University of Huddersfield Repository

Qamar, Muhammad Ilyas

Synthesis and Reactions of Cyclopropenones

Original Citation

This version is available at http://eprints.hud.ac.uk/id/eprint/12304/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Synthesis & Reactions of Cyclopropenones

University of Huddersfield

Muhammad Ilyas Qamar

A Thesis Submitted to the University of Huddersfield in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy

University of Huddersfield
Department of Chemical & Biological Sciences

September 2011
I would like to dedicate this thesis to my mother and father, for their constant love, support and encouragement, they have made many sacrifices, faced many hardships and worked countless hours so that I could have a better life. Without them none of this would be possible.
Contents

1 INTRODUCTION ... 1

1.1 CYCLOPROPENONES ... 1

1.2 REACTIONS OF CYCLOPROPENONES .. 12

1.2.1 Reaction at the ketone double bond .. 12
1.2.2 Reactions across carbon-carbon double bond .. 13
1.2.3 Reactions with imines: formation of pyrroles ... 15
1.2.4 Synthesis of six-membered rings .. 21
1.2.5 Miscellaneous .. 24

1.3 PROLOGUE TO THESIS DISCUSSION .. 26

2 DISCUSSION ... 31

2.1 SYNTHESIS OF PYRROLIZIDINES .. 32

2.1.1 Synthesis of 5-ethylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 32
2.1.2 Attempted synthesis of 5-ethoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 36
2.1.3 Synthesis of 5-methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 37
2.1.4 Synthesis of 5-methoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 39
2.1.5 Synthesis of 5-methylthio-2,3-diphenyl-8-methyl-1-azabicyclo-[3.3.0]-oct-2-en-4-one 44
2.1.6 Synthesis of 5-methylthio-2,3-diphenyl-8-methyl-1-azabicyclo-[3.3.0]-oct-2-en-4-one 45
2.1.7 Synthesis of 5-methylthio-2,3-diphenyl-8-ethylcarboxylate-1-azabicyclo[3.3.0]oct-2-en-4-one 49
2.1.8 Synthesis of 5-methylthio-2,3-diphenyl-8-(4-methylbenzenesulfonate)-1-azabicyclo[3.3.0]oct-2-en-4-one 52
2.1.9 Attempted synthesis of 5-methylthio-2,3-diphenyl-8-hydroxymethyl-1-azabicyclo[3.3.0]oct-2-en-4-one ... 54

2.2 REACTIVITY OF PYRROLIZIDINES ... 55

2.2.1 Reactivity of 5-methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 55
2.2.2 Reactivity of 5-methoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 62
2.2.3 Synthesis of 5-hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 64
2.2.4 Attempted synthesis of 5-trifyl-2,3-diphenyl-1-azabicyclo[3.3.0]-oct-2-en-4-one 68
2.2.5 Attempted formation of 5-sulfoxy and 5-hydroxy-8-methyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one .. 69

2.2.6 Hydrolysis of 5-methylthio-2,3-diphenyl-8-(4-methylbenzenesulfonate)-1-azabicyclo[3.3.0]oct-2-en-4-one .. 70

2.2.7 Attempted synthesis of 4-butyl-5-ethylthio-2,3-diphenyl-1-azabicyclo-[3.3.0]oct-2-en-4-ol .. 71

2.2.8 Attempted synthesis of 5-ethylthio-2,3-diphenyl-1-azabicyclo-[3.3.0]-oct-2-en-4-ol .. 71

2.3 SYNTHESIS OF POLYHYDROXYLATED PYRROLIZIDINES .. 72

2.3.1 Synthesis of 2,3-O-isopropylidene-L-erythrose ... 72

2.3.2 Synthesis of (3S,4R)-3,4-isopropylidenedioxypyrroline 1-oxide 73

2.3.3 Attempted synthesis of 2,3-diphenyl-6,7-isoproylidenedioxy-1-aza-bicyclo[3.3.0]oct-2-en-4-one .. 74

2.4 SYNTHESIS OF A HIGHLY SUBSTITUTED, FUNCTIONALISED PYRROLIZIDINE 75

2.4.1 Synthesis of 2-methyl-4-phenyl-5-cyano-1H-pyrroline 75

2.4.2 Synthesis of 5-methyl-2,3,7-triphenyl-8-cyano-1-azabicyclo[3.3.0]-oct-2-en-4-one .. 76

2.5 CYCLOPROPENONES ... 78

2.5.1 Unsubstituted cyclopropenones .. 78

2.5.2 Synthesis of dialkylcyclopropenones ... 83

2.6 ACYCLIC IMINES ... 88

2.6.1 Synthesis of N-(benzylidene)-tert-butanesulfonamide 88

2.6.2 Synthesis of 3-tert-butyl-2-phenyl-1-indenone .. 89

2.6.3 Synthesis of N-(alkylidene)-tert-butanesulfonamides ... 91

2.6.4 Reaction with diphenylcyclopropenone ... 92

2.7 SYNTHESIS OF INDOLIZIDINES AND PYRROLOAZEPINES ... 93

2.7.1 Indolizidines ... 93

2.7.2 Pyrroloazepines .. 97

2.8 1,3-DIPOLAR CYCLOADDITIONS ... 101

2.8.1 Attempted synthesis of ethyl-5-methylthio-4,1,3-oxadiazobicyclo-[3.3.0]oct-2-ene-2-carboxylate .. 101

2.8.2 Synthesis of 4-methoxy-(α-[N-(2-pyrrolidinone)])benzaldoxime 103

2.8.3 Synthesis of 2-azido-(α-[N-(2-pyrrolidinone)])benzaldoxime 104
2.8.4 Synthesis of 2-[triphenylphosphoranylimino]-α-[N-(2-pyrrolidinone)]-benzaldoxime ... 105
2.8.5 Synthesis of pyrrolo[1,2-b][1,3]benzodiazin-4-oxime 105
2.8.6 Attempted reaction of 2-methylthio-1-pyrroline with a nitrilimine 107

2.9 CONCLUSION & FUTURE WORK ... 108

3 EXPERIMENTAL ... 112

3.1 SYNTHESIS OF PYRROLIZIDINES ... 112

3.1.1 Synthesis of 5-ethylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one .. 112
3.1.2 Attempted synthesis of 5-ethoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one .. 115
3.1.3 Synthesis of 5-methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one .. 116
3.1.4 Attempted synthesis of 5-methoxy-2,3-diphenyl-1-azabicyclo[3.3.0]-oct-2-en-4-one .. 118
3.1.5 Synthesis of 5-methoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one .. 122
3.1.6 Synthesis of 5-methyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one .. 126
3.1.7 Synthesis of 5-methylthio-2,3-diphenyl-8-methyl-1-azabicyclo[3.3.0]-oct-2-en-4-one .. 127
3.1.8 Synthesis of 5-methylthio-2,3-diphenyl-8-ethylcarboxylate-1-aza- bicyclo[3.3.0]oct-2-en-4-one .. 131
3.1.9 Synthesis of 5-methylthio-2,3-diphenyl-8-(4-methylbenzenesulfonate)-1-azabicyclo[3.3.0]oct-2-en-4-one .. 134
3.1.10 Attempted synthesis of 5-methylthio-2,3-diphenyl-8-hydroxymethyl-1-azabicyclo[3.3.0]oct-2-en-4-one .. 138

3.2 Reactivity of Pyrrolizidines ... 139

3.2.1 Reactivity of 5-methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one .. 139
3.2.2 Demethylation of 5-methoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one .. 147
3.2.3 Synthesis of 5-hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one ... 149
3.2.4 Attempted synthesis of 5-trifyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one .. 151
3.2.5 Attempted synthesis of 5-hydroxy-8-methyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one ... 152
3.2.6 Attempted synthesis of 5-methanesulfinyl-8-methyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one ... 153

IV
3.2.7 Synthesis of 5-hydroxy-2,3-diphenyl-8(4-methylbenzenesulfonate)-1-azabicyclo[3.3.0]oct-2-en-4-one ... 154
3.2.8 Attempted synthesis of 4-butyl-5-ethylthio-2,3-diphenyl-1-azabicyclo-
[3.3.0]oct-2-en-4-ol ... 155
3.2.9 Attempted synthesis of 5-ethylthio-2,3-diphenyl-1-azabicyclo[3.3.0]-
oct-2-en-4-ol .. 156
3.2.10 Attempted synthesis of 5-methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]-
oct-2-en-4-ol ... 156

3.3 SYNTHESIS OF POLYHYDROXYLATED PYRROLIZIDINES 158
3.3.1 Synthesis of 2,3-O-isopropylidene-L-erythrose .. 158
3.3.2 Synthesis of (3S,4R)-3,4-isopropylidenedioxyoxypyrroline 1-oxide 159
3.3.3 Attempted synthesis of 2,3-diphenyl-5,6-isoproylidenedioxy-1-
azabicyclo[3.3.0]oct-2-en-4-one ... 160

3.4 SYNTHESIS OF A HIGHLY SUBSTITUTED, FUNCTIONALISED PYRROLIZIDINE 161
3.4.1 Synthesis of 2-methyl-4-phenyl-5-cyano-1H-pyrrole 161
3.4.2 Synthesis of 5-methyl-2,3,7-triphenyl-8-cyano-1-azabicyclo[3.3.0]-
oct-2-en-4-one .. 162

3.5 CYCLOPROPENONES .. 164
3.5.1 Unsubstituted cyclopropenones .. 164
3.5.2 Synthesis of dialkylcyclopropenone .. 170

3.6 ACYCLIC IMINES .. 179
3.6.1 Synthesis of N-(benzylidene)-tert-butanesulfinamide 179
3.6.2 Synthesis of 3-tert-butyl-2-phenyl-1-indenone ... 180
3.6.3 Synthesis of N-(propylidene)-tert-butanesulfinamide 181
3.6.4 Synthesis of N-(butylidene)-tert-butanesulfinamide 182
3.6.5 Attempted synthesis of 2-ethyl-1-(2′-methyl-2′-propanesulfinyl)-4,5-
diphenyl-2-pyrrolin-3-one ... 183
3.6.6 Attempted synthesis of 1-(2′-methyl-2′-propanesulfinyl)-4,5-diphenyl-
2-propyl-pyrrolin-3-one .. 183

3.7 SYNTHESIS OF INDOLIZIDINES AND PYRROLOAZEPINES 184
3.7.1 Indolizidines .. 184
3.7.2 Pyrroloazepines .. 189
3.8 1,3-DIPOLAR CYCLOADDITIONS ... 194
3.8.1 Attempted synthesis of ethyl-5-methylthio-4,1,3-oxadiazobicyclo[3.3.0]-
oct-2-ene-2-carboxylate ... 194
3.8.2 Synthesis of 4-methoxy-(α-[N-(2-pyrrolidinone)])benzaldoxime 196
3.8.3 Synthesis of 2-azido-(α-[N-(2-pyrrolidinone)])benzaldoxime 197
3.8.4 Synthesis of 2-[triphenylphosphoranylimino]-α-[N-(2-pyrrolidinone)]-
benzaldoxime .. 198
3.8.5 Synthesis of pyrrolo[1,2-b][1,3]benzodiazin-4-oxime 199
3.8.6 Attempted reaction of 2-methylthio-1-pyrroline with a nitrilimine 200

4 REFERENCES ... 202
5 APPENDIX ... 208
Acknowledgements

First and foremost I would like to thank Allah (SWT) for giving me the capability to complete this work and for his continued mercy and blessings.

I would like to express my appreciation to my director of studies, Dr Karl Hemming for giving me the opportunity to undertake this work and for his exceptional supervision, guidance and support throughout the course of my research. His friendship and kindness allowed me to work in an enjoyable and peaceful environment which made the last four years fly by.

I would also like to thank Dr Craig Rice for helping me and giving me advice in the lab, and for the performing and solving of X-ray crystallographic analysis.

There are many technical staff members who have helped me along the way, I would like to say thank you to all of them especially Dr Neil McLay, for performing NMR and mass spectroscopic analysis and for training and continued help on the NMR instrument.

A couple of people deserve a special thanks, Chris Chambers for the time, effort and patience he showed me during my project in my undergraduate degree, Arnaud Pitard for his guidance during the start of my PhD and advice on how to deal with people, and Kevin Ellis for his knowledge and help whilst writing this thesis.

During the last four years I have had many good and bad times and I would like to say thank you to all my friends who have been there for me, knowingly or otherwise, it’s been a rollercoaster of a ride and it wouldn’t have been the same without them.

Lastly my family, their love, support and constant belief in me have made me who I am today, so I would like to say thank you from the bottom of my heart to my mum and dad, for never doubting me and always showing me love, to my brothers and sister for supporting me in every way they could, and to my three nephews for making me laugh and driving me crazy.

If I have missed anyone off this list I am deeply sorry, but there may be a small space at the bottom of this page, you might be able to write your name in.
Abstract

This thesis describes the synthesis of pyrrolizidines, indolizidines and pyrroloazepines from the reaction of cyclopropenones with a wide range of five, six and seven-membered cyclic imines. These three alkaloids nuclei are widespread in nature and have shown many potential pharmaceutical properties. The cyclic imines were typically synthesised by thionation and alkylation of their corresponding lactams, although other cyclic imines were investigated. The imines were then reacted with diphenylcyclopropenone (DPP), as illustrated below.

\[\text{X = O or S} \]

The pyrrolizidine, indolizidine and pyrroloazepine reactivity was exploited by oxidising the bridgehead group (X = S) with \(m \)-CPBA, giving rise to new products, including a sulfoxide elimination product, and an unexpected hydroxy compound. This was a useful discovery, given the presence of such a bridgehead OH in the jenamidine natural products. This thesis explores ways in which this may have occurred and also looks at alternative methods.

The synthesis of cyclopropenones other than DPP is described along with attempts at reacting them with 5-membered cyclic imines (1-pyrrolines).

Also included is a study of nitrile oxides as traditional 1,3-dipoles and their reaction with 1-pyrrolines. Finally, an exploration of the reactivity of diphenylcyclopropenone with acyclic imines derived from Ellman’s 2-methyl-2-propanesulfinamide is included, which gave unexpected access to an indenone.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Å</td>
<td>Ångstrom</td>
</tr>
<tr>
<td>Ac</td>
<td>Acetyl</td>
</tr>
<tr>
<td>Aq</td>
<td>Aqueous</td>
</tr>
<tr>
<td>Ar</td>
<td>Aryl</td>
</tr>
<tr>
<td>b</td>
<td>Broad (NMR)</td>
</tr>
<tr>
<td>bd</td>
<td>Broad Doublet (NMR)</td>
</tr>
<tr>
<td>br</td>
<td>Broad (IR)</td>
</tr>
<tr>
<td>bs</td>
<td>Broad Singlet (NMR)</td>
</tr>
<tr>
<td>Bu</td>
<td>Butyl ([\text{CH}_2\text{CH}_3])</td>
</tr>
<tr>
<td>Conc./c.</td>
<td>Concentrated</td>
</tr>
<tr>
<td>COSY</td>
<td>Correlation Spectroscopy</td>
</tr>
<tr>
<td>d</td>
<td>Doublet (NMR)</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>dd</td>
<td>Doublet of doublets (NMR)</td>
</tr>
<tr>
<td>ddd</td>
<td>Doublet of doublets of doublets (NMR)</td>
</tr>
<tr>
<td>dddd</td>
<td>Doublet of doublets of doublets of doublets (NMR)</td>
</tr>
<tr>
<td>dq</td>
<td>Doublet of quartets (NMR)</td>
</tr>
<tr>
<td>eq/equiv</td>
<td>Equivalents</td>
</tr>
<tr>
<td>ESI+</td>
<td>Electron Spray Ionisation</td>
</tr>
<tr>
<td>Et</td>
<td>Ethyl ([\text{CH}_2\text{CH}_3])</td>
</tr>
<tr>
<td>EtOAc</td>
<td>Ethyl Acetate</td>
</tr>
<tr>
<td>H</td>
<td>Proton (NMR)</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>HMBC</td>
<td>Heteronuclear Multiple Bond</td>
</tr>
<tr>
<td>HMPA</td>
<td>Hexamethylphosphoramide</td>
</tr>
<tr>
<td>HRMS</td>
<td>High Resolution Mass Spectrometry</td>
</tr>
<tr>
<td>HSQC</td>
<td>Heteronuclear Single Quantum</td>
</tr>
<tr>
<td>Coherence</td>
<td>Coherence</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>J</td>
<td>Coupling constant (NMR)</td>
</tr>
<tr>
<td>LDA</td>
<td>Lithium diisopropylamide</td>
</tr>
<tr>
<td>DME</td>
<td>Dimethoxyethane</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>DMP</td>
<td>Dimethoxypropane</td>
</tr>
<tr>
<td>DPP</td>
<td>Diphenylcyclopropene</td>
</tr>
<tr>
<td>DME</td>
<td>Dimethoxyethane</td>
</tr>
<tr>
<td>DMP</td>
<td>Dimethoxypropane</td>
</tr>
<tr>
<td>DEPT</td>
<td>Distortionless Enhancement by Polarization Transfer</td>
</tr>
<tr>
<td>J</td>
<td>Coupling constant (NMR)</td>
</tr>
<tr>
<td>LDA</td>
<td>Lithium diisopropylamide</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>l/ liq.</td>
<td>Liquid</td>
</tr>
<tr>
<td>LRMS</td>
<td>Low Resolution Mass Spectrum</td>
</tr>
<tr>
<td>M</td>
<td>Molar (unit of concentration, moles per litre)</td>
</tr>
<tr>
<td>m</td>
<td>Multiplet (NMR)/ Medium (IR)</td>
</tr>
<tr>
<td>m-CPBA</td>
<td>meta-chloroperoxybenzoic acid</td>
</tr>
<tr>
<td>Me</td>
<td>Methyl [CH$_3$]</td>
</tr>
<tr>
<td>mg</td>
<td>Milligrams</td>
</tr>
<tr>
<td>mmol</td>
<td>Millimole</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectrum</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>NOE</td>
<td>Nuclear Overhauser Effect</td>
</tr>
<tr>
<td>NOESY</td>
<td>Nuclear Overhauser Effect</td>
</tr>
<tr>
<td></td>
<td>Spectroscopy</td>
</tr>
<tr>
<td>p-</td>
<td>Para</td>
</tr>
<tr>
<td>PTSA</td>
<td>para-Toluene Sulfonic Acid</td>
</tr>
<tr>
<td>PE</td>
<td>Petroleum Ether</td>
</tr>
<tr>
<td>Ph</td>
<td>Phenyl</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts Per Million (NMR)</td>
</tr>
<tr>
<td>Pr</td>
<td>Propyl [(CH$_2$)$_2$CH$_3$]</td>
</tr>
<tr>
<td>q</td>
<td>Quartet (1H NMR)</td>
</tr>
<tr>
<td></td>
<td>Quaternary carbon (13C NMR)</td>
</tr>
</tbody>
</table>
Introduction
1 Introduction

This thesis is based on the use of cyclopropenones for the synthesis of pyrrolizidines and indolizidines. The introduction will detail past and present methods for the synthesis of cyclopropenones and their reactivity. A brief section on the pyrrolizidines and indolizidines will also be included.

1.1 Cyclopropenones

![Cyclopropenones diagram]

The most basic cyclopropenone 1, consists of a three-carbon based ring with a carbonyl group. The unsubstituted cyclopropenone can be represented as its delocalised form 2, in which the cyclopropenylium cation displays Hückel aromaticity.\(^1\)\(^-\)\(^4\) The aromatic nature of cyclopropenones has been controversial,\(^5\)\(^,\)\(^6\) but recent literature suggests that the carbonyl on the ring creates a pseudo \(2\pi\) system.\(^4\)

Cyclopropenones have a large ring strain which accounts for their high reactivity.\(^2\) It is also suggested by Hopkins et al. that it has the largest strain energy of any three-membered alicyclic compound.\(^6\) Cyclopropenones are amphiphilic molecules and are reactive towards nucleophilic and electrophilic reagents.\(^2\)

In 1959 Breslow et al. synthesised diphenylcyclopropenone 7,\(^7\) the first synthesis of a cyclopropenone in the literature. At the time no three-membered ring with a carbonyl group attached was known to be stable, and therefore it was a very attractive challenge. Breslow et al. reacted benzal chloride 4 with phenyl ketene dimethyl acetal 3 in the presence of potassium \(t\)-butoxide. The suggested mechanism involves the addition of a carbene to the
double bond of the ketene acetal giving a cyclopropanone ketal intermediate 5, β-elimination of HCl to give the cyclopropenone ketal 6 followed by hydrolysis to afford the diphenylcyclopropenone 7.7,8

\[
\begin{array}{c}
\text{Ph} - \text{C} = \text{C} \quad \text{OCH}_3 + \text{Cl} - \text{CH} - \text{Cl} \\
\text{3} \quad \text{4}
\end{array}
\xrightarrow{\text{K}t\text{-butoxide}}
\begin{array}{c}
\text{H}_2\text{CO} \quad \text{OCH}_3 \\
\text{5}
\end{array}

\begin{array}{c}
\xrightarrow{-\text{HCl}}
\text{H}_2\text{CO} \quad \text{OCH}_3 \\
\text{6}
\end{array}

\begin{array}{c}
\xrightarrow{\text{H}_2\text{O}}
\text{7}
\end{array}

\text{Scheme 1.1}

At a similar time Vol’pin \textit{et al.} independently synthesised diphenylcyclopropenone 7 by reaction of tribromomethane 9 with diphenylacetylene 8 in the presence of potassium \textit{t}-butoxide to give 3,3-dibromo-1,2-diphenylcyclopropene 10 as an intermediate, which was hydrolysed to give the cyclopropenone product in 28 \% yield. The use of chloroform as the source of carbene gave a slightly lower yield of 24 \%.9,10,11

\[
\begin{array}{c}
\text{Ph} - \text{C} = \text{C} - \text{Ph} + \text{Br} - \text{CH} - \text{Br} \\
\text{8} \quad \text{9}
\end{array}
\xrightarrow{\text{K}t\text{-butoxide}}
\begin{array}{c}
\text{Br} \quad \text{Br} \\
\text{10}
\end{array}

\begin{array}{c}
\xrightarrow{\text{H}_2\text{O}}
\text{7}
\end{array}

\text{Scheme 1.2}

Breslow and Peterson used Vol’pin’s more convenient method of synthesis to obtain dipropylcyclopropenone by reaction of 4-octyne with dichlorocarbene which was obtained from either the reaction of sodium methoxide with ethyl trichloroacetate or from sodium trichloroacetate,12 although this method generally gave low yields of the desired cyclopropenone.13

