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~ Wheel-rail ¢

» N represents the Normal Contact
Force acting directly on the rail as a
result of the axle load, wheelset mass and
contact angle.

> F,.represents the longitudinal creep force
acting in the rolling direction of the wheel.

> F,represents the lateral creep force acting
in the lateral direction of the wheel.

» M. represents the spin creep moment
caused as a result rotation of the wheel in
the vertical z direction due to wheel conicity

» Normal contact problem involves calculating the normal contact forces acting on
the wheel-rail contact.

» f( contact angle, axle load of the wheelset, wheelset weight).

» The calculated normal forces are used to determine the contact patch shape,
size and dimension using Hertz Contact Theory.

Normal contact
forces

Contact patch




Tangential contact problem = creepages and tangential creep
forces developed in the wheel-rail contact as a result of acceleration, braking
or traction.

Kalker’s linear theory - lateral, longitudinal and spin creep forces
( for small creepages)

For large creepages - Heuristic non-linear model is used to limit the creep forces.
Prevents excessive damage to the wheels
Reduces probability of derailment

Calculated creep forces & lateral, longitudinal and spin creep moments >
determine total lateral force and spin moment force acting on the wheelset.

The lateral and yaw behaviour of the wheelset on the track is investigated by
applying Newton’s 2" law of motion.

2D WHEEL-RAIL CONTACT MODEL

Diagnostic Engineering Research Centre
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Wheel-rail contact models considering
contact patch size

Contact Models Method

Contact
Model

Hertz [ Non-Hertzian J [Finite EIementJ

Semi- Multi- (
Hertzian Hertzian Uh
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Determination of lateral displacement

Wheel-rail Normal Tangential Wheelset
contact Contact Contact Dynamic
Geometry Problem Problem Behaviour

Lateral displacement
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Wheel-rail contact geometry
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Wheel-rail contact geometry
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Wheel-rail contact geometry

Initial Lateral displacement (y = l

r;

Derive Lateral and Vertical equations

1 By =08

Derive Wheel-rail profile equations
for Z’0O’Y frame and Z”0”’Y”’ frame

Solve Simultaneous equations using
Quasi-Newton’s Method
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ordinates

Yes

Is the wheel

Iatzr_al ctO- Save Wheel-
ordinate rail Contact

greater than )
the specified Co-ordinates

limit

q

University of
HUDDERSFIELD

Inspiring tomcos professonals

Wheel-rail contact geometry
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Normal Contact Problem

NQ

_ | N, cos(5,,, +$)+ Ny cos(S,; ~$) = (W +mg)

N sin(é'wr +¢)—Nl Sin(é'wl —¢)=—(W +mg )¢

=
=
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Normal Contact Problem

’-Relative Curvatures Coefficients
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= +
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Contact patch semi-axis
IR
a=m ) xN1/3
2E(A+B)

1/3
b=n - xN1/3
2E(A+B)
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Lateral direction (mm)
N o

&

Normal Contact Problem
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e Lateral creepage’y =

* Longitudinal creepage "~ =

V]_ -

V=V
14
23 -8

e Spin creepage Vspin ="

%
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1
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Tangential Contact Problem
Lateral Creepage (Left/right Wheel-rail contact)
dy(1
Vo=
Verudly (vj .

Longitudinal Creepage
/

! dx//]
o M lofdy
Vx(left) R+R0+v[dt

= S A
x(left) — R i

rolling velocity

Spin Creepage

X,
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Tangential Contact Problem

Kalker’s Linear Theory ] [ Heuristic Non-Linear Model

1

Calculate Cree Calculate
P Normalized Creep
Forces forces
Fe==f11x

Fy =229y = F23Vspin

{
1
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Parameters for experimental test rig

[}

z

K
K
C

C

f11

f22

f23

f33

m

Py

X

(27

px

Moment of inertial

Lateral spring
stiffness
Longitudinal spin
stiffness

Lateral damper
coefficient

Longitudinal
damper
coefficient

Longitudinal linear
creep coefficient
Lateral linear
creep coefficient
Lateral/spin linear
creep coefficient
Spin linear creep
coefficient

Wheelset mass

1.27x10’N-mm
3.863x103N/mm

850 N/mm
8 Ns/mm

100 Ns/mm

8.06x10°N

8.09x10°N

2.2x107 N-mm

1.27x107 N-mm q‘
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yné?nﬁc behaviour of”the Wheelset on
Heuristic method

e track using
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3-DIMENSIONAL WHEEL-RAIL CONTACT
MODEL
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[ 3D Wheel-rail contact ]

I I

{Rigid Contact} [ Semi-elastic J

Method methods

| I
Minimum Minimum
Distance method Difference method
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Proposed 3D Wheel-rail contact model

Global Reference system
Z,

Wheelset

xur

y Local reference frame
a

A= Dﬁi (Wheelset centre of mass)
=nf ;

B = 0;, (Rail curve length)

X, Auxiliary reference frame
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Proposed 3D Wheel-rail contact model

> Global reference system (O, X;, Y, Z;) defines the track as
a three dimensional curve.

