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Bearing defect detection and diagnosis using a time encoded
signal processing and pattern recognition method

S Abdusslam, P Raharjo, F Gu and A Ball
University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK

E-mail: Shukri Abdusslam@hud.ac.uk

Abstract. Many new bearing monitoring and diagnosis methods have been explored in the last
two decades to provide a technique that is capable of picking up an incipient bearing fault.
Vibration analysis is a commonly used condition monitoring technique in world industry and
has proved an effective method for rolling bearing monitoring systems. The focus of this paper
is to combine two conventional methods: wavelet transform and envelope analysis with the
Time Encoded Signal Processing and Recognition (TESPAR) to develop a better technique for
detection of small bearing faults. Results show that TESPAR with these two combinations
provides good fault discrimination in terms of location and severity for different bearing
conditions.
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1. Introduction
The potential for machine Condition Monitoring (CM) to improve system performance and prevent
harmful failures has been rising considerably. Various novel CM techniques have been suggested in
recent years in order to produce powerful analysis techniques capable of precisely distinguishing
bearing conditions.

In bearing CM, vibration based envelope spectrum and wavelet transforms are now widespread for
detecting bearing defects. Nevertheless, these techniques are complex analytically and require a large
memory space to accommodate the sampled data, and a high power computer necessity to perform the
analyses. These demands make it costly for this technique to be realised in an intelligent sensor node
which today typically has very limited computational capability, storage and power resources [1].

TESPAR describes signal waveforms in regard to its shapes by coding the signals and putting them
in different kinds of representation such as S and A matrices [2].

The paper compares two different techniques resulting from combining TESPAR with two
conventional methods, envelope spectrum and the wavelet analysis, and reports an experimental study
of bearing faults detection using TESPAR in combination with wavelet signals and envelope signals to
assess the capability of two new combination methods in detecting fault locations.

The paper also evaluates the performance of the two methods for roller element bearings with three
different kinds of faults. It is revealed that, using bearing vibration signals, both the combinations of
TESPAR with envelope signal and the TESPAR with wavelet signal are proven sufficient for bearing
conditions discrimination. TESPAR both combinations can classify results accurately and differentiate
bearing defects.
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2. Envelope analysis
Envelope analysis is a common technique for bearing faults detection [3]. Suppose the resonance
frequency is a continuous pure sine and the impulses have the form of a sine wave of much lower
frequency, the signal detected will be a modulated signal which has the form of the individual signals
multiplied together, as shown in figure 1.

Figure 1. Illustrative example of amplitude modulation [3].

Basically, envelope analysis extracts the time history of the signals modulating the amplitude of the
measured vibration signal. This is very useful for the class of problems where faults have an amplitude
modulating effect on the characteristic frequencies of the bearing. Envelope analysis requires taking
the FFT of the modulating signal. Different bearing defects produce different patterns of the envelope
spectrum and so this is a suitable method for successfully detecting rolling element faults [4].

Figure 2 shows a schematic illustration of the application of envelope spectrum. First the measured
signal, which contains low frequency noise, is passed through a band pass filter to attenuate both the
low frequency noise and other unwanted noise occurring outside the frequency band of interest. Next,
the band pass signal is "rectified" to produce the “absolute waveform”. This is then processed using a
low-pass filter to extract the low frequency envelope waveform. Finally, the FFT is applied to the
envelope waveform to obtain its spectrum.



Figure 2. Schematic illustration of envelope analysis technique.

In reality, the measured signal may be so noisy that even after passing through the band pass filter
the signal may still contain undesirable elements which increase the difficulty of identifying
information in the envelope spectrum. Also, the results of the envelope analysis depend on the
frequency band chosen. In envelope analysis for bearing CM, the high resonant frequency technique
(HRFT) uses band pass filters selected to include the frequency band where the defect signal is
relatively strong [5, 6, 7]. However, this band may not be known initially and also may change as the
bearing operating condition change. Envelope analysis is likely to be more successful if the operator
has prior knowledge of the carrier frequencies before selecting the band pass filters. Additional
problems can arise  when a number of  spectra  are  summed; and components  at  the same frequencies
may interfere giving either cancellation or reinforcement, depending on their phase differences.

3. Wavelet Transform
The Fourier transform of a signal contains no information on when a particular event occurred. This is
not a problem for stationary signals which repeat themselves, but can be important when investigating
the development of faults where transitory phenomena often constitute the most significant part of the
signal.