Breslow \textit{et al.} discovered that by using a modified Favorskii reaction they could synthesise diphenyl and dialkylicyclopropenones \textit{via} a dehydrobromination of a dibromo ketone to a
stable cyclopropenone. Synthesis of diphenylcyclopropenone was achieved by reaction of α,α'-dibromodibenzyl ketone 11 with 20 % excess triethylamine in dichloromethane at ambient temperature for 30 minutes giving a yield of ~50 % (Scheme 1.3). Dialkylcyclopropenones were synthesised in a slightly modified way, for example, dibutylicyclopropenones were prepared by reaction of α,α'-dibromodi-n-amyl ketone with a 40:1 mixture of chloroform and triethylamine heated at reflux for 48 hours which gave a 12 % yield.\(^{14}\)

Using a similar method, Ciabattoni and Nathan synthesised di-t-butylcyclopropenone from the reaction of α,α'-dibromodineopentyl ketone with potassium tert-butoxide in THF. The cyclopropenone was afforded after sublimation at reduced pressure.\(^{15,13,14}\)

Breslow and Altman attempted the synthesis of monosubstituted cyclopropenones via the modified Favorskii reaction to no success, but discovered that the reaction of 4-octyne 14a with lithium trichloromethide 15 at $-95 ^\circ\text{C}$ gave di-n-propylcyclopropenone 16a after low temperature acidification and aqueous work up. Similar reactions with 1-pentyne 14b, propyne 14c and 2-butyne 14d gave n-propylcyclopropenone 16b, methylcyclopropenone 16c and dimethylcyclopropenone 16d respectively (Scheme 1.4).\(^{16}\)

Scheme 1.3

Scheme 1.4
West et al. first synthesised a diarylcyclopropenone using a trichlorocyclopropenium ion. The synthesis was achieved by reaction of a benzene derivative with a trichlorocyclopropenium ion 18 to give a gem-dichlorodiarylcyclopropene 19 which was then hydrolysed to provide a diarylcyclopropenone 20.17 West et al. discovered that by altering reaction conditions, unsymmetrical substituted cyclopropenones could be prepared by a stepwise addition where one equivalent of trichlorocyclopropenium ion and one equivalent of an aryl compound at <0 °C gave the corresponding aryltrichlorocyclopropene 21, which could then be further reacted with another equivalent of an alternative aryl group at ambient temperature, giving the corresponding nonsymmetric diarylcyclopropenone 23 via a hydrolysis of the intermediate diarylchlorocyclopropene ion 22.18

Using a similar method West et al. synthesised hydroxyphenylcyclopropenone by the hydrolysis of phenyltrichlorocyclopropene 24/ chlorophenylcyclopropenone 26 in aqueous acetone at 0 °C giving the desired product on both occasions.19,20 This work was extended to include other aryl groups.
West et al. also used Farnum and Thurston’s method of treating phenyltrichlorocyclopropene with potassium t-butoxide in ether, followed by 5% HCl to obtain phenylhydroxycyclopropenone, but with very low yields and varied results. Weidner and Wadsworth et al. built upon West’s earlier work by using tetrachlorocyclopropene to synthesise alkoxyarylcyclopropenones in a stepwise manner, the intermediate trichlorocyclopropenium tetrachloroaluminate made from tetrachlorocyclopropene was treated with an activated aromatic system to make intermediate aryldichlorocyclopropene tetra-chloroaluminate which was then reacted with three equivalents of alcohol at low temperatures to give a possible trialkoxyarylcyclopropene or dialkoxyarylcyclopropenylium ion, both of which undergo hydrolysis to give the alkoxyarylcyclopropenone.
Breslow and Ryan synthesised the parent cyclopropenone by reaction of tetrachlorocyclopropene 17 with 2 equivalents of tri-n-butyltin hydride in paraffin oil affording 3,3-dichlorocyclopropene 31, which was then dissolved in tetrachloromethane and then hydrolyzed with cold water affording the parent cyclopropenone 1 (Scheme 1.18).\(^{23}\)

![Scheme 1.8](image)

Yoshida et al. investigated how secondary amines reacted with tetrachlorocyclopropene 17. Reactions with dimethylamine, piperidine, morpholine, N-methylaniline, N-ethylaniline and diphenylamine all gave their corresponding triaminocyclopropenyl perchlorate derivatives 32, but diethylamine and diisopropylamine both gave their corresponding \(1,2\)-bis-dialkylamino-3-chlorocyclopropenyl perchlorate derivatives 34.\(^{24}\) The chloro substituent \(1,2\)-bis-diisopropylamino-3-chlorocyclopropenyl perchlorate was further reacted in aqueous potassium hydroxide and gave \(bis\)-diisopropylaminocyclopropenone 33.\(^{25}\) Using a slightly modified method, Breslow et al. synthesised \(bis\)-dimethyl and \(bis\)-diethylaminocyclopropenone 33 from their corresponding \(tris\)-dialkylaminocyclopropenyl perchlorate derivatives in high yields.\(^{26}\)
Alkenes and alkynes have also been reacted with tetrachlorocyclopropene 17 to give their cyclopropenone derivatives. Mayr et al. synthesised the mono substituted 1,3,3-trichlorocyclopropenes exclusively by the dropwise addition of alkenes to trichlorocyclopropenylium ion 35 in nitromethane. The trichlorocyclopropenes 36 could then be hydrolysed by aqueous sodium hydrogen carbonate to their corresponding cyclopropenones. Noteworthy was the use of sodium hydrogen carbonate in methanol which caused the ring to open.27

Diederich et al. synthesised dialkynylcyclopropenones 39 using trichlorocyclopropenylium ion 18 with 1-trimethylsilyl-1-propyne 38. The reaction was quenched with water and the desired cyclopropenone was formed in 50 % yield after a workup with aqueous sodium
Introduction

hydrogen carbonate. The parent diethynylcyclopropenone was attempted in a similar procedure, but no product was obtained.28

![Scheme 1.11](image)

Weiss et al. synthesised 1,2-dimethylthiocyclopropenone 42 using tetrachlorocyclopropene 17 and reacting it with methyl(bismethylthio)sulphonium hexachloroantimonate 40 giving dimethylthiochlorocyclopropenium salt 41, which was converted to the cyclopropenone 42.29

![Scheme 1.12](image)

A different route explored by Wicha and Paquette et al. was the oxidation of cyclopropenes to give their corresponding cyclopropenones, such as 1-methyl/1-isopropyl-2-triphenylsilylcyclopropene which were oxidised with dimethylidioxirane in acetone. The 1-methyl cyclopropene 43 gave a ring opened product 44 as the major product and a spiro epoxide 45 as a minor product.30

![Scheme 1.13](image)
The isopropyl cyclopropene 46 also gave a ring opened product 47 as the major product and gave the corresponding cyclopropenone 48 as the minor product. The behavioural difference seen in the two cyclopropenes is believed to be due to steric hindrance from the isopropyl group.

![Scheme 1.14](image)

Netland et al. prepared dialkylcyclopropenones using an improved synthesis originally prepared by Gleiter and Merger. The reaction of the mild carbenoid reagent trichloromethylithium with an alkyne 14 at low temperatures in THF afforded the corresponding dichlorocyclopropene intermediate 49, which when quenched with conc. HCl (aq) at −78 °C gave cyclopropenone 16 as the major product and a ynone 50 as a side product, but when quenched with water at 0 °C, gave ynone as the major product.

![Scheme 1.15](image)

Baucom and Butler reported in 1972 the synthesis of the parent cyclopropenone. The synthesis had three steps, the initial step gave 1-bromo-3-chloro-2,2-dimethoxypropane 52 from the reaction of 2,3-dichloropropene 51, methanol and N-bromosuccinimide with concentrated sulfuric acid as a catalyst, which was then cyclised with potassium amide in
liquid ammonia to give 3,3-dimethoxycyclopropene 53. The acetal was then easily hydrolysed to the unsubstituted cyclopropenone 1.33 The reaction was slightly improved by Breslow by adjusting the times and conditions shown in Scheme 1.16 below.34

\textbf{Scheme 1.16}

Nakamura \textit{et al.} also reported a method for the synthesis of cyclopropenones and their acetals, a safer method which gave improved yields of the parent and substituted cyclopropenones. The synthesis had three steps, the acetalization of 1,3-dichloroacetone 54 with neopentyl glycol, the cyclisation of the acetal 55 with three equivalents of sodium amide in the presence of liquid ammonia, the first two equivalents of which cyclise the acetal and the third affords a sodium salt 57. The sodium salt has either ammonium chloride or an alkyl halide added \textit{in situ} to yield the required cyclopropenone acetal 58.35,36

\textbf{Scheme 1.17}

West and Eggerding synthesised dihydroxy 64 and dimethoxycyclopropenones 65 from squaric acid 59. Earlier reactions showed that diethoxycyclopropenone 63 was synthesised from diethyl squarate 61 by photochemical extrusion of carbon monoxide. Attempted hydrolysis to deltic acid 64 was unsuccessful. Deltic acid 64 was finally synthesised by a
similar method using bis(trimethylsilyl)squarate 60 which was synthesised by the reaction of squarate 59 with two equivalents of bis(trimethylsilyl)acetamide, which was then converted to bis(trimethylsiloxy)cyclopropenone 62 after prolonged photolysis. Bis(trimethylsiloxy)-cyclopropenone 62 was treated with two equivalents of 1-butanol to yield deltic acid 64. Deltic acid was further reacted with diazomethane to yield dimethoxycyclopropenone 65.37
1.2 Reactions of Cyclopropenones

Cyclopropenones are known to react with compounds containing the carbon-nitrogen double bond but have also been shown to dimerize, react with alkynes in an overall [3+2] cycloaddition reaction, with indenes in a condensation reaction, and to undergo a variety of reactions across the carbon-carbon double bond. A summary of these processes follows.

1.2.1 Reaction at the ketone double bond

Cyclopropenones at high temperatures are known to undergo decarbonylation to give an alkyne and carbon monoxide.14,16 However, heating cyclopropenones such as methylcyclopropenone 66 at lower temperatures, causes them to dimerize and produce a spirolactone 67.2,16,13

![Scheme 1.19](image)

Calicenes 69 can be synthesised by the condensation of a cyclopropenone 7 with a cyclopentadiene 68 or an indene.38,39

![Scheme 1.20](image)
1.2.2 Reactions across carbon-carbon double bond

Cyclopropenones are known to react as an alkene across the carbon-carbon double bond. Reaction of diphenylcyclopropenone 7 with hydroxylamine resulted in two products, deoxybenzoin oxime (31 %) and 3,4-diphenylisoxazole 72 (61 %), the latter being formed as shown in Scheme 1.21. Breslow et al. suggested that the first step for both products was direct attack on the cyclopropenone, as neither diphenylacetylene or 3,4-diphenylisoxazole 72 were precursors for deoxybenzoin oxime.13

\[
\text{Scheme 1.21}
\]

Breslow et al. also synthesised 3,5-diphenylpyridaz-4-one 74 from the reaction of diphenylcyclopropenone 7 with diazomethane. A suggested mechanism is the addition of diazomethane across the carbon-carbon double bond, followed by ring opening of the intermediate cyclopropanone 73.13,39

\[
\text{Scheme 1.22}
\]

Ciabattoni and Berchtold treated diphenylcyclopropenone 7 to a number of different enamines. They suggested the addition of the enamines was across the carbon-carbon double-
bond of the diphenylcyclopropenone via a 1,2-cycloaddition or a 1,4-cycloaddition in the case of a dienamine. They presumed the intermediate product involved a cyclopropanone which would undergo cleavage across the C2-C3 bond to form ring enlarged products. The reaction of diphenylcyclopropenone 7 with 2-(N-pyrrolidino)-3,4-dihydronaphthalene 75 formed 4,5-benzo-2,9-diphenyl-8-(N-pyrrolidino)cyclonona-2,4,8-trienone 77 via a 1,2-cycloaddition followed by cleavage of the new fused ring.39,40

![Scheme 1.23](image)

The reaction with 1-diethylamino-1,3-butadiene 78 formed 2,7-diphenyltropone 80 via a 1,4-cycloaddition, which was followed by cleavage of the cyclopropanone intermediate 79 and 1,4-elimination of diethylamine.39,40

![Scheme 1.24](image)
1.2.3 Reactions with imines: formation of pyrroles

In 1974 Eicher et al. treated secondary ketimines 81 with diphenylcyclopropenone 7 to afford 2-pyrroline substituents 82. The reactions presumably went via the equivalent of a [3+2] cycloaddition, and the majority of the products obtained were in high yields > 90%.\(^{41}\)

![Scheme 1.25](image)

Reactions between primary ketimines 83 and diphenylcyclopropenone 7 gave a similar pyrroline substituent 84 as an intermediate product. Removal of one of the amine side chains followed by acid hydrolysis gave 4,5-diphenyl-1H-pyrrole-2,3-dione 87 as the product.\(^{42}\)

![Scheme 1.26](image)
Eicher *et al.* developed this work further by reacting diphenylcyclopropenone 7 with a 3,4-isoquinoline derivative 88 to afford pyrrolo isoquinolines 89.

![Scheme 1.27](image)

Breslow *et al.* discovered the reaction of pyridine 92 with two equivalents of diphenylcyclopropenone 7 in methanol afforded a diphenyl acrylic ester residue,\(^\text{13}\) the structure of which was later confirmed by Wadsworth *et al.* by X-ray crystallography as 1-[(cis-2,3-diphenylacryl)oxy]-2,3-diphenylindolizine 93.

![Scheme 1.28](image)

Wadsworth *et al.* continued this work by reacting substituted pyridines and diarylcyclopropenones 20 for preparation of 2,3-diaryl-1-hydroxyindolizines 94 and 1,2-diaryl-3-hydroxyindolizines 95. The reaction of diphenylcyclopropenone in neat pyridine afforded 1,2-diphenyl-3-hydroxyindolizine 95 in 90 % yield with the remaining 10 % as the
1-indolizinol 94. Solvent and substituent manipulation of the reaction afforded different isomer ratios, including the isolation of the 1-indolizinol as the main product.

Scheme 1.29

Gomma synthesised pyrrolinone and inden-1-one derivatives from the reaction of diphenylcyclopropenone 7 with diimines 96 and azines 101 (Scheme 1.30 and Scheme 1.31, respectively). The mechanism provided for the synthesis of pyrrolinone suggests the imino nitrogen atom of the diimine attacks the C2 or C3 carbon of the diphenylcyclopropenone giving iminiumbetaine 99, which is followed by ring opening to give ketene 100. The iminium function is then attacked by the ketene to cyclize and afford the imines 97 which tautomerise to their more stable enaminone structure 98.44
The mechanism provided for the synthesis of inden-1-one 102 suggests an initial [2+3] cycloaddition reaction of diarylaldazines 101 and diphenylcyclopropenones 7 to afford a pyrrolin-3-one derivative 103. Oxidation leads to cleavage of the 5-membered ring to 105 followed by rearrangement to afford the inden-1-one product 102.\(^\text{44}\)

\[\text{Scheme 1.31}\]

Aly et al. synthesised pyrrolo[2,1-b]-1,3,4-oxadiazoles from the reaction of diphenylcyclopropenone 7 with ylidene-N-phenylhydrazine-carbothioamides 107. The proposed mechanism suggests the cyclopropenone attaches across the carbon-nitrogen double bond in a [2+3]-cycloaddition giving intermediates 109a-e. The pyrrole ring undergoes
aromatization with further cyclization to form intermediates 110a-e, and finally the loss of hydrogen sulfide provides stable 2,5,6,7-tetrasubstituted-pyrrolo[2,1-b](1,3,5-oxadiazolyl)-2-amines 108a-e.\(^\text{45}\)

\[
\begin{array}{ccc}
\text{Ph} & \text{N} & \text{NH} \\
\text{S} & \text{N} & \text{C} \\
\text{R} & & \text{Ph} \\
\end{array}
\quad +
\begin{array}{c}
\text{Ph} \\
\text{O} \\
\text{Ph} \\
\end{array}
\quad \rightarrow
\begin{array}{c}
\text{HN} \\
\text{N} \\
\text{O} \\
\text{Ph} \\
\end{array}
\]

\begin{align*}
107 & \quad \text{AcOH} \quad 4-8 \text{hrs} \\
108 & \quad \text{H}_{2}\text{S} \\
109 & \quad 110
\end{align*}

\text{a: R = 4-CH}_{2}\text{CO-C}_{6}\text{H}_{4}, \quad \text{b: R = 4-CHO-C}_{6}\text{H}_{4}, \quad \text{c: R = 4-Cl-C}_{6}\text{H}_{4}, \quad \text{d: R = 2-Thienyl, e: R = C}_{6}\text{H}_{5}

\text{Scheme 1.32}

Cunha \textit{et al.} synthesised pyrrolizidine and indolizidine derivatives from the reaction of cyclopropenones 111 with five and six-membered cyclic enaminones. Reaction of the five-membered systems 112 with 111a+b gave pyrrolizidine derivatives 113a + b in 70 % and 8 % yield, respectively. A rational mechanism suggested for these products and their regioselectivity was that the enaminone nitrogen attacks the C3 carbon containing the phenyl group yielding 114. Cleavage of the cyclopropenone ring affords 115 which leads to cyclization to form enolate 116 giving the pyrrolizidine 113a+b.\(^\text{46}\)
The reaction of six-membered cyclic enaminone 117a with diphenylcyclopropenone 7 gave indolizidine derivative 118a in 16% yield. The reaction of 7 with chiral enaminone 117b gave pyrrolizidine derivative 118b and its isomer. Indolizidine 118a and pyrrolizidine derivative 118b both contain the carbonyl group from the cyclopropenone next to the nitrogen atom rather than next to the acetate bridgehead chain, and this is believed to be due to there being a sterically hindered environment, whereby 117a has a six-membered ring and 117b has a side group at C5 next to the nitrogen atom. The mechanistic rational for products 118a and 118b suggests that the nitrogen attacks at the carbonyl carbon due to steric hindrance giving intermediate 119, which cyclises to form 120 and gives the products 118a and 118b.46
1.2.4 Synthesis of six-membered rings

Diphenylcyclopropenones are also known to react in [4+2] and [3+3] cycloaddition reactions. Some examples are shown below, along with other reactions leading to six-membered rings.

Grigg et al. synthesised 4-pyridones via the reaction of diphenylcyclopropenone 7 with isoxazoles 121. One proposed mechanism is the initial addition of the nitrogen to the C2 or C3 carbon to give 123, which then rearranges to cleave both rings to afford 124. This is followed by an electrocyclic reaction which forms a six-membered ring 125. The loss of ketene yields 4-pyridone 122.47
Musicki treated pyrrolo[1,2-c]imidazole mesomeric betaines 126 with diphenylcyclopropenone 7 to afford 2(1H)-pyridone 127. The proposed mechanism suggests that the C1 of the mesomeric betaine adds to the carbon-carbon double bond by nucleophilic addition to form the zwitterionic species 128, which rearranges to form N-ylide 129 by the opening of the cyclopropenone ring. This is followed by the formation of pyrrolo[1,2-c][1,3]diazocine derivative 130 by cleavage of the C1-N2 bond. The rearrangement of the valence tautomer 131 affords the product 127 via a zwitterion 132.48
Pyrimidine-2,4-dione derivatives have been synthesised by Takahashi et al. in a one step synthesis from the reaction of N-carbamoylsulfilimines 136 with diphenylcyclopropenone 7. One proposed mechanism suggests the nitrogen adjacent to the alkyl group would attack the carbonyl carbon of 7 and ring open to give intermediate 133. A Michael addition enables cyclisation to a six-membered ring 134, and the pyrimidine-2,4-dione 137 is formed by the
removal of diphenyl sulfide from 135. The second proposed mechanism suggests the nitrogen adjacent to the sulfonium group could attack at either C2 or C3 of 7 forming intermediate 138, after which a rearrangement removes diphenyl sulfide to give intermediate 139, which cyclizes to yield the product 137.

![Scheme 1.37](image)

1.2.5 Miscellaneous

Cyclopropenones have also been used to synthesise cyclopentadienones 141 via an overall [3+2] cycloaddition with alkynes 140. The method has also been shown to work with diaryl and arylalkylcyclopropenones and with a mixture of aryl-, alkyl- and heteroaryl alkynes. The reaction takes place in toluene in the presence of a rhodium(I) catalyst, which was shown to
be essential to the reaction; other potential catalysts such as titanium iso-propoxide, palladium(II) acetate or toluenesulfonic acid only gave trace amounts of the product.50

\[\text{Scheme 1.38} \]

Toda \textit{et al.} synthesised α-amino-β-phenylcinnamic aldehyde from the substitution reaction of diphenylcyclopropenone 7 with liquid ammonia. The addition of ammonia at C2 or C3, followed by ring cleavage gave 144. The \textit{trans} isomer product 147 was shown to form when placing product 144 in potassium hydroxide/ethanol solution and adding water. The process can be reversed when the \textit{trans} isomer is placed in chloroform or tetrachloromethane. It was suggested the isomer is in its \textit{cis} form when in solution due to hydrogen bonding, but forms the \textit{trans} isomer when in an alkaline medium due to rotation of the central carbon-carbon bond.51

\[\text{Scheme 1.39} \]
1.3 Prologue to thesis discussion

The discussion of this thesis will look at synthesising pyrrolizidines and indolizidines from the reaction of cyclopropenones with five and six-membered cyclic imines. Reactions of cyclopropenones with carbon-nitrogen double bonds are well known in the literature as shown earlier in this thesis. The interest in synthesising pyrrolizidines and indolizidines is due to the many potential pharmaceutical properties they possess, such as treatment for viral infections (treatment against HIV), activity against some cancer lines, treatment for diabetes (type II), and potential as a treatment for several neurological disorders.

The literature related to glycosidase inhibitors and to indolizidine and pyrrolizidine natural products in general is very extensive and a short review of some of it now follows, focusing on natural products of interest to our research group and to this thesis, and includes a few, selected recent total syntheses.

There are many natural pyrrolizidines and indolizidines such as the polyhydroxylated australine and swainsonine, both of which have shown glycosidase inhibitory properties which are of interest in the treatment for some cancers and viral infections,52,53 and therefore are great targets for synthetic chemists. There are also non-hydroxylated systems such as jenamidines A_1/A_2, B_1/B_2 and C. Jenamidines A_1/A_2 have been shown to inhibit the growth of chronic myeloid leukaemia cell lines.54,55 The non-hydroxylated indolizidines such as alkaloid 223A have been shown to inhibit nicotinic acetylcholine receptors and are therefore potential leads in the study of neurological disorders such as Alzheimer’s disease, schizophrenia and bipolar disorders.56
Tamayo et al. synthesised polyhydroxylated indolizidines and pyrrolizidines via a pyrroloisoxazolidine, which was synthesised via a 1,3-dipolar cycloaddition of a cyclic nitrone with 3-buten-1,2-diol derivatives which were chemoenzymatically prepared. Protecting group manipulation, N-O cleavage of the pyrroloisoxazolidine using Zn/AcOH, cyclisation and further deprotection gave the required products57 (see Scheme 1.40).

