Dufton, Jesse T. R., Walsh, Aron, Panchmatia, Pooja M., Peter, Laurie M., Colombara, Diego and Islam, M. Saiful (2012) Structural and electronic properties of CuSbS2 and CuBiS2: potential absorber materials for thin-film solar cells. Physical Chemistry Chemical Physics, 14 (20). pp. 7229-7233. ISSN 1463-9076

As the demand for photovoltaics rapidly increases, there is a pressing need for the identification of new visible light absorbing materials for thin-film solar cells that offer similar performance to the current technologies based on CdTe and Cu(In,Ga)Se2. Metal sulphides are the ideal candidate materials, but their band gaps are usually too large to absorb significant fractions of visible light. However, by combining Cu+ (low binding energy d10 band) and Sb3+/Bi3+ (low binding energy s2 band), the ternary sulphides CuSbS2 and CuBiS2 are formed, which have been gathering recent interest for solar cell applications. Using a hybrid density functional theory approach, we calculate the structural and electronic properties of these two materials. Our results highlight the stereochemical activity of the Sb and Bi lone pair electrons, and predict that the formation of hole carriers will occur in the Cu d10 band and hence will involve oxidation of Cu(I).

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email