Computing and Library Services - delivering an inspiring information environment

Physicochemical Data Requirements for the Design of Fine Chemicals Processes: Acquisition and Application

Atherton, John H. (2011) Physicochemical Data Requirements for the Design of Fine Chemicals Processes: Acquisition and Application. In: Pharmaceutical Process Development. Current Chemical and Engineering Challenges. RSC Drug Discovery Series (9). RSC, Cambridge UK, pp. 178-206. ISBN 978-1-84973-146-1

Metadata only available from this repository.


Design of a good manufacturing process requires much more understanding and information than is provided in a typical laboratory process description. This chapter outlines the scope of the data requirements and the understanding of the science required to support adequate design of optimised laboratory and manufacturing processes. The amount and nature of the information required depends strongly on the complexity of the process, and an approach to identifying critical data is described. Numerous examples are provided of the application of the acquired data to the optimisation of laboratory processes and to scale up.

Item Type: Book Chapter
Uncontrolled Keywords: Chemical Process Development
Subjects: Q Science > QD Chemistry
T Technology > TP Chemical technology
Schools: School of Applied Sciences
Related URLs:
References: 1. J.H. Newman, The Idea of a University, 1852; Baronius Press, London, 2006, 141. 2. J.H. Atherton J.M. Double, B Gourlay, paper presented to World Congress of Chemical Engineering, Glasgow 2005. 3. E.V. Anselm and D.A. Docherty, Modern Physical Organic Chemistry, University Science Books, Sausalito, California, 2006; N. Isaacs, Physical Organic Chemistry, 2nd ed., Longman Scientific and Technical, Harlow, UK, 1987; H. Maskill, The Physical Basis of Organic Chemistry, Oxford University Press, Oxford, 1984; T.H. Lowry and K.H. Richardson, Mechanism and Theory in Organic Chemistry, 2nd ed., 1981, Harper & Row, N.Y., 1981; W.P. Jencks, Catalysis in Chemistry and Enzymology, Dover Publications, N.Y., 1969; E.S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston, N.Y., 1959. 4. D.D. Perrin, B. Dempsey and E.P. Sergeant, pKa Prediction for Organic Acids and Bases, Chapman and Hall, London and New York 1981; 5.; (accessed 5 Nov 2010). 6. (accessed 26 January 2011) 7. (accessed 11 Nov 2010); (accessed 11 Nov 2010) 8. ACD/PhysChem Suite, see (accessed 11 Nov 2010) 9. (accessed 11 Nov 2010) 10. L.K. Doraiswamy and M.M. Sharma, Heterogeneous reactions, Volume 2: Fluid-Fluid-Solid Reactions, John Wiley & Sons, N.Y., 1984; E.L Cussler, Diffusion. Mass transfer in fluid systems, Cambridge University Press, Cambridge, U.K., 1984; J.M. Smith, Chemical Engineering Kinetics, 3rd ed., McGraw-Hill, Singapore, 1981; J.H. Atherton, in Research in Chemical Kinetics, vol 2, ed. R.G. Compton and G. Hancock, pp. 193-259. 11. (accessed 11 Nov 2010) 12. R. Carlson, T. Lundstedt and C. Albano, Acta. Chem. Scand. B, 1985, 39, 79. 13. J.H. Atherton and K.J. Carpenter, Process Development: Physicochemical Concepts, Oxford University Press, 1999. 14. D.G. Blackmond, Angew. Chem., Int. Ed., 2005, 44, 4302. 15. A.C. Ferretti, J.S. Mathew, I. Ashworth, M. Purdy, C. Brennan and D. Blackmond, Adv. Synth. and Catal., 2008, 350, 1007. 16. M. L. Crossley, R.H. Kienle and C.H. Benbrook, J. Am. Chem. Soc., 1940, 62, 1400 17. X. Creary and C.C. Gieger, J. Am. Chem. Soc., 1982, 104, 4151. 18. D.S. Noyce and S.K. Brauman, J. Org. Chem., 1968, 33, 843. 19. A. J. Birch and D. H. Williamson, Homogeneous hydrogenation catalysts, in ‘Organic Reactions’ vol 24, 1976. 20. S. Shekhar, P. Ryberg, J.F. Hartwig, J.S. Mathew, D.G. Blackmond, E.R. Strieter and S.L. Buchwald, J. Am. Chem. Soc., 2006, 128, 3584. 