Li et al. used an azasugar nitrone and methacrylate to synthesise a polyhydroxylated indolizidine containing an amino group via a microwave assisted 1,3-dipolar cycloaddition, followed by intramolecular cyclo-amidation58 (see Scheme 1.41). Isoxazolidine cleavage gave the desired amino indolizidines.
Introduction

Conditions:
(I) Methyl methacrylate, rt, 95 h (IIa) AcOH/ H2O/ Zn, 70 °C, (IIb) NaOH/ MeOH/ H2O, rt, then HCl (0.2 mol/ L) (pH = 2) (III) LiAlH4/ THF, rt or LiAlH4/ AlCl3/ THF, rt then Pd(OH)2/C, H2, MeOH/ HCl (IV) Pd(OH)2/C, H2, MeOH/ HCl.

Scheme 1.41

Alkylated indolizidines such as alkaloid 223A have shown promising results as inhibitors of nicotinic acetylcholine receptors. Ghosh et al. synthesised both alkaloids 223A and 6-epi-223A using a known norborneone derivative as the starting material (Scheme 1.42) This underwent an intramolecular Schmidt reaction; ring opening metathesis of the lactam via a Grubbs-Hoveyda-II catalyst, followed by hydrogenation, gave the required bicyclic amide. Addition of n-propyllithium and oxygen removal under neutral conditions resulted in alkaloid 223A as the major product, whereas under acidic conditions the major product was 6-epi-223A.59
Non-polyhydroxylated pyrrolizidines have shown similar pharmacological properties and are often scarce in nature and difficult to purify. In 1980 Doyle et al. published their result of the isolation and structure of bohemamine, which was discovered from a culture screen involving Actinosporangium sp. Strain C36145. They are now believed to be inhibitors of cell adhesion which may help find new cancer treatments. Snider et al., whilst doing a literature search involving three alkaloids that they separated from a culture broth of streptomyces sp., discovered they had the same ring structure as bohemamine, an interesting result as they originally believed they had a very different core. The compounds were the jenamidines.

The main step in the synthesis of jenamidine A₁/A₂ was the acylation of a vinylogous urea with an acid chloride. Hydrolysis of its ester and decarboxylation followed by another mild hydrolysis afforded the required pyrrolizidine product (Scheme 1.43).
Jenamidines B₁/B₂ differ from A₁/A₂ by having a hydroxy group at the bridgehead of the bicyclic ring. The attempted synthesis of jenamidines B₁/B₂ has been met with difficulty due to having a hydroxy group at the bridgehead and to date these systems have still not been synthesised.⁵⁴,⁵⁵ Polyhydroxylated pyrrolizidines such as hyacinthacine, again are potential glycosidase inhibitors, and therefore are also attractive targets. Donohoe et al. used a selection of partial reduction conditions to vary the stereochemistry around a key bicyclic ring structure which was formed via intramolecular Sₙ₂ type displacement reactions to yield the natural products hyacinthacine A₁ and 1-epiaustraline.⁶⁴
Discussion
2 Discussion

The introduction shows that there is a great demand for azasugars, indolizidines and pyrrolizidines due to the pharmaceutical properties that they possess. Therefore novel synthetic routes to these natural products and analogues of them are always needed. The work carried out in this project has been on the bicyclic ring structures of the indolizidine and pyrrolizidine types.

This research started by optimising a route developed by a previous PhD student and exploits the fact that cyclic thioimidates can be used as starting materials to generate pyrrolizidines, indolizidines and pyrroloazepines.

The first four chapters focus on the synthesis and reactivity of pyrrolizidines derived from five membered cyclic imines and their reactions with diphenylcyclopropenone. The fifth chapter presents a discussion of the synthesis and reactions of other cyclopropenones, and the sixth chapter explores the reactivity of acyclic imines towards diphenylcyclopropenone. The seventh chapter is a description of the synthesis of pyrroloazepines and indolizidines and their reactivity. The final chapter concentrates on 1,3-dipolar cycloadditions of one of these cyclic imines.
2.1 Synthesis of Pyrrolizidines

Overview:

\[\text{N} \quad \text{O} \quad \text{H} \quad \text{X} \quad \text{N} \quad \text{S} \quad \text{H} \]

\[\text{Lawesson's Reagent} \quad \text{THF} \]

The thiolactams were produced in 59 – 89 % yield via a thiation of the commercially available 2-pyrrolidone 148 with Lawesson’s reagent 150. Lawesson’s reagent 150 was chosen as the thionating agent as it was commercially available, requires only very mild conditions and gave high yields. Lawesson’s reagent has been widely used since 1978, the main thionating agent before this was phosphorus pentasulfide, which is still widely used today.

The reactivity of Lawesson’s reagent 150 comes from the dithiophosphine ylide 151, which is formed when Lawesson’s reagent is in solution at reflux. A possible mechanism is shown below in Scheme 2.3 and shows that the reaction occurs via a Wittig type process, and forms the required thiolactam 149.
Spectroscopic analysis confirmed the structure as pyrrolidine-2-thione 149. The shift of all signals in the 1H NMR spectrum showed the product had changed; the broad N-H singlet shifted from 7.03 to 8.74 ppm; the triplets at 3.37 and 2.26 ppm shifted to 3.66 and 2.91 ppm, and the remaining quintet shifted from 2.09 to 2.21 ppm. The main signal change in the 13C NMR spectrum shows the carbonyl at 179 ppm shifting downfield to the thione at 206 ppm.

2.1.1.2 Synthesis of 2-ethylthio-pyrroline
The next step was alkylation, using triethylxonium tetrafluoroborate (Meerwein’s reagent) in DCM. The imine was released from the HBF$_4$ salt by a work up procedure involving aqueous potassium carbonate. Very low yields were obtained (8 - 14 %) signifying possible volatility issues, as no starting material was recovered.69

Spectroscopic analysis of 1H and 13C NMR spectra confirmed alkylation of pyrrolidine-2-thione 149. In the 1H NMR spectrum extra signals appear at 3.01 and 1.30 ppm, as a quartet and triplet respectively, both having a coupling constant of 7.4 Hz indicating the presence of an ethyl group. In the 13C and DEPT NMR spectra a change of the C=S bond to C=N bond is indicated by the shift of the quaternary carbon from 206 to 172 ppm. The appearance of four CH$_2$ signals at 61.08, 38.89, 25.20 and 23.67 ppm, and a CH$_3$ signal at 14.69 ppm, confirmed the structure.

The mechanism of this simple alkylation process is shown below:

![Mechanism of Alkylation](image)

2.1.1.3 Reaction with diphenylcyclopropenone

The thioimidate 152 was reacted with diphenylcyclopropenone 7 in anhydrous acetonitrile to afford 5-ethylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 153 in 50 – 55 % yield.
Analysis of 1H and 13C NMR spectra confirmed the synthesis of 5-ethylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one **153**. In the 1H NMR spectrum, 10 protons appear in the aromatic region between 7.48 – 7.11 ppm as multiplets, confirming the presence of the two phenyl rings. A pair of doublets of doublets of doublets appears at 3.55 and 3.08 ppm integrating to 1 proton each, with coupling constants of 6.7, 6.7 and 11.2 Hz, indicating the presence of the CH$_2$ group next to the nitrogen. The presence of the ethylthio moiety was provided by two doublet of quartets appearing at 2.65 and 2.55 ppm and a triplet at 1.20 ppm with coupling constants of 7.5 and 11.9 Hz and 7.5 Hz respectively. The remaining four protons appear as multiplets ranging from 2.29 - 2.17 ppm [2 protons], 2.12 – 2.03 ppm [1 proton] and 1.99 – 1.88 ppm [1 proton]. In the carbon spectra the carbonyl appears at 200.49 ppm, the unsaturated carbon of the enone in the β position appears at 175.37 ppm, whilst the unsaturated carbon of the enone in the α position appears at 116.57 ppm. The bridgehead carbon appears at 80.79 ppm with the remaining two quaternary carbons appearing in the aromatic region at 131.66 and 131.35 ppm, the six CH carbons appear between 131.44 – 126.46 ppm, four CH$_2$ carbons appear between 48.80 – 23.49 and one methyl group appearing at 14.61 ppm. The HRMS gave an accurate mass of 358.1235, which is within 1 ppm of the calculated value.

This reaction proceeds *via* a process that appears to be an overall three carbon 1,3-dipolar cycloaddition and a curly arrow mechanism is shown below in Scheme 2.6:
2.1.2 Attempted synthesis of 5-ethoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

2.1.2.1 Synthesis of 2-ethoxy-1-pyrroline

With the success of the synthesis of 5-ethylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one, an attempt to synthesise 5-ethoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one was made starting with the alkylation of 2-pyrrolidone 148 with Meerwein’s reagent. This process would install an oxygen functional group directly at the bridgehead. It is notable that some natural products in the pyrrolizidine class have oxygen at the bridgehead such as the jenamidines B1/B2 and vulgarine. The 2-ethoxy-1-pyrroline product 154 was very volatile, therefore not all of the solvent was removed after the work up procedure and the product was used in this crude diluted form.

2.1.2.2 Attempted reaction with diphenylcyclopropenone

2-Ethoxy-1-pyrroline 154 was mixed with diphenylcyclopropenone 7 in anhydrous acetonitrile. No identifiable products could be isolated. The successful installation of oxygen
at the bridgehead in a different reaction (see later) meant that this reaction was not pursued further.

2.1.3 Synthesis of 5-methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

2.1.3.1 Synthesis of 2-methylthio-1-pyrroline

![Scheme 2.9](image)

The alkylation step with Meerwein’s reagent gave very low yields, therefore neat dimethyl sulfate72 was used. The procedure with dimethyl sulfate72 was discovered to be higher yielding, easier to perform and superior in all ways to the use of Meerwein’s reagent. The 2-methylthio-1-pyrroline73 product 156 was very volatile, therefore not all of the solvent could be removed after the work up procedure and the product was used in this crude diluted form. The mechanism for the methylation is shown below in Scheme 2.10:

![Scheme 2.10](image)

Spectroscopic analysis of 1H and 13C NMR spectra confirmed the synthesis of 2-methylthio-1-pyrroline 156. In the proton spectrum a new methyl group is clearly visible at ~2.21 ppm. The carbon spectrum provided further evidence of the synthesis of 156, with the appearance of the
C=N bond at 172.71 ppm, three CH$_2$ signals appearing at 60.50, 38.18 and 23.62 ppm and a CH$_3$ signal appearing at 13.33 ppm.

2.1.3.2 Reaction with diphenyldicyclopropenone

![Scheme 2.11](image)

The reaction of 2-methylthio-1-pyrroline 156 with DPP 7 was done in acetonitrile at ambient temperature. The product was synthesised in yields of up to 77%. The reaction is believed to go via an overall [3+2] cycloaddition process with the cyclopropane as an all-carbon 1,3-dipole equivalent; the mechanism is shown below in Scheme 2.12 and is identical to the mechanism discussed in section 2.1.1.3.

![Scheme 2.12](image)

Analysis of the 1H and 13C NMR spectra confirmed the synthesis of 5-methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 157. The proton NMR spectrum has 10 protons in the aromatic range between 7.47 – 7.10 ppm as multiplets. The CH$_2$ protons were seen as multiplets, the CH$_2$ attached to the nitrogen appeared between the ranges of 3.59 – 3.51 ppm and 3.12 – 3.04 ppm both integrating to 1 proton each. The other two CH$_2$ groups appeared in the range of 2.30 – 2.18 ppm, and 2.13 – 1.90 ppm. The CH$_3$ appears as a singlet at 2.08 ppm. The 13C and DEPT spectra has six quaternary carbons appearing between 200.18 – 80.34 ppm.
ppm, six CHs appearing between 131.47 – 126.51, three CH$_2$s appearing at 48.90, 32.62 and 26.89 ppm, and the methyl group appearing at 12.04 ppm.

2.1.4 Synthesis of 5-methoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

2.1.4.1 Attempted synthesis of 2-methoxy-1-pyrrolone

The first step was to synthesise 2-methoxy-1-pyrrolone 158 to later react with DPP 7. 2-Methylthio-1-pyrroline 156 was reacted with sodium methoxide to displace the methylthio group, but all attempts were unsuccessful.

The next attempt to synthesise 2-methoxy-1-pyrrolone 158 was by methylating 2-pyrrolidinone 148 using neat dimethyl sulfate. The mixture was stirred for 16 hours at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was worked up and the solvent was removed in vacuo and purified by column chromatography, but no identifiable products could be observed.

The experiment was repeated due to this being a known literature route.72
Eventually, a crude sample of 2-methoxy-1-pyrrolone 158 was obtained and was dissolved in acetonitrile and reacted with diphenylcyclopropenone 7 for six days at ambient temperature under an atmosphere of dry nitrogen. The mixture changed from colourless to orange in colour and a new compound observed by TLC suggested a reaction had occurred, from which a new product was isolated by chromatography.

Whilst it was clear that the product was not the desired bicycle (Scheme 2.15), there is much evidence to suggest ring opening to the azocine 160/161. Firstly a valid mechanism can be drawn as shown below in Scheme 2.16:
Similar ring opening processes have been observed with 1-azabicyclo[3.2.0]hept-2-en-4-ones in work by Heimgartner.74

The NMR, IR and MS spectra suggest the structure isolated is the 2,3-diphenyl-1-azocin-4,5-dione \textbf{160}. In the 1H NMR spectrum, a proton appearing at 9.83 ppm confirmed the presence of the amine group, with 10 protons appearing in the aromatic region between 7.27 – 7.04 ppm. The aliphatic region shows three signals integrating at two protons each, two triplets at 3.50 and 2.70 ppm and a quintet at 2.17 ppm. If the bicyclic compound had been synthesised these three CH\textsubscript{2} groups would have been expected to be seen as more complex signals, as occurred in previous bicyclic compounds.
The 13C NMR spectrum shows six quaternary carbons appearing between 190.17 – 133.96 ppm, six CH carbons between 131.61 – 127.89 ppm and three CH$_2$ carbons appearing at 49.40, 31.86 and 18.99 ppm. Significantly both 1H and 13C spectra show an absence of a methyl group.

The HRMS calculated value is within 2 ppm of the obtained value, and the IR spectrum shows two strong peaks, at 1704 cm$^{-1}$ indicative of a diketone and 1674 cm$^{-1}$ indicative of an α,β- unsaturated ketone. The amine NH was seen as a small signal at ~3100 cm$^{-1}$.

All attempts to repeat the reaction in order to allow isolation of the primary cycloadduct (the azabicyclo[3.3.0]octenone) resulted only in the isolation of the proposed azocine: it is assumed that hydrolysis is occurring upon isolation.

Other examples of the process were not encountered in this thesis and the result remains an isolated, single example. It is interesting to note that the azocine product could only be formed when crude solutions of 2-methoxy-1-pyrroline were used. We believe this may be due to the presence of water/ acid in the crude mixture.

2.1.4.2 The synthesis of 5-methoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

The reaction of diphenylcyclopropenone 7 with pure commercially available 2-methoxy-1-pyrroline 158 in anhydrous dimethylformamide for 18 hours at an elevated temperature was found, after a long process of optimisation, to be the best conditions giving yields of up to 42
Other solvents, the addition of Lewis acid catalysts and shorter reaction times, gave lower yields.

Evidence for the synthesis of 5-methoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 159 was provided by NMR, IR and MS spectra. The 1H NMR displays 10 protons in the aromatic region between 7.48 – 7.10 ppm. The CH$_2$ adjacent to the nitrogen appears as two doublets of doublets of doublets integrating to one proton each at 3.46 and 2.98 ppm. The methyl from the methoxy group appears as a clear singlet integrating to three protons at 3.31 ppm, the methyl peak is further downfield as expected than the methyl from the methylthio group which appears at 2.08 ppm. The remaining two CH$_2$ groups appear as three multipolets, the first two multiplets appear between 2.34 – 2.21 ppm and 2.20 – 2.13 ppm integrating one proton each, the remaining multiplet appears between 2.00 – 1.89 ppm integrating two protons. This data is supported by the 13C NMR spectrum which confirms six quaternary carbons, six CH carbons, three CH$_2$ carbons and a CH$_3$ carbon at 51.95 ppm.

The IR confirmed the presence of the carbonyl at 1683 cm$^{-1}$ and mass spectroscopic analysis gave the correct accurate mass.

Single crystal X-ray analysis confirmed the synthesis of 5-methoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 159, as shown in Figure 1.
2.1.5 Synthesis of 5-methyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

![Chemical structure](image)

Scheme 2.18

5-Methyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 163 was synthesised in a similar way to the pyrrolizidines shown previously. The reaction of 2-methyl-1-pyrroline 162 with diphenylcyclopropenone 7 at ambient temperature gave 163 in 57 % yield. The reaction was repeated in dimethylformamide at 100 °C and gave the desired product in 89 % yield.
The spectroscopic analysis confirmed the structure as 5-methyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 163. The 1H NMR displayed 10 protons in the aromatic region between 7.43 – 7.06 ppm. The aliphatic region of the spectrum displayed two doublets of doublets of doublets integrating to one proton each, indicative of the CH$_2$ neighbouring the nitrogen. The other two CH$_2$s are seen as a multiplets integrating as four protons between 2.12 – 1.84 ppm and the methyl at the bridgehead appears at 1.46 ppm. The 13C NMR spectrum displays six quaternary carbons, six CH carbons, three CH$_2$ carbons and a methyl group. HRMS was consistent with the assigned structure and the infra-red showed the expected carbonyl stretch at 1670 cm$^{-1}$.

2.1.6 Synthesis of 5-methylthio-2,3-diphenyl-8-methyl-1-azabicyclo[3.3.0]oct-2-en-4-one

Once a few examples of pyrrolizidines with different bridgehead groups were synthesised, the next step was to look at groups in other positions and what effect they would have on the overall process, particularly with respect to stereochemistry.

2.1.6.1 Synthesis of 5-methylpyrrolidine-2-thione

A racemic mixture of 5-methyl-2-pyrrolidone 164 was thionated in a similar process to earlier reactions, using Lawesson’s reagent in anhydrous tetrahydrofuran. Purification gave 5-methylpyrrolidine-2-thione 165 in 84% yield as a white powder.
The structure was confirmed by spectroscopic analysis as 165. In the 1H NMR, several protons appear to have shifted downfield from the starting material 164. The broad NH signal appears at 9.08 ppm, displaying a shift downfield from 7.14 ppm. A CH proton neighbouring the nitrogen appears at 4.05 ppm as a doublet of quartets, displaying a shift downfield from 3.76 ppm in the starting material. The CH$_2$ adjacent to the thione appears as two doublets of doublets of doublets integrating to one proton each at 2.96 and 2.86 ppm, this also displays a shift downfield, as they appeared as multiplets between 2.36 – 2.28 ppm in the starting material. The 13C NMR displays one quaternary peak at 204.77 ppm, one CH peak at 58.52 ppm, two CH$_2$ peaks at 43.60 and 31.40 ppm, and a methyl peak at 21.07 ppm, with the most significant change being the quaternary carbon at 204.77 ppm shifting downfield from 178.90 ppm.

2.1.6.2 Synthesis of 5-methyl-2-methylthio-1-pyrrole

![Scheme 2.20](image)

Alkylation of 5-methylpyrrolidine-2-thione 165 using neat dimethyl sulfate yielded a volatile 2-methyl-5-methylthio-1-pyrrole 166, all of the solvent was not removed after the work up procedure and the product was used in this crude diluted form.

Both 1H and 13C NMR spectra display the two diagnostic methyl peaks. These appear at 2.45 and 1.27 ppm in the proton NMR spectrum and at 58.93 and 22.44 ppm in the carbon NMR spectra. The 13C NMR spectra also showed loss of the C=S carbon at 204.77 ppm and the presence of a new peak at 172.10 ppm for the C=N.
2.1.6.3 Reaction with diphenylcyclopropenone

2-Methyl-5-methylthio-1-pyrroline 166 was reacted with diphenylcyclopropenone 7 in acetonitrile to obtain the required pyrrolizidine. The reaction was performed at ambient temperature for four days affording 5-methylthio-2,3-diphenyl-8-methyl-1-azabicyclo-[3.3.0]oct-2-en-4-one 167 as a mixture of diastereoisomers in a 1:1.3 ratio, plus a small amount of a pure single diastereoisomer. The mixture of diastereoisomers was observed by NMR for over five days and slowly showed interconversion from the more abundant isomer to the minor isomer, which was noted to be the diastereoisomer sample isolated in pure form earlier. The stereochemistry for 167 was not established as there was no diastereocntrol observed.

The 1H NMR spectrum of the single diastereoisomer has 10 protons appearing in the aromatic region between 7.49 – 7.14 ppm, the CH at the chiral centre appears as an apparent quintet at 4.13 ppm. The CH$_2$ adjacent to the methylthio moiety appears as a doublet of doublets of doublets at 2.86 ppm and as a doublet of doublets at 1.88 ppm both integrating one proton each. The remaining CH$_2$ appears as a multiplet between 2.24 – 2.10 ppm integrating two protons. The bridgehead methyl group appears as a singlet at 2.12 ppm, and the remaining methyl group appears as a doublet at 0.70 ppm. The 13C NMR spectrum displays six quaternary carbons between 199.87 - 80.37 ppm. Seven CH carbons appear
between 131.15 - 55.40 ppm. The two CH$_2$s appear at 35.74 and 27.77 ppm with the remaining two CH$_3$s appearing at 19.37 and 11.52 ppm.

The diastereoisomeric mixture showed additional peaks in both the proton and 13C NMR spectra.

On storage the 5-methylthio-2,3-diphenyl-8-methyl-1-azabicyclo[3.3.0]oct-2-en-4-one was seen to be impure, and column chromatography gave the 5-OH product (see X-ray Figure 2), presumably the product of hydrolysis in air or on the column. On further inspection of Figure 2 the cis stereochemistry is possibly a result of the methyl group directing the incoming hydroxy group onto the face of the system that reduces congestion on the “inner surface” of the bicyclic structure.