» The Auxiliary reference system (O, X,, Y,, Z,) follows the
wheelset during program simulation.

» The local reference system (O, X,,Y,.Z,) is defined
whereby Y, is rigidly fixed to the wheelset axle. The origin of
the wheelset O,, corresponds with the centre of gravity G of
the wheelset.

e 7:\?¥/f<
Proposed 3D Wheel-rail contact model

Lateral displacement

Yaw angle
."JI Roll angle I| 4
.
Equations of the
Contact Position
o Ral " = : { Yaw Displacement Lat"::lglﬁg::“m"'
function BIC“U:!:. > Auxiliary frame) i with time
Inter q of L—J
h Contact Position
functi Intersection on the
nction Rail Auxiliary surface
Ignore

— Adjust rell angle negative DIFFERENCE
and or equal to METHOD Wheaelset
Re-calculate zero Dynamic
Behaviour

Rolling Radius T
Wheel-rail contact Difference Function Tzr;gnatamcjlal
coordinates
Table Contact | —»{ Normal L Prablem
Angle Function| Problem
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‘roposed 3D Wheel-rail ca
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~ Proposed 3D Wheel-rail con
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~ Proposed 3D Wheel-rail ¢on
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~—Proposed 3D

Kinematic equation of the contact point in the Auxiliary system w.r.t the local
reference frame

x
Ve l:Xl.'.' . E.'.} =04+ [Az] [ (Xl.w Yw} = v
I
Xy ) Xy
WX, V) = Y D# = [uy Vi, V)= we
= (ww“.}z -X u, b(yw)

A4, = Rotation Matrix (link between Local and Auxiliary Reference
System)
v = yaw angle
¢ = roll angle
u, = Lateral displacement q‘
u, = Vertical displacement !
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/P/r/op’osed 3D Wheel-rai

Find the local minimum between the wheel and the rail contact points

D (Xw . EI.'I-} = (E:.l (qu Fw} — V7 (X Fw}}' Ca

C =¥ (4. ¥)intersection between the rail surface and line parallel to axis z,

contact model

xL
Yir
b(vs)

D=Wy (Xl.'l.' . EI.'I-}

Take partial derivative of D and reduce to one Dimensional form

Vi (Xl.v . EI.'I-} =

aD(x,1.2)
E,,)= ;T =
Check for Indentation |i(
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= Simuilfated Results

L _

roll angle ¢ (rad) 0-0.01 0.0005
Yaw angle y (rad) 0-0.01 0.0005
Lateral 0-10mm 0.5
displacement,

(mm)
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Simulated Results
[}
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Simulated Results
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Slimulated‘ Results |
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,x10° Simulated Results
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Adhesion
Detection

Creep force Conlc_:lty
. . function
estimation . .
estimation

Wheel profile design
and condition
monitoring ‘i‘
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ESTIMATION OF RAILWAY VEHICLE DYNAMIC PARAMETERS

USING MOTOR DRIVE BEHAVIOUR
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QOverhead Line

Loco Cooling Fans Circuit
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Future contributions

Technologies for accurate measurement and prediction

* traction and wheel slip/slide control
* estimation of vehicle-track dynamics, wear and
adhesion
» system integration for rail wheelset steering and
traction control
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Future contributions

Technologies for accurate measurement and prediction

* measurement of train ground speed with intelligent data
processing
* independent wheel set dynamics
» parameter identification
* automated and adaptive model-based prognostics using
Monte Carlo simulation, particle filter
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Future contributions

Mechatronic trains of the future

* remote condition monitoring with wireless intelligent
sensors for effective high speed maintenance and

inspection of train and track

* moving-load dynamics
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Futufe contributions

Mechatronic trains of the future

non-linear autonomous systems

* process monitoring, modelling, control and optimal

design

e expert systems
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