In an effort to correct this deficiency, Gabor [8] adapted the Fourier transform to analyze only a
small section of the signal at a time - a technique called windowing the signal. Essentially Gabor
divided the time-domain signal into a series of contiguous sections and the signal contained in each
window is then transformed into the frequency domain. Mathematically the process is not so simple,
as the window is a multiplying function which must be tailored to avoid introducing spurious results.
Today a large number of such windows are available and most have the property that the initial and
final values are close to zero so that the transform does not see the time domain signal as a series of
step functions. This process is known as the Short-Time Fourier Transform (STFT) and produces a
series of spectra, one for each window. As the duration of each window is known the spectra can be
layered into a three dimensional plot (frequency, time and amplitude).

The two drawbacks with this method are: first, once a particular window size has been selected it
cannot then be changed, but many signals can require more precision in determining frequency at
some times than at others. Second, the uncertainty principle means that good resolutions in both time
and frequency-domains cannot be achieved simultaneously [9]. For example, if the signal to be
analyzed is of short duration, obviously a narrow window should be selected, but the narrower the
window the wider the associated frequency band and the poorer the frequency resolution.

The logical step was to develop a transform procedure which incorporated variable-sized
windowing. Wavelet analysis allows the use of windows of longer duration when more precise
frequency information is needed, and shorter duration when more precise time information is required.
Because the term frequency is reserved for the Fourier transform we do not speak about time-
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frequency domains when discussing wavelets, instead we speak about time-scale representations
where scale can be thought of as an inverse function of frequency.

The use of wavelet analysis is attracting considerable attention as a tool for diagnosis of the
condition of bearings. Unlike the Fourier transform which expresses the time-domain signal in terms
of sine and cosine functions, wavelet analysis expresses a signal over the whole spectrum in terms of
wavelet functions of different scales which makes it more useful for the extraction of transient features
contained in a signal. Because wavelet analysis uses wavelets of variable scales it can examine the
entire spectrum when extracting a defect signal, and so does not require a signal with a dominant
frequency band as is needed for frequency-domain filtering.

The windows used with wavelet transforms have the extremely important and useful feature that
the width of the window changes (is scaled) as the transform is determined for each spectral
component.

4. TESPAR Approach
TESPAR is a digital language that originated as a means of coding signals for speech recognition [10].
TESPAR depicts signal waveforms according to its real and complex zeros based on a mathematical
waveforms representation [2] which is different from conventional CM techniques.

TESPAR quantization procedure has been developed to code signals according to the period
between two consecutive zero-crossings and the shape of the curve thus contained [11]. This period is
named an epoch. Every epoch can be illustrated by two parameters: D (duration - number of samples
in the epoch) and S (shape – determined by the number of minima or maxima contained in the epoch)
[12]. Figure 3 shows an epoch encoded into its TESPAR parameters where D=17 and S=1.

Figure 3. TESPAR: single epoch with D = 17, S = 1.

Most signal waveforms can be coded into a limited sequence of numerical descriptors known as the
TESPAR  symbol  stream  [13],  normally  from  1  to  28.  In  fact  28  symbols  have  been  found  to  be
sufficient to describe most signals adequately [13, 14]. The symbol sequence can be characterized in
two ways: a one-dimensional “S-Matrix” vector or two-dimensional vector which is named the “A-
Matrix” [14].

The  S-matrix  can  be  defined  as  the  TESPAR  symbols  that  record  the  number  of  times  each
TESPAR alphabet symbol occurs in the TESPAR symbol stream, and the A-matrix can be defined as a
two-dimensional 28x28 vector matrix that records the number of times each pair of symbols in the
alphabet appears in the symbol stream. The A-matrix has the important characteristic of expressing the
temporal relationship between pairs of symbols [12] and because parameter n represents the delay
between symbols it also provides frequency information. Typically, slowly oscillating patterns have n
> 10 while higher frequency patterns have n < 10 [15].
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5. Test Rig Facilities
The  test  rig  is  displayed  in  figure  4.  The  drive  power  is  from  a  4.0  kW,  3-phase,  4  pole  electric
inductions motor. The speed and torque of the motor are controlled by a Siemens Micro Master
Controller so the drive shaft can be run at different speeds (to a maximum of 1420 rpm) with different
applied torque loads to a maximum of 4.0 kW. Two pairs of matched flexible couplings couple the
motor to the brake via three short cylindrical steel shafts. There are two bearing housings to support
the shafts, the housing nearer the motor contains a MAC cylindrical roller bearing type N 406 and the
other contains an SKF double row self-aligning spherical roller bearing type 22208 EK.