The successful synthesis of 5-methylthio-2,3-diphenyl-8-methyl-1-azabicyclo[3.3.0]oct-2-en-4-one showed that an addition of a methyl group would not hinder the addition of diphenylcyclopropenone, although the lack of diastereochore was disappointing. The next step was to try starting materials with alternative side groups to get more examples of this type of reaction and to see if any other reactions out of the ordinary would occur, and to assess the level of stereochore that might be possible with a group larger than the methyl group.
2.1.7 Synthesis of 5-methylthio-2,3-diphenyl-8-ethylcarboxylate-1-azabicyclo[3.3.0]oct-2-en-4-one

2.1.7.1 Synthesis of ethyl pyrrolidine-2-thione-5-carboxylate

Ethyl (R)-(-) 2-pyrrolidone-5-carboxylate 168 was reacted with Lawesson’s reagent 150 in the usual manner and was found to give ethyl pyrrolidine-2-thione-5-carboxylate 169 in 95% yield, as an orange oil.
Spectroscopic analysis confirms the product as ethyl pyrrolidine-2-thione-5-carboxylate 169. The 1H NMR displays a broad NH signal shifted downfield from 6.67 to 8.95 ppm. The proton at the chiral centre appears at 4.49 ppm as a doublet of doublets, and the diastereotopic CH$_2$ of the ethyl group appears as two doublets of quartets. The methyl group appears at 1.23 ppm, and the remaining four protons are displayed as multiplets.

The 13C NMR spectrum displays a shift in a couple of peaks; the two quaternary carbons are appear at 206.53 and 170.42 ppm, whereas they were displayed at 178.44 and 172.34 ppm in 168; the chiral CH appears at 62.84 ppm whereas it appears 55.79 ppm in 168. The three CH$_2$s appear at 62.16, 42.80 and 27.06 ppm in the product, but are displayed at 61.98, 29.58 and 25.08 ppm in the starting material. The remaining CH$_3$ appears at 14.20 ppm whereas it is displayed at 14.44 ppm in the starting material.

2.1.7.2 Synthesis of ethyl-2-methylthio-pyrroline-5-carboxylate

![Scheme 2.23](image)

Alkylation was achieved by adding neat dimethyl sulfate in one portion to ethyl pyrrolidine-2-thione-5-carboxylate 169, yielding ethyl-2-methylthio-pyrroline-5-carboxylate 170 as a crude oil.

Both the 1H NMR and 13C NMR spectra displayed an extra methyl peak at 2.34 ppm and 13.72 ppm, respectively.
2.1.7.3 Reaction with diphenylcyclopropenone

The addition of diphenylcyclopropenone 7 to 2-methylthio-5-ethylcarboxylatepyrroline 170 in anhydrous acetonitrile afforded 5-methylthio-2,3-diphenyl-8-ethylcarboxylate-1-azabicyclo-[3.3.0]oct-2-en-4-one 171 in 50% yield.

Analysis of the NMR spectra displayed the product as a mixture of diastereoisomers in a ratio of 1:1.2. In the 1H NMR spectrum, 20 protons appear in the aromatic region between 7.46 – 7.04 ppm, with another 26 protons displayed in the aliphatic region, including two singlets at 2.11 and 2.08 ppm representing the methylthio group and two triplets at 1.27 and 0.82 ppm representing the CH$_3$ from the ethyl group. The 13C NMR spectrum confirmed the diastereoisomer mix and displayed: 14 quaternary peaks between 199.27 – 80.20 ppm, 14 CH carbons between 131.46 – 60.31 ppm, six CH$_2$ carbons between 61.61 - 28.52 ppm and four CH$_3$ carbons appearing at 14.26, 13.79, 11.68 and 11.34 ppm.

The stereochemistry for 171 was not established as there was no diastereoecontrol observed.
2.1.8 Synthesis of 5-methylthio-2,3-diphenyl-8-(4-methylbenzenesulfonate)-1-azabicyclo[3.3.0]oct-2-en-4-one

2.1.8.1 Synthesis of (hydroxymethyl)pyrrolidin-2-thione p-toluenesulfonate

The next substituted analogue was synthesised using (S)-(+)-(hydroxymethyl)-2-pyrrolidinone p-toluenesulfonate 172 as a starting material. This was thionated in the usual manner using Lawesson’s reagent in anhydrous tetrahydrofuran to give product 173.

The product was produced in 83 % yield and its structure was confirmed by NMR spectra. The \(^1\)H NMR spectrum displayed a broad NH signal between 8.22 – 8.13 ppm, whereas the NH signal in the starting material appeared at 6.32 ppm. The \(^{13}\)C NMR spectrum displayed three quaternary signals at 206.85, 145.93 and 132.36 ppm, whereas they appear at 178.11, 145.71 and 132.60 ppm in 172, confirming thionation was successful.

2.1.8.2 Synthesis of (hydroxymethyl) 2-methylthio-5-p-toluenesulfonate pyrroline

The product was produced in 83 % yield and its structure was confirmed by NMR spectra. The \(^1\)H NMR spectrum displayed a broad NH signal between 8.22 – 8.13 ppm, whereas the NH signal in the starting material appeared at 6.32 ppm. The \(^{13}\)C NMR spectrum displayed three quaternary signals at 206.85, 145.93 and 132.36 ppm, whereas they appear at 178.11, 145.71 and 132.60 ppm in 172, confirming thionation was successful.
The initial alkylation step was performed as previously described, using neat dimethyl sulfate at ambient temperature. However, on this occasion dimethyl sulfate was unsuccessful as an alkylation agent. Trimethylloxonium tetrafluoroborate was therefore used to methylate (hydroxymethyl) pyrrolidin-2-thione p-toluenesulfonate 173 in dichloromethane which afforded (hydroxymethyl)-2-methylthio-5-p-toluenesulfonate pyrroline 174.

Methylation was confirmed by both 1H and 13C NMR spectra displaying an extra methyl peak. The 1H NMR spectrum displays two methyl peaks at 2.44 and 2.38 ppm, and the 13C NMR spectrum displays two methyl peaks at 21.97 and 14.10 ppm.

2.1.8.3 Reaction with diphenylcyclopropenone

(Hydroxymethyl)-2-methylthio-5-p-toluenesulfonate pyrroline 174 was reacted with diphenylcyclopropenone 7 in anhydrous acetonitrile. The mixture was stirred at ambient temperature for three days but no reaction was observed; therefore the reaction mixture was heated at reflux for 18 hours. Purification yielded 5-methylthio-2,3-diphenyl-8(4-methylbenzenesulfonate)-1-azabicyclo[3.3.0]oct-2-en-4-one 175 in 48 % yield, as a single diastereoisomer.

Analysis of the spectra confirmed the synthesis of 175. The 1H NMR spectrum displayed four protons in the aromatic region between 7.50 – 7.32 ppm and another 10 protons between 7.25
– 7.09 ppm. The 13C NMR spectrum displayed eight quaternary signals, nine CH signals, three CH$_2$ signals and two CH$_3$ signals. The HRMS gave an accurate mass of 528.1274, which is within 1 ppm of the calculated value. As yet we have been unable to determine the stereochemistry outcome.

2.1.9 Attempted synthesis of 5-methylthio-2,3-diphenyl-8-hydroxymethyl-1-azabicyclo[3.3.0]oct-2-en-4-one

Many natural pyrrolizidone natural products have hydroxy/hydroxy methyl groups attached. Therefore, the synthesis of 5-methylthio-2,3-diphenyl-8-hydroxymethyl-1-azabicyclo[3.3.0]-oct-2-en-4-one was attempted, whereby this is essentially a deprotected version of the OTs protected 175.

2.1.9.1 Attempted synthesis of 5-(hydroxymethyl)pyrrolidin-2-thione

The thionation of (S)-5-(hydroxymethyl)-2-pyrrolidinone 176 with Lawesson’s reagent 150 was attempted in anhydrous tetrahydrofuran under the conditions described above. On this occasion, no thionation was observed possibly due to the alcohol functional group interfering with the Lawesson’s reagent. In any event none of the desired product could be isolated. However, the easy access to the OTs protected 175 meant that this failure was not an issue.
2.2 Reactivity of Pyrrolizidines

With a range of azabicyclo[3.3.0]octenones in hand, time was taken to study their reactivity.

2.2.1 Reactivity of 5-methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

2.2.1.1 Mono oxidation at sulfur

5-Methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 157 was oxidised using meta-chloroperoxybenzoic acid in anhydrous dichloromethane.75 The reaction was done at low temperature to afford the mono oxidised 5-methanesulfinyl-2,3-diphenyl-1-azabicyclo[3.3.0]-oct-2-en-4-one 178 in high yields of up to 90%.

The product was formed as a mixture of diastereoisomers in a 1:1.45 ratio confirmed by both 1H and 13C NMR spectra. Spectroscopic analysis by 1H NMR displayed 20 protons in the aromatic region between 7.55 – 7.14 ppm, 12 CH\textsubscript{2} protons between 3.53 – 1.83 ppm and two methyl singlets at 2.69 and 2.57 ppm. The 13C NMR spectrum displayed ten quaternary carbon signals between 196.00 – 119.83 ppm, and two sp3 quaternary carbons at 92.75 and 91.86 ppm. There are 12 CH protons appearing in the aromatic region between 132.11 – 128.53 ppm including two CHs overlapping at 128.88 ppm. The six CH\textsubscript{2}s appear between 60.74 – 22.15 ppm and the remaining two CH\textsubscript{3} carbons appear at 33.33 and 32.74 ppm.
2.2.1.2 Reactivity of 2-methylthio-1-pyrroline

The above oxidation to produce 5-methanesulfinyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 178 gave very good yields. However, there was still an obvious alternative route to 178 that had not been explored, namely the oxidation of 2-methylthio-1-pyrroline 156 followed by the reaction with diphenylcyclopropenone 7 to give access to 5-methanesulfinyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 178.

![Scheme 2.30](image)

As with the mono oxidation of 157, 2-methylthio-1-pyrroline 156 was reacted with meta-chloroperoxybenzoic acid in dichloromethane, at 0 – -10 °C under an atmosphere of dry nitrogen. No identifiable products were isolated, so this route of oxidation for the synthesis of 178 was not further pursued due to the extremely high yields noted in section 2.2.1.1.

2.2.1.3 Oxidation to the sulfone

![Scheme 2.31](image)

5-Methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 157 was oxidised using meta-chloroperoxybenzoic acid in anhydrous dichloromethane. To obtain the sulfone rather than the sulfinyl, the reaction used two equivalents of m-CPBA at ambient temperature for three
days, and this afforded the di-oxidised 5-methanesulfonyl-2,3-diphenyl-1-azabicyclo[3.3.0]-oct-2-en-4-one 180 in yields of up to 75%.

Analysis of both 1H and 13C NMR spectra confirmed the synthesis of 5-methanesulfonyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one. The 1H NMR spectrum displayed a shift of the methyl singlet downfield from 2.08 ppm to 3.01 ppm (note that the sulfoxide displays the methyl singlets at 2.57 and 2.69 ppm). The 13C NMR also displayed the methyl peak shifting downfield. This is an indication that a more electronegative group has been attached and is shifting the methyl peak further downfield. The other peaks for this product in both the 1H and 13C NMR are all present and are as described for the sulfoxide, except that there are diastereomers in this case.

The HRMS gave an accurate mass of 376.0981, which is within 3 ppm of the calculated value, confirming the uptake of the two oxygen atoms.

2.2.1.4 Reactivity of 5-methanesulfinyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

5-Methanesulfinyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 178 was dissolved in toluene and heated at reflux to discover whether it would undergo β-elimination and remove methyl sulfenic acid. The immediate product of the β-elimination, 182, was not isolated, the actual product isolated was 181 (Scheme 2.33) in 24% yield, this was confirmed by extensive NMR studies (COSY, HSQC, HMBC, NOESY).
The NMR studies revealed three new CH groups appearing in the aromatic region, confirming the presence of the new pyrrole ring. Two sp\(^3\) CHs \(\alpha\) and \(\beta\) to the carbonyl appear at 5.46 and 4.11 ppm, indicative of a CO-CHPh-CHPh chain. The stereochemistry shown in Scheme 2.32 was confirmed from the strong NOE between the two sp\(^3\) CHs, which would only be seen if both were on the same face. This, with a strong NOE between the two phenyl rings is symptomatic of a \textit{cis} relationship between the two phenyl rings. It is also notable that there is a lack of any NOE between either of the two sp\(^3\) CHs and the \textit{ortho} protons of the phenyl ring on the neighbouring carbon.

The mechanistic rationale proposed in Scheme 2.33 shows a tautomerism-prototropic shift-tautomerism sequence. The loss of methyl sulfenic acid from product 178 gives the unstable product 182, which tautomerises to 183, undergoes a prototropic shift to give 184 and, in the final tautomerism, the incoming proton enters from the least sterically hindered face, i.e. \textit{trans} to the existing phenyl group, resulting in the two phenyl groups sitting \textit{cis} to each other and yielding 181.

\[\text{Scheme 2.33}\]
2.2.1.5 Synthesis of 5-hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

![Scheme 2.34]

5-Methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 157 as described above, was oxidised using an excess of meta-chloroperoxybenzoic acid in dichloromethane. In one batch, after five days of stirring, two products were isolated, the expected 5-sulfone 180, and the unexpected 5-hydroxy compound 185. Given the presence of such an OH in the jenamidines, this result was analysed further.

The 5-hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 185 was identified using NMR, IR and mass spectrometry, and was formed in 10 % yield.

In the 1H NMR spectrum, 10 protons appear in the aromatic region between 7.50 – 7.12 ppm, three CH$_2$ groups appear between 3.59 - 1.90 ppm and a new broad hydroxyl peak appears between 4.00 – 3.72 ppm. There is a distinct absence of the methyl group. In the 13C NMR spectrum, six quaternary peaks appear between 200.23 – 96.70 ppm, six CH carbons in the aromatic region between 131.79 – 126.63 ppm and three CH$_2$ peaks at 49.25, 33.34 and 26.75. The 13C NMR spectrum confirmed the disappearance of the methyl group. The IR spectrum shows a broad OH signal at 3348 cm$^{-1}$, and a very strong sharp ketone signal at 1676 cm$^{-1}$, consistent with an α,β-unsaturated ketone. The HRMS gave an accurate mass of 292.1336 which is within 4 ppm of the calculated value and is in agreement with the assigned structure – i.e., loss of SMe and gain of OH. All the data is consistent with the structure of 5-hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 185.
The synthesis and isolation of 5-hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 185, was a pleasant surprise as there are natural products which display an OH group in this position. A hydroxy group at the bridgehead in such systems is very difficult to obtain, and attempts at this have been met with difficulties both in our own work and in that of Snider et al.54 We needed to understand more about how product 185 was formed in order that we might synthesise it deliberately. The obvious source of the OH is water, either from wet solvent or from the \textit{m}-CPBA.

5-Methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 157 was thus reacted with \textit{meta}-chloroperoxybenzoic acid in dichloromethane with the addition of two drops of water. The reaction was monitored by TLC and stopped after 20 hours by quenching with saturated aqueous sodium thiosulfate and washed with saturated aqueous sodium hydrogen carbonate. The results were similar to those obtained above i.e. approximately 10 % yield of the hydroxy compound. Noteworthy here is the fact that extra water did not increase the yield of the 5-hydroxy compound 185.

In the next optimisation attempt, a solution of 157 in DCM had benzoic acid and three drops of water added to it. Benzoic acid was used as it is acidic but non-oxidising. TLC analysis showed no change had occurred after 19 hours of stirring at ambient temperature, indicating that \textit{m}-CPBA is necessary for a successful reaction. In order to establish if the sulfone 180 was the source of 185, a solution of 180 in DCM, benzoic acid and water (3 drops) was stirred and the mixture monitored by TLC, but no reaction was observed.

The addition of \textit{m}-CPBA to the reaction mixtures above had no effect on their outcome. The only time the 5-hydroxy compound 185 could be produced was by treating the 5-methylthio 157 with \textit{m}-CPBA in dichloromethane. Having looked at (and dismissed) the possibility of acid catalysed hydrolytic routes to the 5-hydroxy compound 185, we subsequently looked at possible rearrangement process involving oxygen transfer from a sulfoxide intermediate:
A plausible mechanism is shown above, where a rearrangement from the sulfoxide (made as shown in Scheme 2.29) gives 186 which loses methyl sulfenic acid to afford product 185. Another possible pathway could be hydrolysis in a heterolytic or a free-radical, S-O bond cleavage. No evidence was found for these reaction pathways.

In order to see if a viable synthetic route to 185 could be established, basic aqueous media were also explored:

Low yields (~20 %) of the desired 5-hydroxy compound 185 were obtained by heating a THF/DCM solution of 157 in aqueous/ethanolic sodium hydroxide for three days.

Spectroscopic analysis confirmed the structure of the isolated compound as the desired product, giving 1H and 13C NMR spectra identical to that described above. Higher yields of 185 could not be obtained via this route and, although further efforts are ongoing in the group, other approaches were explored in this work.
2.2.2 Reactivity of 5-methoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

\[\text{Scheme 2.37} \]

Due to very low yields being obtained in previous attempts to gain access to the bridgehead hydroxy compound 185, the next reaction that was performed was to cleave the methoxy group off 159 and replace it with a hydroxy group. Boron tribromide is a strong Lewis acid and is well known for cleaving methyl aryl ethers.\(^7^6\)\(^-\)\(^8^0\) There are a number of different cleaving methods/reagents that can be used for the demethylation process. Hydrohalic acids are similar to Lewis acids in that they cleave at the C-O bond,\(^8^1\) but hydrohalic acids are not usually preferred due to the extremely high temperatures (≥200 °C) required. Another method is by directly attacking the methyl group using a strong nucleophile.\(^8^3\) This method of demethylation is restricted to compounds that do not contain any other functional groups susceptible to nucleophilic attack\(^8^1\) and therefore 159 is not suitable as it contains an α,β-unsaturated carbonyl which could be vulnerable to a nucleophilic attack.

Boron tribromide is moisture sensitive and corrosive, but has been shown to demethylate very well.\(^8^4\)\(^-\)\(^8^7\) Thus after a process of optimisation, a solution of 159 in chloroform was treated with a dropwise addition of boron tribromide (0.42 eq) over two and a half hours at 0 °C, the reaction was quenched with excess ethanol. Purification gave two products which were the expected 5-hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 185 in 31 % yield and the unexpected 5-ethoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 187 in 44 % yield.
The 5-hydroxy compound was identical to that obtained previously. Spectroscopic analysis also confirmed the structure of the 5-ethoxy compound as the other product. In the 1H NMR spectrum, the appearance of the ethoxy group is displayed by two multiplets integrating to one proton each between 3.70 – 3.38 ppm representing the CH$_2$ protons, whilst the methyl groups appears at 1.24 ppm as a triplet. In the 13C NMR spectrum, the appearance of an additional CH$_2$ carbon and the shift upfield of the methyl group from 51.95 to 15.80 ppm is displayed.

The reaction was repeated as before but instead of quenching with ethanol, water was used. This was to see if a higher yield of 185 could be synthesised. As previously 159 in chloroform had boron tribromide added dropwise and stirred for two and a half hours at 0 °C. Excess water was added to quench the reaction, giving 185 in 35 % yield, and recovered 159 in 9 % yield. A possible mechanism for the BBr$_3$ reaction is shown below:

![Scheme 2.38](image-url)
2.2.3 Synthesis of 5-hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

After successfully synthesising pyrrolidine compounds with hydroxy, methoxy, ethoxy, methylthio and ethylthio groups on the bridgehead, the next step was to attempt to extend the methodology to allow a proton at the bridgehead. Several pyrrolizidine and indolizidine natural products have a proton at the bridgehead, such as tylophorine, castanospermine, uniflorine A and hyacinthacine. The parent 1-pyrroline was chosen as a model. 4-Aminobutyraldehyde diethyl acetal was used as a starting material and was cyclised in a mixture of 2M HCl and diethyl ether at 0 °C. The mixture was basified with aqueous potassium carbonate and extracted with diethyl ether, before being concentrated down to ~10 mL. Into this solution diphenylcyclopropenone 7 was added. The only product obtained was 5-hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one in 8% yield. However, given the instability of the 1-pyrroline, this was an encouraging result.

Spectroscopic analysis confirmed the structure as 5-hydroxy-2,3-diphenyl-1-azabicyclo-[3.3.0]oct-2-en-4-one.

In the 1H NMR spectrum, ten protons appear in the aromatic region between 7.47 – 7.09 ppm as multiplets, confirming the presence of the two phenyl rings. The OH proton appears at 3.86 ppm as a broad singlet. The CH2 group adjacent to the nitrogen appears at 3.56 and 2.89 ppm as two doublets of doublets of doublets. The CH2 protons neighbouring the bridgehead carbon...
appear at 2.16 and 1.91 ppm as doublets of doublets of doublets. The remaining CH$_2$ group appeared as two multiplets between 2.47 – 2.36 ppm and 2.06 – 1.98 ppm. In the 13C NMR spectrum, six quaternary carbons appear between 199.92 – 96.61 ppm, six CH carbons appear between 131.60 – 126.50 ppm, with three CH$_2$s appearing at 49.26, 33.35 and 26.65 ppm. Infra-red spectrum displayed a clear presence of the hydroxy group at 3327 cm$^{-1}$ along, surprisingly, with a C=O at 1669 cm$^{-1}$.

The HRMS gave an accurate mass of 314.1152 which was exactly the calculated value of C$_{19}$H$_{17}$NNaO$_2$. It was somewhat surprising to note that this synthesis gave a product identical to the bridgehead OH from above suggesting oxidation at the bridgehead. A suggested mechanism is shown in Scheme 2.42 (see later).

2.2.3.1 Synthesis of bis(3,4-dihydro-2H-pyrrol-1-yl)di-iodozinc (II)

The results of the previous experiment gave a low yield which was believed to be due to the intermediate 1-pyrroline not being stable, therefore we stabilised the imine intermediate with zinc iodide using a literature method.93

4-Aminobutyraldehyde diethyl acetal 188 was dissolved in a mixture of 2M HCl and diethyl ether as described previously, and the resultant ethereal solution was dried over magnesium sulfate. Zinc iodide was added to the reaction mixture at 0 °C. The precipitate formed was
filtered off to yield bis(3,4-dihydro-2H-pyrrol-1-yl)di-iodozinc (II) \textit{191} in 66 \% yield, identical in all aspects to that reported in the literature.93

2.2.3.2 Reactivity of bis(3,4-dihydro-2H-pyrrol-1-yl)di-iodozinc (II)

Bis(3,4-dihydro-2H-pyrrol-1-yl)di-iodozinc (II) \textit{191} in chloroform had diphenylcyclopropenone \textit{7} and a solution of triethylamine (2 eq) in water added. The reaction mixture was stirred at ambient temperature for two and a half hours before being extracted with dichloromethane. Purification gave \textit{185} in 43 \% yield.

