Computing and Library Services - delivering an inspiring information environment

The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1−xO2

Armstrong, A. Robert, Lyness, Christopher, Panchmatia, Pooja M., Islam, M. Saiful and Bruce, Peter G. (2011) The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1−xO2. Nature Materials, 10 (3). pp. 223-229. ISSN 1476-1122

Metadata only available from this repository.


Lithium can be reversibly intercalated into layered Li1+xV1−xO2 (LiCoO2 structure) at ∼0.1 V, but only if x>0. The low voltage combined with a higher density than graphite results in a higher theoretical volumetric energy density; important for future applications in portable electronics and electric vehicles. Here we investigate the crucial question, why Li cannot intercalate into LiVO2 but Li-rich compositions switch on intercalation at an unprecedented low voltage for an oxide? We show that Li+ intercalated into tetrahedral sites are energetically more stable for Li-rich compositions, as they share a face with Li+ on the V site in the transition metal layers. Li incorporation triggers shearing of the oxide layers from cubic to hexagonal packing because the Li2VO2 structure can accommodate two Li per formula unit in tetrahedral sites without face sharing. Such understanding is important for the future design and optimization of low-voltage intercalation anodes for lithium batteries.

Item Type: Article
Subjects: Q Science > QD Chemistry
Schools: School of Applied Sciences
Depositing User: Graham Stone
Date Deposited: 20 Feb 2012 14:07
Last Modified: 28 Aug 2021 11:14


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©