A radial load is applied to the central shaft using a hand pump with a pressure gate to pressurise a
hydraulic  ram  frame,  which  is  connected  to  a  load  cell.  One  Sinocera  YD-5  piezoelectric
accelerometer with frequency range up to 10 kHz is positioned on the housing of the N 406 bearing to
measure the vibration.

Figure 4. Test rig construction.

A data acquisition system was designed to monitor and record vibration, temperature, and other
parameters of interest, but it also contains some basic data analysis tools including spectrum analysis
for online data examination. A Sinocera type YE6232B, 16 channel, 16 bit data acquisition system
was used, see figure 5.

The  16-channel  high  speed  data  acquisition  system recorded  all  the  measurements  at  a  sampling
rate of 96 kHz. The hardware consisted of three parts: the piezoelectric accelerometer model YD-5,
see figure 6, which was connected via a charge amplifier to a data acquisition card which was then
connected to a PC.
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Figure 5. Sinocera YE6232B. Figure 6. YD-5 accelerometers [2].

The amplifier is necessary to amplify the vibration signal, which is often very weak, and it also
electronically isolates the accelerometer from the processing and display equipment. The software is
data  acquisition  logic  and  the  analysis  software  (with  other  utilities  that  can  be  used  to  access  and
analyse data from the data acquisition memory of the computer). The data acquisition system
specification is shown in Table 1.

Table 1. Data Acquisition System (DAS) Specification.

DAQ system Specification
Manufacturer Sinocera YE6232B
Number of channels 16 channels, selectable voltage/IEPE input
A/D conversion resolution 16 bit
Sampling rate (maximum) 100 kHz per channel parallel sampling
Input range ±5V
Gain Selectable either 1, 10 or 100
Filter Anti-aliasing filter
Interface USB 2.0

A data acquisition control programme developed for Lab-Windows was used during tests and it
consists of a main data inspection panel and parameters set-up panel. This software was based on a
Windows operating system and had the capability to carry out on-line data sampling. Modifications
such as the number of channel, sampling frequency, data length and filenames can be chosen, recorded
and stored on separate set-up page of the software package.

6. Envelope spectrum and wavelet transforms analyses
To benchmark the TESPAR, two conventional techniques, the envelope and the wavelet analysis, have
been used for the four bearing cases. Spectra obtained from these analyses provide base lines against
which to measure the effectiveness of TESPAR.

In calculating the envelope spectrum, signals were filtered using a frequency band from 8 kHz to
15 kHz, in which a structural resonant was found to enhance the signal greatly.

For wavelet analysis, there are many different kinds of wavelets that can be selected. In this paper
the wavelet function of 4th order of Daubechies was chosen because it gives the best match to bearing
defects signal. In addition, the wavelet coefficient at scale 7 was used so that it matches the frequency
range in envelop analysis. Figures 7 and 8 show the envelope spectrum and the wavelet transform for
the four bearings.



Figure 7. Envelope spectrums for three different small bearings faults.

0 50 100 150 200 250 300 350 400 450 500
0

2

4
 (a) Healthy

Frequency(Hz)

A
m

pl
itu

de
(m

V
)

0 50 100 150 200 250 300 350 400 450 500
0

2

4
(b) Outer race fault

Frequency(Hz)

A
m

pl
itu

de
(m

V
)

0 50 100 150 200 250 300 350 400 450 500
0

2

4
(c) Roller element fault

Frequency(Hz)

A
m

pl
itu

de
(m

V
)

0 50 100 150 200 250 300 350 400 450 500
0

2

4
(d) Inner race fault

Frequency(Hz)

Am
pl

itu
de

(m
V

)

Figure 8. Daubechie 4th wavelet for three different bearings faults.
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When  a  bearing  has  no  fault  it still produces small amplitude vibrations but the characteristic
frequencies are be seen in envelope spectrum or wavelet transform, see figures 7 and 8 respectively. This
can be illustrated by the blue solid line in figure 7(a) or red dashed line in figure 8(a).

Compared with the faulty case in the same plots, the envelope spectrum and the wavelet transform
from the healthy bearing are very flat, i.e. no clear spectral lines can be seen. Figures 7(b) and 8(b) are the
spectra  for  a  small  outer  race  fault  and  the  characteristic  frequency  is  identified  at  83.3  Hz  (plus
harmonics). Furthermore, in the same figure, patterns (c) and (d), which represent roller and inner race
faults respectively, the characteristic roller and inner race faults frequencies can be seen and identified at
48.3 Hz and 134.4 Hz respectively.

These two spectra suggest that the fault can be diagnosed by corresponding characteristic frequencies.
Moreover, it confirms that the signals under investigation did contain sufficient information for bearing
monitoring and hence were prepared for use with the TESPAR coding.