Spectroscopic results were identical to those described above and were confirmed unequivocally by single crystal X-ray analysis, as shown in Figure 3.
Figure 3 – Crystal Structure of 5-hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one 185.

The mechanism of this reaction is far from obvious, but a suggested pathway is shown below.

Scheme 2.42
2.2.4 Attempted synthesis of 5-trifyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

In order to extend the scope of the cyclic imine-DPP reaction further, we looked to have groups other than H, R, OR or SR (R = alkyl) at the bridgehead. Amides are easily converted into triflates; therefore the triflate group was assessed.

2-Pyrrolidinone 148 had lithium diisopropylamide (LDA) added to deprotonate the amine, followed by the addition of Comins’ reagent which was used to add a triflate group. After purification the triflate 192 obtained in 10% yield was reacted with DPP in an attempt to produce 5-trifyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one. No bicyclic products were obtained despite repeated attempts.

Spectroscopic analysis confirmed the formation of the 5-trifyl-1-pyrroline 192 intermediate.

In the 1H spectrum, all three CH$_2$ protons shifted downfield from those for 148 and the secondary amide proton had disappeared. In the 13C NMR spectrum, all four carbon signals had shifted, along with the addition of a new quaternary carbon at 118.21 ppm, consistent with that for the CF$_3$ group.94
2.2.5 Attempted formation of 5-sulfoxyl and 5-hydroxy-8-methyl-2,3-diphenyl-1-
azabicyclo[3.3.0]oct-2-en-4-one

![Chemical structure](image)

Scheme 2.44

The attempt to get a hydroxy group on the bridgehead of 5-methylthio-8-methyl-2,3-diphenyl-
1-azabicyclo[3.3.0]oct-2-en-4-one was unsuccessful with basic aqueous media that was used in section 2.2.1.5.

![Chemical structure](image)

Scheme 2.45

Similarly, attempts to oxidise the sulfide to the sulfoxide using the \(m \)-CPBA technique that had been used previously was also unsuccessful, with no signs of any identifiable product or starting material.
2.2.6 Hydrolysis of 5-methylthio-2,3-diphenyl-8-(4-methylbenzenesulfonate)-1-azabicyclo[3.3.0]oct-2-en-4-one

The attempted replacement of the methylthio group in compound 175 with a hydroxy group was only successful in low yields <5 %, using THF in dilute HCl, no other product or starting material was recovered.

Spectroscopic analysis confirmed the presence of 5-hydroxy-2,3-diphenyl-8-(4-methylbenzenesulfonate)-1-azabicyclo[3.3.0]oct-2-en-4-one 196 as the product, formed as a single diastereoisomer.

The \(^1\)H and \(^{13}\)C NMR spectra displayed a shift in several peaks; this observation, accompanied by the disappearance of the methyl group from both the proton spectrum at 2.07 ppm and the carbon spectra at 11.38 ppm, indicated a change had occurred. Mass spectroscopic data confirmed the structure.
2.2.7 Attempted synthesis of 4-butyl-5-ethylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-ol

![Reaction Scheme](image)

5-Ethylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one was treated with n-BuLi under standard conditions but no identifiable products could be observed, with 90% of the starting material being recovered unchanged.

2.2.8 Attempted synthesis of 5-ethylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-ol

![Reaction Scheme](image)

The same substrate also failed to react with sodium borohydride under a variety of conditions. The reaction was repeated with 5-methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one, which also showed no signs of any identifiable product or recovery of starting material in either case.
2.3 Synthesis of polyhydroxylated pyrrolizidines

Another group of pyrrolizidines, as described in the introduction, are the polyhydroxylated pyrrolizidines also known as aza-sugars. With these in mind, the next stage of this project was to synthesise a hydroxylated pyrroline. This was done from L-arabinose as described below.

2.3.1 Synthesis of 2,3-O-isopropylidene-L-erythrose

The first step is summarised below:

![Scheme 2.49](image)

Commercially available L-arabinose 199 in dimethylformamide had p-toluenesulfonic acid and 2,2-dimethoxypropane added at ambient temperature to give the protected arabinose 201 as the initial product (see Scheme 2.50). Sodium periodate was used to cleave at the C-C carbonyl bond to produce 202 which cyclises to give 2,3-O-isopropylidene-L-erythrose 200 in 52 % yield with data consistent with that reported in the literature\(^{95-97}\) together with a small quantity (3 %) of the diprotected arabinose.

![Scheme 2.50](image)
2.3.2 Synthesis of (3S,4R)-3,4-isopropylidenedioxypyrroline 1-oxide

The next step was to synthesise a nitrone, again using a literature method.98-100 2,3-\textit{O}-isopropylidene-L-erythrose 200 was dissolved in dry pyridine with 3Å activated molecular sieves, and a solution of hydroxylamine hydrochloride was added at ambient temperature under an atmosphere of dry nitrogen, followed by a solution of methanesulfonyl chloride in dry pyridine. The crude product was purified to give (3S,4R)-3,4-isopropylidenedioxypyrroline-1-oxide 203 in 13 \% yield.

Spectroscopic analysis confirmed the product as 203.

In the 1H NMR, a broad singlet appearing at 6.75 ppm represents the unsaturated CH proton neighbouring the nitrogen. The protons at the ring junctions appear at 5.18 and 4.79 ppm as broad singlets. The remaining CH\textsubscript{2} protons from the pyrroline ring appear as two signals at 4.02 and 3.86 ppm, both as broad doublets. The two methyl groups appear at 1.30 and 1.22 ppm as singlets. The 13C NMR spectrum corroborates the results from the 1H NMR. Three CH carbons appear at 133.03, 79.76 and 73.60 ppm, a quaternary carbon appears at 111.90 ppm and the CH\textsubscript{2} carbon appears at 29.58 ppm with the remaining CH\textsubscript{3} groups appearing at 27.08 and 25.56 ppm. The data was consistent with that reported in the literature.98,99
2.3.3 Attempted synthesis of 2,3-diphenyl-6,7-isoproxyldenedioxy-1-azabicyclo[3.3.0]oct-2-ene-4-one

The nitrone 203 was dissolved in anhydrous tetrahydrofuran and treated with tributylphosphine101 in order to deoxygenate the nitrone and hence generate the protected hydroxylated pyrroline. Diphenylcyclopropenone 7 in anhydrous acetonitrile was added and the reaction monitored for new spots by TLC. TLC and subsequent 1H NMR indicated a change had occurred, and subsequent work by others in the group have shown that these types of reactions do work, although time constraints and difficulties in obtaining tributylphosphine in a timely fashion prevented further studies in this thesis.
2.4 Synthesis of a highly substituted, functionalised pyrrolizidine

2.4.1 Synthesis of 2-methyl-4-phenyl-5-cyano-1H-pyrroline

In order to produce a highly substituted functionalised pyrrolidine, 2-methyl-4-phenyl-5-cyano-1H-pyrroline 208 was synthesised using aminoacetonitrile bisulfate 207 and 4-phenyl-3-butene-2-one 206. Scheme 2.53 shows a possible reaction course as suggested by Bergner et al.102 The intermediate imine 209 is formed by condensation of the starting materials; deprotonation of 209 then gives the 2-azapentadienyl anion 210 which undergoes electrocyclisation to furnish the 1-azaallyl anion 211. Reprotonation gives the more stable 3,4-dihydro-2H-pyrrole 208.102 The product was only obtained as the trans isomer in low but usable yields.

The structure was confirmed by spectroscopic analysis and by comparison to the literature data.

In the 1H NMR spectrum, five protons appear in the aromatic region between 7.39 – 7.19 ppm as multiplets, the proton neighbouring the carbonitrile appears between 4.72 – 4.66 ppm as a
multiplet, the proton neighbouring the phenyl ring appears at 3.80 ppm as a doublet of doublets of doublets and the CH2 appears as two doublets of doublets of doublets at 3.21 and 2.83 ppm, showing some long range coupling. The 13C NMR spectra displays three quaternary carbons at 180.13, 140.32 and 119.56 ppm, five CH carbons between 129.37 – 49.27 ppm and the CH2 and CH3 carbons appear at 47.65 and 20.07 ppm, respectively.

2.4.2 Synthesis of 5-methyl-2,3,7-triphenyl-8-cyano-1-azabicyclo[3.3.0]oct-2-en-4-one

Scheme 2.54

The next step was to react 2-methyl-4-phenyl-5-cyano-1H-pyrrole 208 with diphenyl-cyclopropenone 7. This cyclopropenone was chosen as it has previously reacted well with imines as shown earlier in this thesis, and therefore would give an indication as to whether cyclopropenones can react with more complex imines of this sort.

The components were stirred in anhydrous acetonitrile at ambient temperature for three days. Purification gave back both starting materials in good recovery and the required product 212, in 17% yield although this reaction was not fully optimised.

Spectroscopic analysis confirmed the product to be 5-methyl-2,3,7-triphenyl-8-cyano-1-azabicyclo[3.3.0]oct-2-en-4-one 212 formed as a mixture of two diastereoisomers in a 1:1.5 ratio.
In the 1H NMR spectrum, 30 protons, (15 per diastereoisomer) appear in the aromatic region between 7.60 – 7.16 ppm as multiplets, two of the four CH protons appear at 4.59 and 3.77 ppm, both as doublets, and the other two CH protons appear as a multiplet and a quartet between 4.25 – 4.18 ppm and at 3.71 ppm, respectively. Three of the four CH$_2$ protons of the two isomers appear at 2.88 ppm, 2.46 ppm, and 2.21 ppm as doublets of doublets of doublets, with the final CH$_2$ proton appearing as a multiplet between 2.41 – 2.27 ppm. The two methyl groups appear at 1.74 and 1.43 ppm. In the 13C NMR spectrum, the 16 quaternary carbons appear between 205.03 – 74.86 ppm, the 22 CH carbons appear as 18 overlapping signals between 132.09 – 51.04 ppm. Two CH$_2$ carbons appear at 39.25 and 38.80 ppm with the remaining two CH$_3$ carbons appearing at 26.20 and 22.72 ppm. The HRMS gives an accurate mass of 413.1624 which is within 1 ppm of the calculated value.
2.5 Cyclopropenones

Until now the only cyclopropenone that we have used is diphenylcyclopropenone due to it being commercially available, but most pyrrolizidine and indolizidine natural products don’t contain a phenyl ring in their system. This chapter will look into the synthesis of different cyclopropenones and their reactions.

2.5.1 Unsubstituted cyclopropenones

The following sequence of syntheses looks at the production of the unsubstituted parent cyclopropenones and their reaction with cyclic imines. The first method that was attempted was reported by Isaka et al.36,35, and uses dichloroacetone 213 to synthesise the cyclopropenone acetal 217 as described below.

2.5.1.1 Synthesis of dichloroacetone acetal

![Scheme 2.55]

Dichloroacetone 213 and neopentyl glycol were reacted together in boiling toluene in the presence of PTSA with azeotropic removal of water (Dean-Stark). The acetal 214 was formed as a white solid in 88% yield.36,35
2.5.1.2 Attempted synthesis of 6,6-dimethyl-4,8-dioxaspiro[2.5]oct-1-ene

The dichloroacetone acetal 214 was added to sodium amide (3 eq) in liquid ammonia at -50 °C. An additional portion of sodium amide was added to the mixture to aid the formation of the sodium salt 216 from the chlorocyclopropane 215. Ammonium chloride was added slowly to the mixture in an attempt to form the cycloprenone acetal 217. Spectroscopic analysis showed no identifiable products. This reaction was extremely complex to perform and problems were encountered with the low temperature manipulation/addition of the acetal which was found to constantly freeze. Further efforts were similarly unsuccessful (despite this being a literature procedure).

2.5.1.3 Attempted synthesis of 1-butyl-6,6-dimethyl-4,8-dioxaspiro[2.5]oct-1-ene
The process described above was also repeated with the final addition of n-butylbromide rather than ammonium chloride, the idea being to quench the sodium salt with butyl rather than a proton. However, spectroscopic analysis showed no reaction had occurred.

The second method attempted for the production of the unsubstituted parent cyclopropenone looks at an adaptation of Baucom and Butler’s synthesis, by Breslow et al. The synthesis starts with 2,3-dichloro-1-propene to give 1-bromo-3-chloro-2,2-dimethoxypropane which is used to make 3,3-dimethoxycyclopropene, as described below.

2.5.1.4 Synthesis of 1-bromo-3-chloro-2,2-dimethoxypropane

![Scheme 2.58](image)

2,3-Dichloro-1-propene in anhydrous methanol was treated with N-bromosuccinimide and sulfuric acid, as described in the literature, giving 1-bromo-3-chloro-2,2-dimethoxypropane as a white crystalline solid in 36% yield. The spectroscopic data was consistent with that of the literature.

2.5.1.5 Synthesis of 3,3-dimethoxycyclopropene

![Scheme 2.59](image)
The synthesis of the protected cyclopropenone was difficult to achieve, again due to the tedious nature of the method and problems similar to those described above for the dichloro system were encountered. The bromo-chloro-acetal was treated with potassium in liquid ammonia at \(-78 \, ^\circ\text{C}\), and the mixture quenched with ammonium chloride. The crude product was isolated as an ethereal solution and used in this form in the next reaction. All attempts to purify the acetal were unsuccessful.

2.5.1.6 Reaction with 2-methylthio-1-pyrroline

![Scheme 2.60]

The crude dimethylcyclopropenone solution \(221\) prepared as described above was treated with sulfuric acid in water to deprotect and generate the cyclopropenone. The resulting mixture was added to a solution of 2-methylthio-1-pyrroline \(156\) in anhydrous acetonitrile which reacted vigorously and turned the mixture brown/ red in colour, accompanied by giving a vigorous reaction. The mixture was purified to give 5-methylthio-1-azabicyclo[3.3.0]oct-2-en-4-one \(222\) as a brown/ orange oil.

The structure was confirmed by spectroscopic analysis as \(222\).

In the \(^1\text{H NMR}\) spectrum, the protons at the \(\beta\) and \(\alpha\) position of the unsaturated carbonyl appear at 7.77 and 5.30 ppm respectively, both as doublets with J values of 3.5 Hz. One of the protons from the \(\text{CH}_2\) neighbouring the nitrogen appears at 3.52 ppm as a doublet of triplets with J values of 7.4 and 11.2 Hz, whilst the other appears at 3.32 ppm as a doublet of doublets of doublets with J values of 4.1, 7.1 and 11.2 Hz. One of the protons from the \(\text{CH}_2\)
neighbouring the bridgehead carbon appears at 1.89 ppm as doublets of doublets, the other proton along with the remaining CH$_2$ protons appear as a multiplet between 2.21 – 1.97 ppm. The methyl group appears as a singlet at 1.96 ppm integrating to three protons.

In the 13C NMR, the quaternary carbonyl carbon appears at 203.86 ppm, and the β and α carbons of the unsaturated carbonyl appear at 169.31 and 105.57 ppm, respectively. The bridgehead carbon appears at 79.78 ppm, the three sp3 carbons appear at 48.79, 33.18 and 27.38 ppm, and the methyl group appears at 12.16 ppm. The HRMS gives a value of 192.0454 which is within 1 ppm of the calculated value for this molecule. The IR displays a carbonyl peak at 1681 cm$^{-1}$.

2.5.1.7 Reactivity of 5-methylthio-1-azabicyclo[3.3.0]oct-2-en-4-one

The synthesis of 2-methyl-5-methylthio-1-azabicyclo[3.3.0]octan-4-one 223 was attempted by an organocopper conjugate addition using lithium dimethylcuprate.103 A successful model experiment was performed by reacting lithium dimethylcuprate with 2-cyclopenten-1-one. All attempts to synthesise 223 were, however, unsuccessful.

The route of using organocopper conjugate addition to add an organic group at the β position of an unsaturated carbonyl was not looked at any further due to the reaction not being successful and there being other avenues to pursue. One possible explanation of why it was unsuccessful could be due to the electron donating effect of the nitrogen, which undermines conjugate addition.
2.5.2 Synthesis of dialkylcyclopropenones

The aim of looking at different cyclopropenones was further pursued by the synthesis of dialkylcyclopropenones, and shown below are two methods used to make dipropyl and dibutyl cyclopropenones using 4-octyne 14a and 5-decyne 224 as starting materials, respectively.

Method 1

\[\text{Method 1}^{104} \]

\[
\begin{array}{c}
\begin{array}{c}
\text{14a} \\
\text{224}
\end{array}
\end{array} \rightarrow \begin{array}{c}
\begin{array}{c}
\text{14a} \\
\text{224}
\end{array}
\end{array} \rightarrow \begin{array}{c}
\begin{array}{c}
\text{16a} \\
\text{224}
\end{array}
\end{array}
\]

14a: \(n = 1 \), 224: \(n = 2 \), 16a: \(R = \text{Pr} \), 225: \(R = \text{Bu} \)

Scheme 2.62

The appropriate alkyne was dissolved in anhydrous DME, and treated with sodium trichloroacetate; the mixture was refluxed for 24 hours, followed by an acidic work-up. The crude product was purified giving the required dialkylcyclopropenone in 11 - 29 % yield.

Method 2

\[\text{Method 2}^{32} \]

\[
\begin{array}{c}
\begin{array}{c}
\text{14a} \\
\text{224}
\end{array}
\end{array} \rightarrow \begin{array}{c}
\begin{array}{c}
\text{14a} \\
\text{224}
\end{array}
\end{array} \rightarrow \begin{array}{c}
\begin{array}{c}
\text{16a} \\
\text{224}
\end{array}
\end{array}
\]

14a: \(n = 1 \), 224: \(n = 2 \), 16a: \(R = \text{Pr} \), 225: \(R = \text{Bu} \)

Scheme 2.63

Method 1 did successfully synthesise the required dialkylcyclopropenones, but gave very low yields. Netland et al. reported a method giving higher yields.\[^{32}\] In this method, the appropriate
alkyne was mixed with chloroform in anhydrous tetrahydrofuran and \(n \)-butyllithium was added. The reaction mixture was carefully maintained at -78 °C for four hours, followed by the dropwise addition of conc. aqueous HCl. The product was obtained pure (NMR) in 86 – 91 % yield.

Spectroscopic analysis confirmed the structure of both dipropylcyclopropenone 16a and dibutylcyclopropenone 225.

For example, in the \(^{13}\)C NMR of dipropylcyclopropenone, the alkene carbons appear at 160.68 ppm, and the carbonyl carbon appears at 160.06 ppm. The two types of CH\(_2\) carbon appear at 28.11 and 19.61 ppm, and the remaining methyl carbon appears at 13.63 ppm. The IR showed the C=O in the distinctive position of 1840 cm\(^{-1}\) with a further strong peak at 1629 cm\(^{-1}\).

The spectroscopic data for the dibutyl system was similarly consistent with the expected structure, showing the extra CH\(_2\) group in the \(^{13}\)C with three peaks at 27.47, 25.16 and 21.45 ppm versus two peaks at 28.11 and 19.61 ppm.

The reactivity of these two dialkylcyclopropenones was investigated by the reaction of them with a number of different cyclic imines shown below.

2.5.2.1 Reaction with 2-methylthio-1-pyrroline

![Scheme 2.64](image)

16a/ 226: \(R = \text{Pr} \), 225/ 227: \(R = \text{Bu} \)
The appropriate dialkylcyclopropenone 16a/ 225 was mixed with 2-methylthio-1-pyrroline 156 in anhydrous acetonitrile. The reaction mixture was stirred overnight at ambient temperature but showed no reaction occurring. The mixture was thus heated at reflux for a week, but upon purification only the dialkylcyclopropenone was recovered.

The attempted reaction was repeated changing the solvent to dimethylformamide, and stirring at room temperature, 100 °C and higher, for up to four days. No evidence of any reaction was found.

2.5.2.2 Reaction with 2-methoxy-1-pyrroline

2-Methoxy-1-pyrroline 158 was dissolved in dimethylformamide and had dipropylcyclopropenone 16a added. TLC showed no reaction had occurred, after 48 hours at ambient temperature, 80 °C, 130 °C, and even, finally, at reflux.

The attempted reaction was repeated using dibutylcyclopropenone 225 but no identifiable products were obtained, again under a variety of conditions.
2.5.2.3 Reaction with 1-pyrroline

Bis(3,4-dihydro-2H-pyrrol-1-yl)di-iodozinc (II) in chloroform was treated with an aqueous solution of triethylamine to liberate 1-pyrroline. Due to previous results with DPP, it was believed that there was a possibility that the product may have a hydroxy group at the bridgehead rather than a proton. All attempts to react 1-pyrroline with dipropyl and dibutylcyclopropenones were unsuccessful, and neither 230 or 231 could be isolated.

Scheme 2.66

2.5.2.4 Reaction with 2-methyl-1-pyrroline

All attempts to react 2-methyl-1-pyrroline 163 with dialkylcyclopropenones 16a/ 225 were similarly unsuccessful.

Conclusion

The synthesis of dialkylcycloproponones 16a/225 was successful but they were found to be unreactive towards 5-membered ring cyclic imines. Work done by other group members have found that 6-membered ring cyclic imines are also unreactive towards these two dialkylcycloproponones, but work done with 4-membered ring cyclic imines by others in the group have found both dialkylcycloproponones to be reactive, and this is believed to be due to the extra strain in the four-membered ring.
2.6 Acyclic imines

The next part of this work was to explore the reactivity of some acyclic imines toward cyclopropenones. Early work by Eicher has shown that Schiff bases can react with cyclopropenones.105 We were interested in seeing if imines derived from Ellman’s 2-methyl-2-propanesulfinamide \textbf{234} would be reactive, particular as this might later lead to the synthesis of non-racemic pyrrolidinones, given that compound \textbf{234} is available in both enantiomeric forms. However, to start with (due to expense) we worked with the non-chiral sulfinamide. This work is described below:

2.6.1 Synthesis of \textit{N}-(benzylidene)-\textit{tert}-butanesulfinamide

![Scheme 2.68](image)

2-Methyl-2-propanesulfinamide \textbf{234} was reacted with benzaldehyde \textbf{235} in anhydrous dichloromethane; magnesium sulfate was added to remove water produced from the condensation reaction. The product \textbf{236} was obtained in 58 % yield as an off-white oil after purification.

