape this local maxima, MOCART-CGA
travels to every state within the local maxima at least once.
Because MOCART-CGA planner imposes a bound on the
number of times an action is selected to execute at a state,
it does escape eventually. The searching effort required by
MOCART-CGA to escape local maxima is proportional to
the size of the local maxima. In the results for the static
Orz103d map, the higher sub-optimality is evidence of this
behaviour. The use of corridors does enable MOCART-CGA
to learn more quickly than MCRT to escape from local
maxima, but this is an area for future work.



In the static Orz702d map, all planners solve 450 prob-
lems and the sub-optimality of the planners is smaller as
compared to their performance in other benchmark maps.
In the static Orz900d benchmark instances, MOCART-CGA
performs slightly better than RTD. In this map, most of
the area between the start location and the goal location
is occupied by static obstacles. Backward search in such
cases could not guide RTD to escape the local maxima.
Time per search in static environments is the same as it is
in dynamic environments for all planners because they all
impose a limit on the amount of planning per episode, thus
MOCART-CGA has the fastest action selection mechanism
in these environments also.

Future Work

The MCRT planner is a promising planner for path
planning problems over multiple journeys and has been
shown to perform better than LSS-LRTA in some previous
studies [10]. Our results show that MOCART-CGA performs
significantly better than the MCRT planner in the single
journey path planning problems. These results also indicate
that MOCART-CGA will improve in performance (compared
to LSS-LRTA and MCRT) in path planning problems with
multiple journeys.

In this work, it has been shown that a Monte Carlo
approach is effective in solving path planning problems in
dynamic environments. Currently our work is restricted to
single-agent path planning. We believe that a similar ap-
proach will be effective in a multi-agent situation, especially
given the fact that the time to search is very small for
MOCART-CGA. All of the state-of-the-art approaches to
path planning in partially observable domains suffer from
becoming trapped in local maxima. We plan to experiment
with different reward functions, and also with ways of
dynamically updating the heuristic values of the states during
search, in an effort to overcome these limitations.

CONCLUSION

In this paper we have presented the MOCART-CGA
planner that performs focussed rollouts in a Monte-Carlo
simulation for path-finding in a partially observable dynamic
environment. The planner improves on previous Monte Carlo
approaches by using corridors and a notion of convergence in
order to effectively trade off exploitation of the best actions
and exploration of new ones. The planner is evaluated using
four benchmark maps and over 1000 instances. MOCART-
CGA is compared against three state-of-the-art path planning
algorithms: MCRT, LSS-LRTA and RTD.

Our results demonstrate that MOCART-CGA performs
better in all metrics and on both static and dynamic domains
than the previous best Monte Carlo based path planning algo-
rithm, MCRT. We have demonstrated that it produces similar
quality plans in dynamic domains to RTD and LSS-LRTA.
MOCART-CGA uniformly has the lowest time to search
of all the algorithms in static and dynamic environments,
leading to a more responsive real-time algorithm.

REFERENCES

[1] D. P. Bertsekas, J. N. Tsitsiklis, and C. Wu, “Rollout algorithms for
combinatorial optimization,” Journal of Heuristics, vol. 3, pp. 245–
262, 1997.

[2] G. Tesauro and G. R. Galperin, “On-line policy improvement using
monte-carlo search.” in NIPS’96, 1996, pp. 1068–1074.

[3] L. Kocsis and C. Szepesvári, “Bandit Based Monte-Carlo Planning,” in
Proceedings of the 17th European Conference on Machine Learning,
2006, pp. 282–293.

[4] C. Lee, M. Wang, G. Chaslot, J. Hoock, A. Rimmel, O. Teytaud,
S. Tsai, S. Hsu, and T. Hong, “The Computational Intelligence
of MoGo Revealed in Taiwan’s Computer Go Tournaments,” IEEE
Transaction on Computational Intelligence and AI in Games, vol. 1,
pp. 73–89, 2009.

[5] R. Bjarnason, A. Fern, and P. Tadepalli, “Lower Bounding Klondike
Solitaire with Monte-Carlo Planning,” in Proceedings of the 19th
International Conference on Automated Planning & Scheduling, 2009.

[6] V. Bulitko, N. Sturtevant, J. Lu, and T. Yau, “Graph abstraction in
real-time heuristic search,” Artificial Intelligence, vol. 30, pp. 51–100,
2007.

[7] N. J. Nilsson, Principles of Artificial Intelligence. Springer-Verlag,
1982.

[8] D. Hamm, “Navigational Mesh Generation: An empirical approach,”
in AI Game Programming Wisdom 4, S. Rabin, Ed. Charles River
Media, 2008, pp. 113–114.

[9] S. Rabin, “A* speed optimizations,” in Game Programming Gems,
M. Deloura, Ed. Charles River Media, 2000.

[10] M. Naveed, A. Crampton, D. Kitchin, and T. McCluskey, “Real-
Time Path Planning using a Simulation-Based Markovian Decision
Process,” in AI-2011: 31st SGAI International Conference on Artificial
Intelligence, 2011.

[11] S. Koenig and X. Sun, “Comparing Real-Time and Incremental Heuris-
tic Search for Real-Time Situated Agents,” Journal of Autonomous
Agents and Multi-Agent Systems, vol. 18, no. 3, pp. 313–341, 2009.

[12] D. Bond, N. Widger, W. Ruml, and X. Sun, “Real-Time Search in
Dynamic Worlds,” in Proceedings of the Third Annual Symposium on
Combinatorial Search , 2010.

[13] M. Kearns, Y. Mansour, and A. Y. Ng, “A sparse sampling algorithm
for near-optimal planning in large markov decision processes,” in
Proceedings of the 16th International Joint Conference on Artificial
intelligence - Volume 2. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1999, pp. 1324–1331.

[14] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, pp. 235–256, May
2002.

[15] R. Balla and A. Fern, “UCT for Tactical Assault Planning in Real-
Time Strategy Games,” in Proceedings of the 21st International Joint
Conference on Artificial Intelligence, 2009, pp. 40–45.

[16] K. Laviers and G. Sukthankar, “A real-time opponent modeling system
for rush football,” in Proceedings of International Joint Conference on
Arificial Intelligence, 2011, pp. 2476–2481.

[17] Y. Björnsson and H. Finnsson, “Cadiaplayer: A simulation-based
general game player,” IEEE Trans. Comput. Intellig. and AI in Games,
vol. 1, no. 1, pp. 4–15, 2009.

[18] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, Dec. 1959.

[19] S. Koenig and M. Likhachev, “D* Lite,” in AAAI/IAAI. AAAI Press,
2002.

[20] C. Hernandez and J. A. Baier, “Real-time heuristic search with
depression avoidance,” in Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI-11), Barcelona, Spain,
July 2011.

[21] N. Sturtevant and V. Bulitko, “Learning where you are going and
from whence you came: h- and g- cost learning in real-timee heuristic
search,” in Proceedings of the Twenty-second International Conference
on Artificial Intelligence, 2011, pp. 365–370.

[22] R. E. Korf, “Real-Time Heuristic Search,” Artificial Intelligence,
vol. 42, pp. 189–211, 1990.

[23] S. LaValle, Planning Algorithms. Cambridge University Press, 2006.
[24] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling,

P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A Survey of Monte Carlo Tree Search Methods,” IEEE Transactions
on Computational Intelligence and AI in Games, vol. 4, no. 1, pp.
1–43, March 2012.