21. For a recent review see G.C. Lloyd-Jones, Chapter 12 in The Investigation of Organic Reactions and their Mechanisms, ed H. Maskill, Blackwell Publishing, Oxford, 2006. 22. A. Albert and E.P. Sergeant, Ionisation Constants of acids and bases, A laboratory manual, Methuen, London and New York, 1962. 23. J.F. King R. Rathore, J.Y.L. Lam and D.F. Klassen, J Am. Chem. Soc., 1992, 114, 3028-3033; J.F. King, Z.R. Guo and D.F. Klassen, J. Org. Chem., 1994, 59, 1095-1101; J.F. King , M.S. Gill and P. Ciubotaru, Can. J. Chem., 83, 1525-1535 (2005)) 24. K. Izutsu, Acid-base dissociation constants in dipolar aprotic solvents, IUPAC Chemical data series no. 53, Blackwell Scientific, Oxford, 1990. 25. I.M. Kolthoff and M.K. Chantooni Jr., J. Am. Chem. Soc., 1969, 91, 4621; F.G. Bordwell, R.J. McCallum and W.N. Olmstead, J. Am. Chem. Soc., 1984, 49, 1424. 26. I.M. Kolthoff and M.K.Chantooni, J. Am. Chem. Soc., 1969, 91, 4621. 27. I.M. Kolthoff and M.K.Chantooni, J. Am. Chem. Soc., 1976, 98, 5063. 28. J.F. Coetzee and G.R. Padmanabhan, J. Am. Chem. Soc., 1965, 87, 5005. 29. N.C. Marziano, A. Tomasin, C. Tortato and J.M. Zalvidar, J. Chem. Soc., Perkin Trans. 2, 1998, 1973. 30. J.G. Hoggett, R.B. Moodie, J.R. Penton and K. Scholfield, Nitration and aromatic reactivity, Cambridge University Press, 1971; H. Cerfontain, Mechanistic aspects in aromatic sulfonation and desulfonation, Interscience, New York, Chichester, 1968; E.E. Gilbert, Sulfonation and related reactions, Interscience, New York and London, 1965. 31. T.H. Cranshaw, Case Study presented at Scientific Update meeting, Brunel University, 1991. 32. J. Baldyga and J.R. Bourne, Turbulent Mixing and Chemical Reactions, John Wiley, New York, 1999. 33. J. Baldyga, J.R. Bourne and B. Walker, Can. J. Chem. Eng., 2009, 76, 641. 34. J.H. Atherton, Trans. I. Chem. E., 1993, 71, Part A, 111. 35. C.M. Starks and R.M. Owens, J. Am. Chem. Soc., 1973, 95, 3613. 36. T.W. Bentley, G.E. Carter and H.C. Harris, J. Chem. Soc., Perkin Trans. 2, 1985, 983. 37. A.K. Nanda and M.M. Sharma, Chem. Eng. Sci., 1966, 21, 707. 38. J.H. Atherton, unpublished work. 39. J.H. Atherton, Chapter 5 in The Investigation of Organic Reactions and their Mechanisms, ed. H. Maskill, Blackwell, Oxford, UK, 2006 40. J.B. Lewis, Chem. Eng. Sci., 1954, 3, 248 41. L.K. Doraiswamy and M.M. Sharma, Heterogeneous Reactions: Analysis, Examples and Reactor Design, Volume 2: Fluid-Fluid-Solid Reactions, John Wiley and Sons, New York, 1984. 42. T.K. Sherwood, R.L. Pigford and C.R. Wilke, Mass Transfer, McGraw-Hill, New York, 1975. 43. K.M.J. Brands, S.W. Krska, T. Rosner, K.M. Conrad, E.G. Corley, M. Kaba, R.D. Larsen, R.A. Reamer, Y. Sun and F-R. Tsay, Org. Process Res. Dev., 2006, 10, 109. 44. Y. Sun, J. Wang, C. LeBlond, R.A. Reamer, J.Laquidara, J.R. Sowa Jr. and D.G. Blackmond, J. Organomet. Chem., 1997, 548, 65. 45. Y. Sun, R.N. Landau, J. Wang, C. LeBlond and D.G. Blackmond, J. Am. Chem. Soc., 1996, 118, 1348. 46. M. Zlokarnik, Stirring, Theory and Practice, Wiley-VCH, Weinheim, 2001. 47. J.H. Atherton, in Pilot Plants and Scale-Up of Chemical Processes II, ed W. Hoyle, Royal Society of Chemistry, Cambridge, 1999. 48. E.L. Paul, V.A.Atiemo-Obeng and S.M Kresta, Handbook of Industrial Mixing, Science and Practice, Wiley-Interscience, New Jersey, 2004; J.R. Bourne, Organic Process Research and Development, 2003, 7, 471. 49. J.D. Moseley, P. Bansal, S.A. Bowden, A.E.M. Couch, I. Hubacek and G. Weingartner, Org. Process Res. Dev., 2006, 10, 153-158 50. F.L. Muller and J.M. Latimer, Proc. European Congress Chem. Eng., (ECCE-6), Copenhagen, 2007.
Depositing User: John Atherton
Date Deposited: 15 May 2012 15:43
Last Modified: 28 Aug 2021 11:16


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©