Spectroscopic data was as per literature,106 for this standard imine-aldehyde condensation process.
2.6.2 Synthesis of 3-tert-butyl-2-phenyl-1-indenone

\(N \)-(benzylidene)-\(t \)-butanesulfinamide 236 was reacted with diphenylcyclopropenone 7 to give, unexpectedly, 3-tert-butyl-2-phenyl-1-indenone 237 in 13 % yield.

Scheme 2.69
Ellman and Robak et al.107 have recently written a comprehensive review on the synthesis and applications of tert-butanesulfinamide, and there is no mention of this type of t-butyl transfer reaction and no other literature precedent can be found. The structure was determined unequivocally by single crystal X-ray crystallographic studies (see Figure 4 below) and was also apparent from detailed 2D-NMR experiments. High resolution mass spectroscopy and infrared spectroscopy were in full accord.

Scheme 2.69 (above) shows a plausible route for this process.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{Crystal Structure of 3-\textit{tert}-Butyl-2-phenyl-1-indenone}
\end{figure}
2.6.3 Synthesis of N-(alkylidene)-tert-butanesulfinamides

![Chemical Structure](image)

Scheme 2.70

The next step was to find out whether similar imines made from different aldehydes behaved in a similar way once reacted with diphenylcyclopropenone 7. In order to provide some evidence that an aryl imine was necessary, two aliphatic aldehydes, propanal 238 and butanal 239 were reacted with 2-methyl-2-propanesulfinamide 234 to give N-(propylidene)-t-butanesulfinamide 240 and N-(butylidene)-t-butanesulfinamide 241 respectively, as reported in the literature.106

In the 1H NMR spectrum of the latter product, the CH proton appears at 7.84 ppm as a triplet with a J value of 7.4 Hz, the CH$_2$ protons next to the imine bond appear as a doublet of doublets of doublets at 2.28 ppm with J values of 4.7, 7.4, 7.4 Hz. The two CH$_2$ protons next to the methyl group appear as a sextet at 1.45 ppm with a J value of 7.4 Hz. The tert-butyl protons appear as a singlet at 0.97 ppm, the remaining methyl group appears at 0.77 ppm as a triplet with a J value of 7.4 Hz.

In the 13C NMR spectrum for 241, the CH carbon appears at 169.42 ppm, the quaternary carbon appears at 56.27 ppm, the two CH$_2$ carbons appear at 37.89 and 18.77 ppm and the methyl groups appear at 22.17 and 13.66 ppm. The data was consistent with the literature.106
2.6.4 Reaction with diphenylcyclopropenone

The alkyl aldehyde-derived imines were reacted with diphenylcyclopropenone 7 in anhydrous acetonitrile at ambient temperature and later heated at reflux, but neither reaction gave any new products. One possibility is that the product obtained with benzaldehyde may have had a different outcome due to its aromatic nature, as shown in the mechanism above. No further work was carried out using t-butanesulfinamides, but this work is being revisited by other group members: it is important, for example, that future work is done with other aromatic aldehydes in order to determine if the indenone formation above is general or not. This will tell us which benzene ring ends up in the indenone and help to provide further evidence for the mechanism tentatively put forward in Scheme 2.69.
2.7 Synthesis of Indolizidines and Pyrroloazepines

The method used for the synthesis of pyrrolizidines in section 2.1 was further used in the synthesis of both indolizidines and pyrroloazepines. The indolizidine and pyrroloazepines are also important heterocycles and hence the methodology was extended to include these.

2.7.1 Indolizidines

2.7.1.1 Synthesis of piperidone-2-thione

\[
\text{H} \quad \text{N} \quad \text{O} \quad \text{Lawesson's Reagent} \quad \text{THF} \quad \text{H} \quad \text{N} \quad \text{S}
\]

Scheme 2.72

2-Piperidone 244 and Lawessons’s reagent in THF gave piperidine-2-thione 245 as white crystals in 89 % yield. The method and reaction mechanism is similar to that described in section 2.1.1.1.

Spectroscopic analysis confirmed the structure as piperidine-2-thione 245.

In the 1H NMR spectrum, the secondary amide proton appears at 6.90 ppm in 244 and appears at 9.23 ppm in 245, the CH$_2$ neighbouring the thione appears at 2.87 ppm, whereas the CH$_2$ protons neighbouring the carbonyl in 244 appears at 2.33 ppm, both as triplets. The rest of the data showed no significant change. In the 13C NMR spectrum, the main peak that changes from the starting material to the product is the quaternary peak, shifting downfield from 172.99 ppm to 202.75 ppm. Both the 1H and 13C NMR data showed a change had occurred.
2.7.1.2 Synthesis of 2-methylthio-1-piperidine

![Scheme 2.73](image)

2-Methylthio-1-piperidine73,108 246 was synthesised using a similar method to that in section 2.1.3.1, which also shows the mechanism of reaction. Piperidine-2-thione 245 with dimethyl sulfate gave a volatile 2-methylthio-1-piperidine 246. Spectroscopic analysis confirmed the structure as 246.

In the 1H NMR spectrum, the disappearance of the secondary amide and the appearance of the methyl group at 2.27 ppm as a singlet showed a change had occurred, and this was further confirmed by a methyl peak appearing at 12.24 ppm in the 13C NMR spectrum.

2.7.1.3 Reaction with diphenylcyclopropenone

![Scheme 2.74](image)

6-Methylthio-8,9-diphenyl-1-azabicyclo[4.3.0]non-8-en-7-one 247 was synthesised using 2-methylthio-1-piperidine 246 and diphenylcyclopropenone 7 giving the product in 60 % yield. The mechanism is similar to that shown in Scheme 2.12.

The structure of the product was confirmed by spectroscopic analysis as 247.
In the 1H NMR spectrum, 10 protons from the phenyl groups appear in the aromatic region between 7.53 - 7.00 ppm. The CH$_2$ protons neighbouring the nitrogen appear as a multiplet between 3.69 – 3.61 ppm and as a triplet of doublets at 3.51 ppm both integrating to one proton each. One of the CH$_2$ protons neighbouring the bridgehead methylthio group appears as a multiplet between 2.27 – 2.20 ppm integrating to one proton. Five protons appear as multiplets between 1.97 – 1.24 ppm and the methyl group appears as a singlet integrating to three protons at 1.99 ppm.

In the 13C NMR spectrum, the carbonyl appears at 199.03 ppm, the unsaturated carbons of the enone in the β and α position appear at 170.78 and 110.17 ppm, respectively. The three remaining quaternary carbons appear at 131.93, 130.63 and 72.46 ppm representing the two phenyl rings and bridgehead carbon. The six CH carbons from the two phenyl rings appear between 130.60 – 125.53 ppm. The four CH$_2$s from the piperidine ring appear at 41.69, 32.89, 27.67 and 20.74 ppm and a methyl group appears at 10.86 ppm. The HRMS gives an accurate mass of 358.1234, which is within 2 ppm of the calculated value. In the IR spectrum, a peak at 1655 cm$^{-1}$ is consistent with the carbonyl of an α, β-unsaturated ketone.

2.7.1.4 Synthesis of 6-hydroxy-8,9-diphenyl-1-azabicyclo[4.3.0]non-8-en-7-one

![Scheme 2.75](image_url)

The reaction of the methylthio compound 247 with m-CPBA was the initial step to aid in desulfurisation by the oxidation of sulfur to attempt to gain the sulfoxide, which would then undergo loss of MeSOH to give an enone – as observed with the 5-membered rings in section
2.2. The method used was similar to that shown in section 2.2.1.1. However, the product isolated in this reaction was not the 6-sulfoxide that was desired, but was instead the 6-hydroxy compound. This may have formed by displacement of the SMe with OH in an S_N1 type process:

Scheme 2.76

Alternatively, it could arise via a rearrangement of the sulfoxide:

Scheme 2.77

Spectroscopic analysis confirmed the structure of the product. In the NMR spectra, most signals appear similarly to those in the starting material with some signals shifting slightly up or down field. The main difference is the absence of the methyl singlet in both the 1H and ^{13}C NMR spectra together with a significant difference in the bridgehead carbon, which appears at
86.81 ppm in the product and 72.46 ppm in the starting material. Further evidence was provided by an OH appearing at 3295 cm\(^{-1}\) in the infra-red spectrum and a consistent HRMS measurement. In order to obtain another example of this reaction the 6-ethylthio analogue was synthesised, and a similar reaction was attempted but gave no identifiable product.

2.7.2 Pyrroloazepines

2.7.2.1 Synthesis of azepan-2-thione

![Scheme 2.78](image)

The method and reaction mechanism is similar to that described in section 2.1.1.1. Azepan-2-one 249 and Lawesson’s reagent 150 in THF gave azepan-2-thione 250 as white crystals in 73 % yield.

Spectroscopic analysis confirmed the structure. In the \(^1\)H NMR spectrum, the secondary amide proton shifts downfield from 6.92 ppm to 9.19 ppm. The five sets of CH\(_2\)s appear in similar places to that of the starting material with a few signals shifting downfield. In the \(^{13}\)C NMR spectrum, the main peak that shows a change is the quaternary carbonyl peak at 179.70 ppm which appears as C=S at 210.31 ppm in the product.
2.7.2.2 Synthesis of 2-methylthio-1-azepane

![Scheme 2.79](image)

2-Methylthio-1-azepane73,108 251 was also synthesised using a similar method to that already described in section 2.1.3.1, which also shows the mechanism of reaction. The reaction of azepan-2-thione 250 with dimethyl sulfate afforded a volatile 2-methylthio-1-azepane 251. Spectroscopic analysis confirmed the structure as 251.

In the 1H NMR spectrum, the disappearance of the secondary amide and the appearance of the methyl group at 2.18 ppm as a singlet showed that the desired change had occurred, and this was further confirmed by a methyl peak appearing at 13.42 ppm in the 13C NMR spectrum.

2.7.2.3 Reaction with diphenylcyclopropenone

![Scheme 2.80](image)

7-Methylthio-9,10-diphenyl-1-azabicyclo[5.3.0]dec-9-en-8-one 252 was synthesised as per section 2.1.1.3. The reaction of 2-methylthio-1-azepane 251 and diphenylcyclopropenone 7 afforded the desired product 252 in a low yield of 16 %.

Spectroscopic analysis confirmed the structure as 7-methylthio-9,10-diphenyl-1-azabicyclo[5.3.0]dec-9-en-8-one 252.
In the 1H NMR spectrum, ten protons appear in the aromatic region between 7.51– 7.01 ppm as multiplets. ten CH$_2$ protons appear between 3.85 – 1.01 ppm and the remaining methyl group appears at 1.97 ppm as a singlet. The 13C NMR spectrum displays six quaternary carbons between 197.65 – 77.03 ppm, six CH carbons between 130.53 – 125.66 ppm, five CH$_2$ carbons between 43.36 – 23.97 and the remaining CH$_3$ carbon appears at 11.60 ppm. The HRMS gave an accurate mass of 372.1394, which is within 2 ppm of the calculated value.

2.7.2.4 Attempted oxidation of 7-methylthio-9,10-diphenyl-1-azabicyclo[5.3.0]dec-9-en-8-one

![Scheme 2.81](image)

The reaction of 7-methylthio-9,10-diphenyl-1-azabicyclo[5.3.0]dec-9-en-8-one 252 with m-CPBA was to aid desulfurisation. The method used was similar to that shown in section 2.2.1.1. However, on purification the starting material was recovered and no reaction had occurred. Repeat attempts were similarly unsuccessful.

2.7.2.5 Synthesis of 7-methoxy-9,10-diphenyl-1-azabicyclo[5.3.0]dec-9-en-8-one

![Scheme 2.82](image)
The attempt to synthesise 7-methoxy-9,10-diphenyl-1-azabicyclo[5.3.0]dec-9-en-8-one was achieved by reacting 2-methoxy-1-azacycloheptene with diphenylcyclopropenone in anhydrous acetonitrile to give the product in 28 % yield. The reaction was repeated in dimethylformamide to give the same product in 10 % yield.

Spectroscopic analysis confirmed the structure of the product to be 7-methoxy-9,10-diphenyl-1-azabicyclo[5.3.0]dec-9-en-8-one. The 1H NMR spectrum displayed 10 protons from the two phenyl rings in the aromatic region between 7.52 – 7.01 as multiplets. The 10 CH$_2$ protons from the 7-membered ring appear between 3.74 – 1.04 ppm, and protons from the methoxy group appear at 3.22 ppm as a singlet. The 13C NMR spectrum displays the six quaternary carbons between 198.15 – 94.92 ppm, and the six CH carbons between 130.66 – 125.76 ppm. The methoxy carbon appears at 51.43 ppm, and the five CH$_2$ carbons appear between 43.02 – 22.03 ppm.

Conclusion

This section of the work showed that pyrroloazepines and indolizidines are accessible by this methodology, and future work in the group will look at these processes and the chemistry of the resultant adducts in more detail.
2.8 1,3-Dipolar cycloadditions

So far in this thesis, cycloaddition reactions of 1-pyrrolines have been limited to overall [3+2] cycloaddition-type processes involving cyclopropenones. In these, the cyclopropenone behaves as if it were an all-carbon 1,3-dipole equivalent and the use of cyclopropenones and their acetals in this way is gaining attention in the literature.\(^{2,109-113}\)

In order to explore the reaction of 1-pyrrolines, it was thought useful to see if they would react with other, traditional 1,3-dipoles. Nitrile oxides were chosen for a model study.

2.8.1 Attempted synthesis of ethyl-5-methylthio-4,1,3-oxadiazobicyclo[3.3.0]oct-2-ene-2-carboxylate

The attempt to synthesise ethyl-5-methylthio-4,1,3-oxadiazobicyclo[3.3.0]oct-2-ene-2-carboxylate 257 was carried out by the reaction of 2-methylthio-1-pyrroline 156 with ethyl chlorooximidoacetate 256 in the presence of triethylamine in either diethyl ether or THF. In both occasions product 257 was not synthesised, and instead the reaction product was the nitrile oxide dimer 259 in diethyl ether and both the nitrile oxide dimer 259 and ethyl-[N-(2-pyrrolidone)]oximidoacetate 258 in THF. Dimer 259 could be isolated in yields of up to 50%.
Spectroscopic analysis confirmed the product to be ethyl-[N-(2-pyrrolidone)]oximidoacetate 258. In the 1H NMR spectrum, the hydroxy proton appears at 10.81 ppm as a broad singlet. The two CH$_2$ protons from the ester appear at 4.27 ppm as a quartet with a J value of 7.1 Hz, the six CH$_2$ protons from the pyrroline ring appear at 3.79, 2.44 and 2.17 ppm. The methyl group from the ester appears at 1.28 ppm as a triplet with a J value of 7.1 Hz. The 13C NMR spectrum displays three quaternary carbons at 176.81, 160.50, 139.67 ppm, four CH$_2$ carbons between 62.72 – 20.08 ppm and the methyl carbon at 14.14 ppm.

The expected product was not obtained, and this is believed to be due to the hydrolysis of the desired product 257. In principle, hydrolysis could occur earlier, whereby compound 156 gives 2-pyrrolidone which then reacts with compound 256 to give product 258. To investigate when the hydrolysis occurred, 2-pyrrolidone was reacted as above with ethyl chlorooximidoacetate in THF, with dropwise addition of triethylamine in THF. No product was formed apart from the nitrile oxide dimer. This provided evidence that the product of the 1,3-dipole cycloaddition underwent hydrolysis rather than the 2-methylthio-1-pyrroline starting material. A suggested mechanism for the hydrolysis is shown below in Scheme 2.85.

In order to see if this was a general reaction, other nitrile oxides were utilized, as described in the next section.
2.8.2 Synthesis of 4-methoxy-(α-[N-(2-pyrrolidinone)])benzaldoxime

2-Methylthio-1-pyrroline 156 and the α-chloroxime 260 were reacted together in the presence of triethylamine as a base. The chloroxime was added slowly and dropwise to minimise nitrile oxide dimer formation. Purification gave 4-methoxy-(α-[N-(2-pyrrolidinone)])benzaldoxime 261 in 32 % yield. The mechanism is similar to that shown above in Scheme 2.85.

Spectroscopic analysis confirmed the product to be 4-methoxy-(α-[N-(2-pyrrolidinone)])-benzaldoxime 261.

The 1H NMR spectrum displays a broad OH proton between 8.63 – 8.58 ppm, four CH protons from the phenyl ring at 7.51 and 6.90 ppm as doublets and a methyl singlet at 3.83
The three CH$_2$s appear at 3.73, 2.58 and 2.26 ppm as two triplets and a quintet, respectively. In the 13C NMR spectrum, four quaternary carbons appear between 175.53 – 123.80 ppm, two CH carbons appear at 128.50 and 114.48 ppm. The methyl carbon appears at 55.70 ppm, and the remaining three CH$_2$ carbons appear at 48.05, 31.07 and 20.23 ppm.

The HRMS gives an accurate mass (M+Na) consistent with the expected formula of C$_{12}$H$_{14}$N$_2$NaO$_3$.

2.8.3 Synthesis of 2-azido-(α-[N-(2-pyrrolidinone)])benzaldoxime

![Scheme 2.87](image)

2-Methylthio-1-pyrroline 156 and anhydrous triethylamine in THF had α-chloroxime 262 added dropwise. Purification gave 2-azido-(α-[N-(2-pyrrolidinone)])benzaldoxime 263 in 14% yield.

Spectroscopic analysis confirmed the product to be 2-azido-(α-[N-(2-pyrrolidinone)])-benzaldoxime 263.

In the 1H NMR spectrum, the hydroxy proton appears at 9.25 ppm, four CH protons appear in the aromatic region between 7.53 – 7.15 ppm and the three CH$_2$s from the pyrroline ring appear at 3.89, 2.47 and 2.21 ppm as two triplets and a quintet respectively. The 13C NMR spectrum displays four quaternary carbons between 175.87 – 124.06 ppm, four CH carbons between 131.86 – 118.70 ppm, and three CH$_2$s at 48.31, 30.96 and 20.32 ppm.
2.8.4 Synthesis of 2-[triphenylphosphoranylimino]-α-[N-(2-pyrrolidinone)]-benzaldoxime

![Scheme 2.88](image)

With the azide made, it was decided to exploit its reactivity and perform a Staudinger-aza-Wittig sequence. Thus, the azide 263 in anhydrous toluene had triphenylphosphine added to give the corresponding iminophosphorane 264 in 93 % yield as an orange solid.

In the 1H NMR spectra, 19 CH protons appear in the aromatic region between 7.72 – 6.40 ppm, the three CH$_2$s appear at 3.55, 2.19 and 1.84 ppm as two triplets and a quintet, respectively. In the 13C NMR spectrum, seven quaternary carbons appear between 177.10 – 110.34, 13 CH carbons appear between 133.08 – 128.72 ppm. The three CH$_2$ carbons appear at 48.83, 31.75 and 19.72 ppm. The HRMS gave an accurate mass of 480.1838 which is within 3 ppm of the calculated value for C$_{29}$H$_{27}$N$_3$O$_2$P.

2.8.5 Synthesis of pyrrolo[1,2-b][1,3]benzodiazin-4-oxime

![Scheme 2.89](image)
The iminophosphorane 264 in anhydrous toluene was heated at reflux, giving pyrrolo[1,2-b][1,3]benzodiazin-4-oxime 265 in 44% yield, the product of the desired aza-Wittig reaction.

Spectroscopic analysis confirmed the product to be the pyrrolo[1,2-b][1,3]benzodiazin-4-oxime.

In the 1H NMR spectrum, the oxime proton appears at 10.15 ppm as a broad singlet. Four CH protons appear in the aromatic region with one each at 8.17 and 7.14 ppm, and two at 7.36 ppm. The three CH$_2$s appear at 4.09, 2.68 and 2.28 ppm as two triplets and a quintet, respectively. The 13C NMR spectrum displays four quaternary carbons between 174.43 – 116.31 ppm, four CH carbons between 127.75 – 109.96 ppm and three CH$_2$ carbons at 49.32, 32.36 and 30.03 ppm. The HRMS gives an accurate mass of 224.0801 for C$_{11}$H$_{11}$N$_3$NaO, consistent with expected structure. In the infra-red a peak at 1681 cm$^{-1}$ showed the presence of C=N and the OH appeared at 3219 cm$^{-1}$.

2.8.5.1 Aza-Wittig and Staudinger mechanisms

The use of the aza-Wittig reaction to construct heterocycles is very well known$^{114-116}$ in general and has been used to make other pyrrolobenzo-fused systems.$^{117-119}$ As shown in Scheme 2.90, the iminophosphorane (most commonly made from an azide120,121 – also shown in Scheme 2.90) reacts via a Wittig-type mechanism.
2.8.6 Attempted reaction of 2-methylthio-1-pyrroline with a nitrilimine

An attempt was made to react 2-methylthio-1-pyrroline 156 with a nitrilimine, which was generated from the precursor 266 in the presence of anhydrous triethylamine in THF.

This single attempt proved unfruitful and was not explored any further.
2.9 Conclusion & Future Work

Pyrrolizidines, indolizidines and pyrroloazepines have been synthesised from the reaction of cyclopropenones with five, six and seven-membered cyclic imines.

Pyrrolizidines were synthesised by the alkylation of lactams/thio-lactams to give access to the required cyclic imines, most of which were successfully reacted with DPP. The introduction of several side groups didn’t hinder the synthesis method in most cases and gave the required pyrrolizidines, a process that included the use of some highly functionalised 1-pyrrolines. Exploitation of the bridgehead group was achieved in several ways: the sulfide group of the pyrrolizidines was oxidised using \textit{m}-CPBA which gave both the methanesulfinyl and methanesulfonyl group at the bridgehead as products. This allowed the removal of the group, which was achieved by refluxing the methanesulfinyl compound in toluene, from which the isolated product was found to contain an aromatised pyrrole ring formed by rearrangement. Unexpected bridgehead hydroxy compounds were also recovered from several reactions, which was pleasantly surprising as such a group is found in the natural jenamidines, and its installation has been met with difficulties by many researchers. The methoxy pyrrolizidines underwent BBr$_3$ (ethanolic work-up) cleavage to yield the hydroxy compound as a minor product along with the bridgehead ethoxy compound. In total several pyrrolizidines were obtained with the different bridgehead groups which included methoxy, ethoxy, hydroxy, methylthio, ethylthio and methyl substituents.