7. TESPAR with Wavelet Signal
The  wavelet  signal  for  each  case  was  encoded  into  its  TESPAR symbol  stream,  and  then  S  and  A-
Matrices were constructed for detection and evaluation of fault location.

Figure 9(a) shows the S-Matrices of wavelet signal for the healthy bearing and three different
bearing faults seeded into the outer race, roller and inner race respectively. It can be seen that most of
signal content appear in the symbol between 2 and 6, especially, the highest amplitude at Symbol 2.
This  may  show that  the  structure  of  the  signal  is  relatively  simple.  To  the  eye,  visually  all  symbols
display similar amplitudes for the four cases, discrimination is then difficult in this case.
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Figure 9. Wavelet S-Matrices for a healthy and three different bearing faults.
However, as shown in figure 9(b) comparing the normalised amplitudes (obtained by dividing all

values by the healthy value) between four cases at each symbol exhibit better image, only at Symbol 8
a clear difference can be observed and that may be a basis for assessing differences between the four
cases.



When the changing percentage of symbols in term of amplitude is considered as shown in figure
9(b), much clearer image is obtained for symbol 8 as a key symbol that makes the difference, whilst
the remaining symbols show less difference between the four cases.

The amplitude for the baseline is the minimum and fault detection can be done based on amplitude
of this Symbol 8. Moreover, it has found that only one symbol in wavelet S-Matrices makes difference
to differentiate the faults as shown already in figure 9(b).
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Figure 10. Wavelet A-Matrices for a healthy and three different bearing faults.

Figure 10 shows the A-Matrices of wavelet signal for the healthy bearing and three different
bearing faults. By looking at the four patterns, there are obviously completely different.

The outer race pattern 10(b) exhibits few peaks in the positive side of the scale with a prominent
peak rising to 0.02; however, the roller fault pattern10(c) reveals more peaks in the positive side while
the biggest peak is exhibited in the negative side. The inner race fault case as shown in 10(d), also
displays a different pattern, more and larger peaks in the positive side and one large peak on the
negative side. These three-dimensional patterns can be used to completely discriminate the faults.

8. TESPAR with Envelope Signal
Figure 11 shows the S-Matrices of the envelope signal and the change in normalised values, expressed
as a percentage of the envelope signal symbols for the healthy bearing and for three bearing faults
seeded into the outer race, roller element and inner race of three similar bearings.
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Figure 11. Envelope signal S-Matrices for a healthy and three different bearing faults.

As shown in figure 11(a) the healthy bearing is defined by its difference from the faulty conditions
for symbols 2, 6 and 8, symbol 2 shows the most difference between the healthy and faulty bearings
while the symbols for the faulty bearings have close amplitudes perhaps except symbol 3.

Figure 11(b) reveals the symbols’ normalization to the healthy case, symbol 8 exhibits the most
difference between the four cases, and in addition, the faulty bearings in this symbol show the biggest
difference comparing with the healthy case.

The A-Matrices shown in figure 10 demonstrate that the separation between the healthy condition
and the three faults is clear. The changes in peak positions and amplitudes with the introduction of the
faults can clearly discriminate all conditions. With the faulty cases there are statistically significant
changes  peak  amplitudes  indicating  that  a  fault  is  present.  The  differences  in  the  3-D  A-  matrix
patterns are terms of peak positions and magnitudes for the bearing faults investigated here offer an
excellent method for fault location.

The  TESPAR  combination  with  envelope  signal  is  a  new  practice  that  offers  a  real  chance  to
discriminate between healthy and faulty bearings with identification of fault locations.
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Figure 12. Envelope signal A-Matrices for a healthy and three different bearing faults.

9. Conclusion
In this paper TESPAR was combined with two established signal processing methods: wavelet
transform and envelope analysis in an effort to produce a powerful combination that in common can
distinguish faults in bearing components earlier than separately. To assess the capability and
competence of these novels combination methods, their results were compared with those attained
using the envelope spectrum and the wavelet analysis alone.

When TESPAR was applied to encoding wavelet filtered data the resultant A-Matrices allow
complete differentiation between the healthy and faulty bearings and between different fault cases.
The S-Matrices are capable of discrimination between bearing conditions by using just one symbol.

However, the TESPAR and envelope signal combination also proved to be sensitive to bearing
faults. The A-Matrices also exhibit good diagnosis performance due to its clear different features from
the healthy bearing and between different bearing faults. The S-Matrices have three symbols, each
being able to separate the faulty bearings.
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