Indolizidines and pyrroloazepines were synthesised in a similar way to their pyrrolizidine counterpart, with methylthio groups at the bridgehead in both compounds. Upon oxidation, the indolizidine only gave the hydroxy compound, although the pyrroloazepine didn’t yield any product.
Successful synthesis of three cyclopropenones was also achieved, namely the parent unsubstituted cyclopropenone, dipropylcyclopropenone and dibutylcyclopropenone. The unsubstituted cyclopropenone was difficult to make but was successfully reacted with one cyclic imine. The other two cyclopropenones were both unreactive to any cyclic imine we possessed (five, six and seven membered rings).

Nitrile oxides were reacted with 5-methylthio-1-pyrroline, in an attempt to obtain their bicyclic products, but, these products were found to be unstable and underwent hydrolysis to yield a more stable ring-opened product, one of which was cyclised using an aza-Wittig reaction.

Acyclic imines derived from Ellman’s 2-methyl-2-propane sulfinamide were reacted with DPP in an attempt to give access to a pyrrolidinone compound. Unfortunately this was not the case, but did unexpectedly give access to an indenone compound. Further investigation into the reaction of Ellman’s 2-methyl-2-propane sulfinamide with different aldehydes needs to take place so that further work can be done to see how this occurred and if it can occur using different acyclic imines.

Future work

An area that could be further explored is the synthesis of imines with natural product substituents such as the polyhydroxylated imines, as there are many natural polyhydroxylated pyrrolizidines and indolizidines.

The desulfurisation process could be further investigated by reducing the sulfide moiety using a reducing agent such as Raney nickel, in order to afford a proton at the bridgehead, which many natural products such as hyacinthacine possess.
Further work with different cyclopropenones is also required, the dibutyl and dipropylcyclopropenones did not react with the five-membered imines; however, work currently undertaken in the laboratory has shown both of these cyclopropenones can react with strained four-membered cyclic imines. Synthesis of more reactive cyclopropenones may allow them to react with five, six and seven-membered imines. This may be achieved by synthesising cyclopropenones that possess electron withdrawing substituents such as nitriles, carbonyls or nitro groups. Consequently, these newly synthesised cyclopropenones will give a vast range of experiments for consideration.

The unsubstituted cyclopropenone could be synthesised in a more robust fashion by optimising the method investigated in this thesis. Other areas that could be further investigated are the elaboration of the enaminone-containing ring. For example dihydroxylation of the alkene group to give 1,2-diols, aziridation to aziridines, Wittig reaction, reduction of the alkene, ring expansion etc, as summarised below:
Experimental
General information

Unless otherwise stated, all reactions were conducted using oven dried glassware, under nitrogen delivered through a gas manifold. Work-up procedures were carried out in air. All solvents were of analytical grade and purchased from either Fisher scientific or Sigma-Aldrich.

Anhydrous solvents were freshly distilled using a continuous still under nitrogen. Tetrahydrofuran and diethyl ether were distilled over sodium wires (1-2 %, w/v) with the aid of benzophenone as an indicator. Dichloromethane and toluene were distilled over calcium hydride (5 % w/v) for ~5 hours. All other anhydrous solvents and commercially available starting materials were purchased from the following suppliers: Acros, Fisher scientific, Fluorochem Ltd and Sigma-Aldrich. Deuterated solvents were purchased from Goss scientific.

All reactions were monitored by thin layer chromatography, which was carried out on 0.20 mm Macherey-Nagel Alugram® Sil G/ UV254 silica gel-60 precoated aluminium plates; analysis was achieved using ultraviolet light and/ or vanillin stain. Compounds were purified using column chromatography performed on Merck silica gel (0.063-0.200 mm, 60 Å).

NMR spectra were obtained using either a Bruker DPX-400 instrument or Bruker Avance 500. IR spectra were recorded on a Nicolet 380 FT-IR instrument as a thin film for oils or neat for solids. Mass spectra were recorded on a Bruker daltonics micrOTOF mass spectrometer operating at a positive ion mode under an electrospray ionisation (ESI +) method. Crystallographic data were recorded on a Bruker Apex Duo instrument.
3 Experimental

3.1 Synthesis of Pyrrolizidines

3.1.1 Synthesis of 5-ethylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

3.1.1.1 Synthesis of pyrrolidine-2-thione

A solution of 2-pyrrolidone (1.00 – 1.40 g, 11.75 - 16.40 mmol, 1 eq) and Lawesson’s reagent (2.43 – 3.98 g, 5.98 – 9.84 mmol, 0.5 – 0.6 eq) in anhydrous tetrahydrofuran (15 mL) was stirred under an atmosphere of dry nitrogen at ambient temperature for an hour. The mixture was heated at reflux and monitored by TLC and stopped after 2 hours. The reaction mixture was left to cool to ambient temperature, concentrated and purified by column chromatography (eluent: PE: EtOAc 3:2) to yield pyrrolidine-2-thione (0.66 g – 1.16 g, 59 % - 89%) as a white crystalline powder.

\[\text{H NMR } \delta (400.13 \text{ MHz, CDCl}_3): \] 8.74 (1H, bs, NH), 3.66 (2H, t, \(J 7.3 \), NCH$_2$), 2.91 (2H, t, \(J 8.0 \), SCCH$_2$), 2.21 (2H, quint, \(J 7.5 \), CH$_2$CH$_2$CH$_2$).

\[\text{C NMR } \delta (100 \text{ MHz, CDCl}_3): \] 206.12 (C=S), 50.02 (CH$_2$), 43.59 (CH$_2$), 23.26 (CH$_2$).

Data above is identical to literature values.\(^{122-124}\)
3.1.1.2 Synthesis of 2-ethylthio-1-pyrroline

A solution of pyrrolidine-2-thione (0.40 g - 1.16 g, 3.96 - 8.99 mmol, 1 eq) in Meerwein’s reagent 1M (5 – 16 mL, 1.2 – 1.8 eq) was stirred for 2-3 hours at ambient temperature under an atmosphere of dry nitrogen. Dichloromethane (10 mL) was added and the mixture was heated to reflux, monitored by TLC and stopped after two hours. The reaction mixture was left to reach ambient temperature, followed by the dropwise addition of the reaction mixture to saturated aqueous potassium carbonate (20 mL) at 0 °C over 15 minutes. The reaction mixture was filtered under vacuum through a celite plug. The filtrate was extracted with dichloromethane (5 x 20 mL), dried over magnesium sulfate and filtered under gravity. The solvent was removed in vacuo and the crude product was purified by column chromatography (eluent: PE: EtOAc, 4:1) to yield pyrrolidine-2-thione (116 - 270 mg) and 2-ethoxy-1-pyrroline (70 mg – 116 mg, 8 % - 14 %) as a yellow/ orange oil.

\[\text{1H NMR } \delta \ (400.13 \text{ MHz, CDCl}_3): \ 3.81 \ (2H, tt, J \ 1.5, 7.2, N\text{CH}_2), \ 3.01 \ (2H, q, J \ 7.4, S\text{CH}_2\text{CH}_3), \ 2.56 \ (2H, tt, J \ 1.5, 8.2, SC\text{CH}_2), \ 1.94 \ (2H, quint, J \ 7.7, \text{CH}_2\text{CH}_2\text{CH}_2), \ 1.30 \ (3H, t, J \ 7.4, \text{CH}_2\text{CH}_3). \]

\[\text{13C NMR } \delta \ (100 \text{ MHz, CDCl}_3): \ 172.54 \ (\text{C=N}), \ 61.08 \ (\text{CH}_2), \ 38.89, \ (\text{CH}_2) \ 25.20 \ (\text{CH}_2), \ 23.67 \ (\text{CH}_2), \ 14.69 \ (\text{CH}_3). \]

Data above is identical to literature values.\(^{124}\)
3.1.1.3 Synthesis of 5-ethylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

Diphenylcyclopropenone (DPP) (112 – 185 mg, 0.542 – 0.899 mmol, 1 eq) was added in one portion to a stirring solution of 2-ethoxy-1-pyrroline (70 – 116 mg, 0.542 – 0.899 mmol, 1 eq) in anhydrous acetonitrile (10 mL) at ambient temperature under an atmosphere of dry nitrogen. Monitored by TLC, the reaction mixture was concentrated in vacuo after two days and purified by column chromatography (eluent: PE: EtOAc, 5:1) to yield 5-ethylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (100 - 150 mg, 50 - 55 %) as a bright yellow/orange oil. Data below is identical to literature values.

1H NMR δ (400.13 MHz, CDCl$_3$): 7.48 – 7.42 (3H, m, Ar), 7.40 – 7.35 (2H, m, Ar), 7.23 - 7.19 (4H, m, Ar), 7.18 – 7.11 (1H, m, Ar), 3.55 (1H, ddd, J 6.7, 6.7, 11.2, NCHHCH$_2$), 3.08 (1H, ddd, J 6.7, 6.7, 11.2, NCHHCH$_2$), 2.65 (1H, dq, J 11.9 and 7.5, SCHHMe), 2.55 (1H, dq, J 11.9 and 7.5, SCHHMe), 2.29 – 2.17 (2H, m, SCCH$_2$CH$_2$), 2.12 – 2.03 (1H, m, SCCH$_2$CHH), 1.99 – 1.88 (1H, m, SCCH$_2$CHH), 1.20 (3H, t, J 7.5, SCH$_2$CH$_3$).

13C NMR δ (100 MHz, CDCl$_3$): 200.49 (C=O), 175.37 (q), 153.66 (q), 131.44 (CH), 131.35 (q), 129.92 (CH), 129.09 (CH), 129.01 (CH), 128.37 (CH), 126.46 (CH), 116.57 (q), 80.79 (q), 48.80 (CH$_2$), 33.23 (CH$_2$), 26.85 (CH$_2$), 23.49 (CH$_2$), 14.61 (CH$_3$).

LRMS (ESI+): Found 381.3 [M+2Na]$^+$.
3.1.2 Attempted synthesis of 5-ethoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

3.1.2.1 Synthesis of 2-ethoxy-1-pyrroline

A solution of 2-pyrrolidinone (1.02 g – 1.04 g, 11.98 mmol – 12.10 mmol, 1 eq) in Meerwein’s reagent 1M (5 mL, 1.2 eq) was stirred for an hour at ambient temperature under an atmosphere of dry nitrogen. Monitored by TLC, the reaction mixture was heated at reflux for two hours and left to cool to reach ambient temperature. The reaction mixture was added dropwise to saturated aqueous potassium carbonate (20 mL) at 0°C over 15 minutes. The reaction mixture was filtered under vacuum through a celite plug. The filtrate was extracted with dichloromethane (4 x 20 mL), dried over magnesium sulfate and filtered under gravity. Most of the solvent was removed \textit{in vacuo}. The crude material was not purified due to the volatility of the product.

3.1.2.2 Attempted synthesis of 5-ethoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

Diphenylcyclopropenone (140 mg - 456 mg, 0.681 mmol - 2.212 mmol, 1 eq) was added in one portion to a stirring solution of crude 2-ethoxy-1-pyrroline (77 mg - 250 mg, 0.681 mmol - 2.212 mmol, 1 eq) in anhydrous acetonitrile (10 mL) at ambient temperature under an
atmosphere of dry nitrogen. The reaction mixture was stirred for three days, and the crude product (green in colour) was analysed by thin layer chromatography, but no indication of any new product was observed.

3.1.3 Synthesis of 5-methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

3.1.3.1 Synthesis of 2-methylthio-1-pyrroline

\[
\begin{align*}
\text{Dimethyl sulfate (0.410 - 1.127 mL, 4.33 – 11.78 mmol, 1.1 eq) was added in one portion to pyrrolidine-2-thione (398 – 1083 mg, 3.938 – 10.71 mmol, 1 eq) and the mixture was stirred for 16 hours at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was diluted with ether (10 mL), washed with 10 % aqueous potassium carbonate (20 mL) and extracted with dichloromethane (3 x 20 mL). The organic phase was dried over magnesium sulfate and filtered under gravity. Most of the solvent was removed \textit{in vacuo}, but due to the volatility of the 2-methylthio-1-pyrroline73, all of the solvent was not removed, and the product used in this form.}
\end{align*}
\]

\[\text{1H NMR} \, \delta (400.13 \text{ MHz, CDCl}_3): \, 3.65 - 3.58 (2H, m, NCH\textsubscript{2}), 2.40 - 2.34 (2H, m, SCCH\textsubscript{2}), 2.23 - 2.20 (3H, m, SCH\textsubscript{3}), 1.83 - 1.72 (2H, m, CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}).\]

\[\text{13C NMR} \, \delta (100 \text{ MHz, CDCl}_3): \, 172.71 (C=N), 60.50 (CH\textsubscript{2}), 38.18 (CH\textsubscript{2}), 23.62 (CH\textsubscript{2}), 13.33 (CH\textsubscript{3}).\]

\[\text{IR} \, \nu_{\text{max}} (\text{cm}^{-1}): \, 2927 (m), 1682 (vs), 1393 (m), 1259 (s), 1218 (s), 1059 (w), 1010 (m), 748 (m).\]
3.1.3.2 Synthesis of 5-methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

\[
\begin{align*}
\text{156} & \quad \text{+} \quad \text{7} \quad \xrightarrow{\text{McCN}} \quad \text{157}
\end{align*}
\]

Diphenylcyclopropenone (773 mg – 1339.5 mg, 3.748 mmol – 6.495 mmol, 1 eq) was added in one portion to a stirring solution of 2-methylthio-1-pyrroline (431 mg – 747 mg, 3.748 mmol – 6.495 mmol, 1 eq) dissolved in anhydrous acetonitrile (10 mL) at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was stirred for a day, concentrated and purified by column chromatography (eluent: PE: EtOAc, 5:1/ hexane: EtOAc, 3:1) to yield 5-methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (927 mg – 1230 mg, 59 % - 77 %) as a orange/ yellow oil.

\[\text{H NMR} \delta (400.13 \text{ MHz, CDCl}_3): 7.47 – 7.43 (3H, m, Ar), 7.38 – 7.34 (2H, m, Ar), 7.20 – 7.17 (4H, m, Ar), 7.16 – 7.10 (1H, m, Ar), 3.59 – 3.51 (1H, m, NCH/HCH), 3.12 – 3.04 (1H, m, NCH/HCH), 2.30 – 2.18 (2H, m, SCC/H), 2.13 – 2.03 (1H, m, CH\textsubscript{2}CH/HCH), 2.08 (3H, s, Me), 2.01 – 1.90 (1H, m, CH\textsubscript{2}CH/HCH).
\]

\[\text{C NMR} \delta (100 \text{ MHz, CDCl}_3): 200.18 (C=O), 175.61 (q), 131.59 (q), 131.47 (CH), 131.35 (q), 129.93 (CH), 129.12 (CH), 129.02 (CH), 128.38 (CH), 126.51 (CH), 116.89 (q), 80.34 (q), 48.90 (CH\textsubscript{2}), 32.62 (CH\textsubscript{2}), 26.89 (CH\textsubscript{2}), 12.04 (CH\textsubscript{3})\]
3.1.4 Attempted synthesis of 5-methoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

3.1.4.1 Attempted synthesis of 2-methoxy-1-pyrroline

\[
\text{N} \quad \text{SMe} \quad \xrightarrow{\text{NaOMe, MeOH}} \quad \text{N} \quad \text{OMe}
\]

To a stirring solution of 2-methylthio-1-pyrroline (242 mg, 2.11 mmol, 1 eq) in methanol was added freshly-made methanolic sodium methoxide (sodium (49 mg) in methanol (5 mL)). The reaction mixture was stirred overnight at ambient temperature, but no indication of any new product was observed.

3.1.4.2 Synthesis of 2-methoxy-1-pyrroline

\[
\text{H} \quad \xrightarrow{\text{Me₂SO₄}} \quad \text{N} \quad \text{OMe}
\]

A:

Dimethyl sulfate (0.64 mL, 6.721 mmol, 1.2 eq) was added in one portion to 2-pyrrolidinone (0.520 mg, 6.11 mmol, 1 eq) and the mixture stirred for 16 hours at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was diluted with ether (10 mL), washed with 10 % aqueous potassium carbonate (20 mL) and extracted with dichloromethane (3 x 20 mL). The combined organic phase was dried over magnesium sulfate and filtered under gravity. The solvent was removed \textit{in vacuo} and purified by column chromatography, but no identifiable products could be observed.
B:

Dimethyl sulfate (0.635 mL, 6.69 mmol, 1.1 eq) was added in one portion to 2-pyrrolidinone (518 mg, 6.086 mmol, 1 eq) and the mixture stirred for 16 hours at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was diluted with ether (10 mL), washed with 10 % aqueous potassium carbonate (20 mL) and extracted with dichloromethane (3 x 20 mL). The combined organic phase was dried over magnesium sulfate and filtered under gravity. Most of the solvent was removed in vacuo, but due to the volatility of the product, all of the solvent was not removed, and the crude product used in this form.

C:

Dimethyl sulfate (1.37 mL, 14.44 mmol, 1.2 eq) was added in one portion to 2-pyrrolidinone (1023.9 mg, 12.03 mmol, 1 eq) and the mixture stirred for 24 hours at 60 °C under an atmosphere of dry nitrogen. Solid sodium carbonate (1530.5 mg, 14.44 mmol, 1.2 eq) was added to the reaction mixture followed by ether (10 mL) and saturated aqueous sodium carbonate (10 mL). The solvent was decanted off and the remaining solid sodium carbonate was dissolved in water and extracted several times using dichloromethane. The combined organic phases were dried over magnesium sulfate and filtered under gravity. Most of the solvent was removed in vacuo, but due to the volatility of the product, all of the solvent was not removed, and the crude product used in this form.
3.1.4.3 Attempted synthesis of 5-methoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

A:
Diphenylcyclopropenone (115 mg, 0.555 mmol, 1 eq) was added in one portion to a stirring solution of 2-methoxy-1-pyrroline (55 mg, 0.555 mmol, 1 eq) dissolved in anhydrous acetonitrile (10 mL) at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was stirred for two days. The crude mixture (pale yellow in colour) was analysed by thin layer chromatography, but no identifiable products could be observed.

B:
Diphenylcyclopropenone (1.36 g, 6.60 mmol, 1.2 eq) was added in one portion to a stirring solution of 2-methoxy-1-pyrroline (0.545 g, 5.50 mmol, 1 eq) in dichloromethane/ether (30 mL, 2:1) at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was stirred for a week but showed no products. The solvent was removed under a stream of nitrogen and the remaining crude material had anhydrous acetonitrile (8 mL) added. The reaction mixture was stirred for three days, concentrated and purified by column chromatography (eluent: hexane:EtOAc, 1:3); no identifiable products could be observed.
C:
Diphenylcyclopropenone (322.8 mg, 1.57 mmol, 1 eq) was added in one portion to a stirring solution of 2-methoxy-1-pyrroline (1.55 mg, 1.57 mmol, 1 eq) in anhydrous acetonitrile (8 mL) at ambient temperature under an atmosphere of dry nitrogen. After a few hours the reaction mixture turned pale yellow, and additional anhydrous acetonitrile (7 mL) was added due to solvent evaporation. The mixture was concentrated and purified by column chromatography, but no identifiable products were produced.

D:
Diphenylcyclopropenone (389.6 mg, 1.89 mmol, 1 eq) was added in one portion to a stirring solution of 2-methoxy-1-pyrroline (187 mg, 1.89 mmol, 1 eq) dissolved in anhydrous acetonitrile (10 mL) at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was stirred for six days, and the solution (orange in colour) was concentrated and purified by column chromatography (eluent: 1:3, hexane: EtOAc) to yield 5,6,7,8-tetrahydro-4-hydroxy-2,3-diphenyl-1-azocin-5-one (15 mg, 2.7 %).

E:
Diphenylcyclopropenone (100 mg, 0.48 mmol, 1 eq) was added in one portion to a stirring solution of 2-methoxy-1-pyrroline (690 mg, 6.97 mmol, 1 eq) dissolved in anhydrous acetonitrile (10 mL) at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was stirred for three days showing no change by TLC analysis. The mixture was heated to reflux for two days. Evaporation of the solvent gave a crude product which was purified by column chromatography (eluent: 1:3, hexane: EtOAc) to yield 5,6,7,8-tetrahydro-4-hydroxy-2,3-diphenyl-1-azocin-5-one (25 mg, 18 %), as an orange oil.
Experimental

1H NMR δ (400.13 MHz, CDCl$_3$): 9.83 (1H, s, NH), 7.27 – 7.20 (3H, m, Ar), 7.20 – 7.16 (3H, m, Ar), 7.12 – 7.04 (4H, m, Ar), 3.50 (2H, t, J 7.0, NCH$_2$), 2.70 (2H, t, J 8.0, OCH$_2$), 2.17 (2H, quint, J 7.5, CH$_2$CH$_2$CH$_2$).

13C NMR δ (100 MHz, CDCl$_3$): 190.17 (q), 176.14 (q), 148.82 (q), 136.05 (q), 134.01 (q), 133.96 (q), 131.61 (CH), 130.06 (CH), 129.92 (CH), 128.84 (CH), 128.25 (CH), 127.89 (CH), 49.40 (CH$_2$), 31.86 (CH$_2$), 18.99 (CH$_2$).

HRMS (ESI+): Found 314.1154 [M+Na]$^+$, C$_{19}$H$_{17}$NNaO$_2$ requires 314.1152.

IR ν_{max} (cm$^{-1}$): 3056 (w), 2980 (w), 2926 (w), 1704 (s), 1674 (s).

3.1.5 Synthesis of 5-methoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

![Chemical structure](image)

A:

To a stirring solution of 2-methoxy-1-pyrroline (233 mg, 2.35 mmol, 1 eq) in anhydrous acetonitrile (7 mL) was added diphenylcyclopropenone (485.4 mg, 2.35 mmol, 1 eq) in one portion. The reaction mixture was stirred at ambient temperature under an atmosphere of dry nitrogen for a day, whereupon the mixture turned from colourless to dark orange. The resulting mixture was concentrated and purified by column chromatography (eluent: hexane: EtOAc, 2:1) yielding 5-methoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (28 mg, 4 %), as a yellow/ orange oil.
B:

To a stirring solution of 2-methoxy-1-pyrroline (224 mg, 2.26 mmol, 1 eq) in anhydrous acetonitrile (8 mL) was added diphenylcyclopropenone (466 mg, 2.26 mmol, 1 eq) in one portion. The reaction mixture was heated to reflux under an atmosphere of dry nitrogen and monitored every hour by TLC. After five hours the reaction mixture was allowed to cool to ambient temperature and stirred overnight. The reaction mixture was heated at reflux for a further five hours. The resulting mixture was concentrated and purified by column chromatography (eluent: hexane: EtOAc, 2:1) yielding 5-methoxy-2,3-diphenyl-1-azabicyclo-[3.3.0]oct-2-en-4-one (13 mg, 2 %), as a yellow/orange oil.

C:

To a stirring solution of 2-methoxy-1-pyrroline (222 mg, 2.24 mmol, 4.67 eq) in anhydrous acetonitrile (4 mL) was added chlorosulfonic acid (30 mg) and diphenylcyclopropenone (100 mg, 0.48 mmol, 1 eq) in one portion. The reaction mixture was heated at reflux under an atmosphere of dry nitrogen for one day. TLC analysis showed that no reaction had occurred.

D:

To a stirring solution of 2-methoxy-1-pyrroline (218 mg, 2.24 mmol, 1 eq) in anhydrous acetonitrile (7 mL) was added zinc bromide (50 mg) and diphenylcyclopropenone (462.5 mg, 2.24 mmol, 1 eq) in one portion. The reaction mixture was heated at reflux under an atmosphere of dry nitrogen for one day. The resulting mixture was allowed to cool to ambient temperature and analysed by TLC, which showed that no reaction had occurred.
E:
To a stirring solution of 2-methoxy-1-pyrroline (240 mg, 2.42 mmol, 1 eq) in anhydrous DMF (12 mL) was added diphenylcyclopropenone (500 mg, 2.42 mmol, 1 eq) in one portion. The reaction mixture was heated at 100 °C under an atmosphere of dry nitrogen for one day. Upon completion the resulting orange/yellow mixture was concentrated and purified by column chromatography (eluent: hexane: EtOAc, 2:1) yielding 5-methoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (32 mg, 4 %), as a yellow/orange oil.

F:
To a stirring solution of 2-methoxy-1-pyrroline (250 mg, 2.53 mmol, 1 eq) in anhydrous DMF (10 mL) was added diphenylcyclopropenone (510 mg, 2.47 mmol, 0.98 eq) in one portion. The reaction mixture was rapidly heated from ambient temperature to 130 °C under an atmosphere of dry nitrogen. After three hours the reaction mixture was allowed to cool to ambient temperature, concentrated and purified by column chromatography (eluent: hexane: EtOAc, 2:1, 1:1) yielding 5-methoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (56 mg, 7 %).

G:
To a stirring solution of 2-methoxy-1-pyrroline (240 mg, 2.42 mmol, 1 eq) in anhydrous DMF (10 mL) was added diphenylcyclopropenone (500 mg, 2.42 mmol, 1 eq) in one portion. The reaction mixture was heated at 130 °C under an atmosphere of dry nitrogen. After 18 hours the reaction mixture was allowed to cool to ambient temperature. The solvent was removed in vacuo and the crude residue purified by column chromatography (eluent: hexane: EtOAc, 2:1) yielding 5-methoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (114 mg, 15 %), as a yellow/orange oil.
Experimental

H:

To a stirring solution of 2-methoxy-1-pyrroline (249 mg, 2.52 mmol, 1 eq) in anhydrous DMF (10 mL) was added diphenylcyclopropenone (519 mg, 2.52 mmol, 1 eq) in one portion. The reaction mixture was heated at 165 °C under an atmosphere of dry nitrogen. After 18 hours the reaction mixture was allowed to cool to ambient temperature. The solvent was removed *in vacuo* and the crude residue purified by column chromatography (eluent: hexane: EtOAc, 2:1) yielding 5-methoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (328 mg, 42 %), as a yellow/ orange oil.

\(^1\)H NMR \(\delta\) (400.13 MHz, CDCl\(_3\)): 7.48 – 7.45 (3H, m, Ar), 7.41 – 7.35 (2H, m, Ar), 7.21 – 7.17 (4H, m, Ar), 7.16 – 7.10 (1H, m, Ar), 3.46 (1H, ddd, \(J\) 4.1, 7.4, 11.1, NCH\(_H\)), 3.31 (3H, s, Me), 2.98 (1H, ddd, \(J\) 7.4, 7.4, 11.0, NCH\(_H\)), 2.34 – 2.21 (1H, m, MeOCCH\(_H\)), 2.20 – 2.13 (1H, m, MeOCCH\(_H\)), 2.00 – 1.89 (2H, m, CH\(_2\)CH\(_2\)CH\(_2\)).

\(^13\)C NMR \(\delta\) (100 MHz, CDCl\(_3\)): 198.85 (q), 177.12 (q), 131.60 (CH), 131.21 (q), 131.10 (q), 130.00 (CH), 129.09 (CH), 128.92 (CH), 128.30 (CH), 126.49 (CH), 116.26 (q), 100.68 (q), 51.95 (CH\(_3\)), 48.96 (CH\(_2\)), 32.33(CH\(_2\)), 26.47 (CH\(_2\)).

LRMS (ESI+): 306.1 [M+H]\(^+\), 328.1 [M+Na]\(^+\), 633.3 [2M+Na]\(^+\).

HRMS (ESI+): 328.1307 [M+Na]\(^+\), \(C_{20}H_{20}NO_2\), requires 328.1308.

IR \(\nu_{\text{max}}\) (cm\(^{-1}\)): 2980 (s), 2890 (w), 1683 (vs), 1602 (m), 1580 (m), 1552 (m), 1397 (s), 1073 (s).
3.1.6 Synthesis of 5-methyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

![Chemical Structure]

A:

Diphenylcyclopropenone (250 mg, 1.21 mmol, 1 eq) was added in one portion to a stirring solution of 2-methyl-1-pyrroline (1.15 mL, 12.12 mmol, 10 eq) in anhydrous acetonitrile (10 mL). The reaction mixture was stirred for a day at ambient temperature under an atmosphere of dry nitrogen. Evaporation of the solvent gave a crude product which was purified by column chromatography (eluent: hexane: EtOAc, 2:1) to yield 5-methyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (200 mg, 57 %), as a yellow solid.

B:

To a stirring solution of diphenylcyclopropenone (500 mg, 2.42 mmol, 1 eq) in DMF (10 mL) was added 2-methyl-1-pyrroline (0.23 mL, 2.42 mmol, 1 eq) and the reaction mixture was heated at reflux for one and a half hours under an atmosphere of dry nitrogen. Evaporation of the solvent gave a crude residue which was purified by column chromatography (eluent: hexane: EtOAc, 2:1) to yield 5-methyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (624 mg 89 %), as a yellow solid.

1H NMR δ (400.13 MHz, CDCl$_3$): 7.43 – 7.40 (3H, m, Ar), 7.36 – 7.32 (2H, m, Ar), 7.24 – 7.15 (4H, m, Ar), 7.11 – 7.06 (1H, m, Ar), 3.37 (1H, ddd, $\text{J} = 1.1$, 6.3, 8.8, NCH$_2$), 2.97 (1H, dd, $\text{J} = 6.7$, 8.8, NCH$_2$H), 2.12 – 1.84 (4H, m, NCH$_2$CH$_2$CH$_2$), 1.46 (3H, s, CH$_3$).
Experimental

13C NMR δ (100 MHz, CDCl$_3$): 204.24 (q), 176.12 (q), 132.26 (q), 131.78 (q), 130.88 (CH), 129.79 (CH), 128.77 (CH), 128.71 (CH), 128.05 (CH), 125.79 (CH), 115.20 (q), 74.97 (q), 48.56 (CH$_2$), 32.39 (CH$_2$), 26.67 (CH$_2$), 23.04 (CH$_3$).

HRMS (ESI+): 312.1371 [M+Na]$^+$, C$_{20}$H$_{19}$NNaO requires 312.1359.

HRMS (ESI+): 290.1550 [M+H]$^+$, C$_{20}$H$_{20}$NO requires 290.1539.

IR ν_{max} (cm$^{-1}$): 2971 (m), 1670 (vs), 1602 (m), 1581 (m), 1552 (m), 1500 (w).

3.1.7 Synthesis of 5-methylthio-2,3-diphenyl-8-methyl-1-azabicyclo[3.3.0]oct-2-en-4-one

3.1.7.1 Synthesis of 5-methylpyrrolidine-2-thione

A solution of 5-methyl-2-pyrrolidinone (205 - mg, 2.07 mmol, 1 eq) and Lawesson’s reagent (501.9 mg, 1.24 mmol, 0.6 eq) in anhydrous tetrahydrofuran (10 mL) was stirred under an atmosphere of dry nitrogen at ambient temperature for an hour. The mixture was heated at reflux and monitored by TLC. Upon completion of the reaction (two hours) the mixture was left to cool to ambient temperature, concentrated and purified twice by column chromatography (eluent: hexane: EtOAc 1:1, then hexane: EtOAc, 3:2) to yield 5-methylpyrrolidine-2-thione (200 mg, 84 %) as a white powder.
Experimental

\[\text{1H NMR } \delta (400.13 \text{ MHz, CDCl}_3): \] 9.08 (1H, bs, NH), 4.05 (1H, dq, \(J \) 6.6, 13.4, CHCH\(_3\)), 2.96 (1H, ddd, \(J \) 4.8, 9.3, 18.1, SCCHH), 2.86 (1H, ddd, \(J \) 8.8, 8.8, 18.1, SCCHH), 2.38 – 2.29 (1H, m, CH\(_3\)CHCH), 1.78 – 1.68 (1H, m, CH\(_3\)CHCHH), 1.28 (3H, d, \(J \) 6.6, CHCH\(_3\)).

\[\text{13C NMR } \delta (100 \text{ MHz, CDCl}_3): \] 204.77 (q), 58.52 (CH), 43.60 (CH\(_2\)), 31.40 (CH\(_2\)), 21.07 (CH\(_3\)).

3.1.7.2 Synthesis of 5-methyl-2-methylthio-1-pyrroline

\[\begin{array}{c}
\text{Me} \text{N} \text{H} \\
\text{165} \\
\text{MeSO}_4 \\
\text{N} \text{S} \text{Me} \\
\text{166}
\end{array} \]

Dimethyl sulfate (0.19 mL – 0.20 mL, 1.74 mmol – 2.13 mmol, 1 eq) was added in one portion to 5-methylpyrrolidine-2-thione (200 mg – 244 mg, 1.74 mmol – 2.13 mmol, 1 eq) and the mixture stirred for 20 hours at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was diluted with ether (10 mL), washed with 10 % aqueous potassium carbonate (20 mL) and extracted with dichloromethane (3 x 20 mL). The organic phase was dried over magnesium sulfate and filtered under gravity. Most of the solvent was removed in vacuo, to leave ~ 1 mL of liquid which was used directly in the next step.

\[\text{1H NMR } \delta (400.13 \text{ MHz, CDCl}_3): \] 4.09 (1H, ddq, \(J \) 1.4, 6.7, 6.7, CHCH\(_3\)), 2.68 (1H, dddd, \(J \) 1.6, 5.1, 9.6, 16.4, SCCHH), 2.63 – 2.53 (1H, m, SCCH\(_2\)CHH), 2.45 (3H, s, SCH\(_3\)), 2.19 (1H, dddd, \(J \) 2.5, 4.4, 7.4, 9.6, SCCHH), 1.53 – 1.50 (1H, m, SCCH\(_2\)CHH), 1.27 (3H, d, \(J \) 6.7, CHCH\(_3\)).
Experimental

13C NMR \((100 \text{ MHz, CDCl}_3) \): 172.10 (q), 68.20 (CH), 66.20 (CH\(_2\)), 58.93 (CH\(_3\)), 38.95 (CH\(_2\)), 22.44 (CH\(_3\)).

3.1.7.3 Synthesis of 5-methylthio-2,3-diphenyl-8-methyl-1-azabicyclo[3.3.0]oct-2-en-4-one

Diphenylcyclopropenone (359 mg, 1.74 mmol, 1 eq) was added in one portion to a stirring solution of the 5-methyl-2-methylthio-1-pyrroline prepared above, dissolved in anhydrous acetonitrile (9 mL) at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was stirred for four days, concentrated and purified by column chromatography (eluent: hexane: EtOAc, 2:1) to yield 5-methylthio-2,3-diphenyl-8-methyl-1-azabicyclo[3.3.0]oct-2-en-4-one, as a mixture of diastereoisomers (171 mg) in a ratio of 1:1.3. A small quantity (~1 mg) of one of the pure diastereoisomers was obtained, as a yellow oil.

1H NMR \((400.13 \text{ MHz, CDCl}_3) \) pure sample: 7.49 – 7.40 (3H, m, Ar), 7.38 – 7.33 (2H, m, Ar), 7.26 – 7.14 (5H, m, Ar), 4.13 (1H, quint, \(J \) 6.6, NCHMe), 2.86 (1H, ddd, \(J \) 7.0, 12.4, 19.4, SCCHH), 2.24 – 2.10 (2H, m, SCCH\(_2\)CH\(_2\)), 2.12 (3H, s, SCH\(_3\)), 1.88 (1H, dd, \(J \) 5.9, 12.4, SCCHH), 0.70 (3H, d, \(J \) 6.6 CHCH\(_3\)).

13C NMR \((100 \text{ MHz, CDCl}_3) \): 199.87 (q), 170.95 (q), 132.59 (q), 131.82 (q), 131.15 (CH), 129.31 (CH), 129.16 (CH), 129.06 (CH), 128.35 (CH), 126.42 (CH), 119.58 (q), 80.37 (q), 55.40 (CH), 35.74 (CH\(_2\)), 27.77 (CH\(_2\)), 19.37 (CH\(_3\)), 11.52 (CH\(_3\)).
The diastereoisomeric mixture showed the following extra peaks:

\[{^1}H \text{ NMR} \delta (400.13 \text{ MHz, CDCl}_3): 7.48 – 7.12 \text{ (extra peaks in aromatic region), 3.53 – 3.48,} \]
\[2.36 – 2.26, 2.24 – 2.09, 2.00 – 1.92, 1.43 - 1.41. \]
\[{^{13}}C \text{ NMR} \delta (100 \text{ MHz, CDCl}_3): 200.36, 176.70, 131.74, 131.47, 131.22, 129.61, 129.00, \]
\[128.90, 128.24, 126.32, 116.59, 80.10, 57.32, 34.04, 32.28, 22.97, 12.00. \]
\[\text{IR} \nu_{\text{max}} (\text{cm}^{-1}): 2971(\text{m}), 2919 (\text{w}), 1673 (\text{vs}), 1601 (\text{m}), 1500 (\text{w}), 1449 (\text{m}), 1395 (\text{s}). \]

On storage, the 5-methylthio-2,3-diphenyl-8-methyl-1-azabicyclo[3.3.0]oct-2-en-4-one was seen by TLC to become impure and column chromatography of the degraded material gave a small quantity of 5-hydroxy-2,3-diphenyl-8-methyl-1-azabicyclo[3.3.0]oct-2-en-4-one (37 %).

5-Hydroxy-2,3-diphenyl-8-methyl-1-azabicyclo[3.3.0]oct-2-en-4-one:

\[{^1}H \text{ NMR} \delta (400.13 \text{ MHz, CDCl}_3): 7.52 – 7.35 (5H, m, Ar), 7.20 – 7.05 (5H, m, Ar), 3.38 \]
\[(1H, dq, J 6.5, 13.0, NCH(Me)CH\text{2}), 2.26 – 2.13 (2H, m, CH\text{2}CH\text{2}COH), 2.13 – 2.02 (2H, m, \]
\[CH\text{2}CH\text{2}COH), 1.40 (3H, d, J 6.5, NCH(CH\text{3})CH\text{2}). \]
\[{^{13}}C \text{ NMR} \delta (100 \text{ MHz, CDCl}_3): 199.91 (q), 177.94 (q), 131.60 (CH), 131.40 (q), 131.27 (q), \]
\[129.85 (CH), 129.09 (CH), 129.02 (CH), 128.34 (CH), 126.44 (CH), 113.78 (q), 97.39 (q), \]
\[56.87 (CH), 34.69 (CH\text{2}), 33.66 (CH\text{2}), 23.72 (CH\text{3}). \]
\[\text{LRMS (ESI+)}: 358.1 [M+Na]^+ \text{ for C}_{20}\text{H}_{19}\text{NO}_{2}. \]
\[\text{IR} \nu_{\text{max}} (\text{cm}^{-1}): 3331 (\text{br}), 3062 (\text{m}), 2970 (\text{m}), 2929 (\text{w}), 1664 (\text{vs}), 1602 (\text{s}), 1503 (\text{m}). \]
3.1.8 Synthesis of 5-methylthio-2,3-diphenyl-8-ethylcarboxylate-1-azabicyclo[3.3.0]oct-2-en-4-one

3.1.8.1 Synthesis of ethyl pyrrolidine-2-thione-5-carboxylate

\[
\begin{align*}
\text{O} & \quad \text{Lawesson's Reagent} \\
\text{THF} & \\
168 & \quad \rightarrow \quad 169
\end{align*}
\]

To a stirring solution of ethyl (R)-(−) 2-pyrrolidine-5-carboxylate (500 mg, 3.18 mmol, 1 eq) in anhydrous tetrahydrofuran (10 mL) was added Lawesson’s reagent (772 mg, 1.91 mmol, 0.6 eq) in one portion. The reaction mixture was stirred under an atmosphere of dry nitrogen at ambient temperature for one hour, followed by heating at reflux whilst being monitored by TLC. After two and a half hours, the reaction was allowed to cool to ambient temperature. Evaporation of the solvent \textit{in vacuo} gave a crude residue which was purified by column chromatography (eluent: hexane: EtOAc, 1:1) to yield ethyl pyrrolidine-2-thione-5-carboxylate (526 mg, 95 %), as an orange oil.

\[\text{H NMR } \delta (400.13 \text{ MHz, CDCl}_3):\]
8.95 (1H, s, NH), 4.49 (1H, dd, J 6.1, 8.9, HNCHCO), 4.18 (1H, dq, J 7.1, 16.1, COOCHHCH_3), 4.15 (1H, dq, J 7.1, 16.1, COOCHHCH_3), 2.96 – 2.79 (2H, m, SCCH_2), 2.53 – 2.43 (1H, m, SCCH_2CHH), 2.29 – 2.19 (1H, m, SCCH_2CHH), 1.23 (3H, t, J 7.1, COOCH_2CH_3).

\[\text{C NMR } \delta (100 \text{ MHz, CDCl}_3):\]
206.53 (q), 170.42 (q), 62.84 (CH), 62.16 (CH_2), 42.80 (CH_2), 27.06 (CH_2), 14.20 (CH_3).
Experimental

IR ν_{max} (cm$^{-1}$): 3168 (br), 2981 (m), 1735 (vs), 1496 (vs), 1422 (m), 1374 (m), 1333 (w), 1204 (vs).

3.1.8.2 Synthesis of ethyl 2-methylthio-pyrroline-5-carboxylate

![Chemical structure](image)

Dimethyl sulfate (0.31 mL, 3.24 mmol, 1.1 eq) was added in one portion to ethyl pyrrolidine-2-thione-5-carboxylate (510 mg, 2.95 mmol, 1 eq) and the mixture was stirred for 18 hours at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was diluted with diethyl ether (10 mL), washed with 10 % aqueous potassium carbonate (20 mL) and extracted with dichloromethane (3 x 20 mL). The combined organic phases were dried over magnesium sulfate and filtered under gravity. Most of the solvent was removed *in vacuo*, to leave ~2 mL of liquid which was used without further concentration or purification.

1H NMR (400.13 MHz, CDCl$_3$): 4.53 (1H, t, J 7.3, NCHCOO), 4.06 (2H, q, J 7.1 COOCH$_2$CH$_3$), 2.72 – 2.60 (1H, m, SCCH), 2.58 – 2.47 (1H, m, SCCHH), 2.34 (3H, s, SCH$_3$), 2.23 – 2.12 (1H, m, SCCH$_2$CHH), 2.08 – 1.98 (1H, m, SCCH$_2$CHH), 1.15 (3H, t, J 7.1, COOCH$_2$CH$_3$).

13C NMR (100 MHz, CDCl$_3$): 176.87 (q), 172.73 (q), 60.93 (CH$_2$), 58.60 (CH) 38.62 (CH$_2$), 27.64 (CH$_2$), 14.13 (CH$_3$) 13.72 (CH$_3$).
3.1.8.3 Synthesis of 5-methylthio-2,3-diphenyl-8-ethylcarboxylate-1-azabicyclo-[3.3.0]oct-2-en-4-one

To a stirring solution of 2-methylthio-5-ethylcarboxylatepyrroline (250 mg, 1.34 mmol, 1 eq) in acetonitrile (8 mL) was added diphenylcyclopropenone (276 mg, 1.34 mmol, 1 eq) in one portion. The reaction mixture was stirred at ambient temperature under an atmosphere of dry nitrogen for three days. Evaporation of the solvent gave a crude residue, which was purified by column chromatography (eluent: hexane: EtOAc, 1:1) to yield 5-methylthio-2,3-diphenyl-8-ethylcarboxylate-1-azabicyclo[3.3.0]oct-2-en-4-one (263 mg, 50%), as a yellow oil. The product was formed as a mixture of diastereoisomers in a ratio of 1:1.2.

1H NMR δ (400.13 MHz, CDCl$_3$): 7.46 – 7.22 (10H, m, Ar), 7.21 – 7.04 (10H, m, Ar), 4.39 (1H, d, J 8.5), 4.28 – 4.10 (2H, m), 3.88 (1H, dd, J 6.9, 8.1), 3.65 – 3.51 (1H, m), 3.58 (1H, t, J 7.0), 3.01 – 2.89 (1H, m), 2.66 – 2.50 (1H, m), 2.42 – 2.32 (2H, m), 2.24 – 2.16 (2H, m), 2.17 – 2.11 (1H, m), 2.11 (3H, s, SCH$_3$), 2.08 (3H, s, SCH$_3$), 1.27 (3H, t, J 7.1, CH$_2$CH$_3$), 1.24 – 1.16 (1H, m), 0.82 (3H, t, J 7.1, CH$_2$CH$_3$).

13C NMR δ (100 MHz, CDCl$_3$): 199.27, 198.79, 177.20, 174.37, 172.85, 171.84, 171.16, 170.86, 131.32, 130.92, 118.63, 116.21, (12 x q), 81.02, 80.20 (2 x q), 131.46, 131.13, 130.60, 129.79, 129.60, 128.91, 128.87, 128.59, 128.09, 126.40, 126.33, (11 x CH aromatic) 61.04, 60.31 (2 x CH), 61.61, 61.17, 33.19, 32.11, 31.57, 28.52 (6 x CH$_2$), 14.26, 13.79, 11.68, 11.34, (4 x CH$_3$).

Experimental

IR v_{max} (cm$^{-1}$): 2979 (m), 1734 (s), 1673 (vs), 1602 (m), 1582 (m), 1557 (m), 1499 (w), 1187 (s), 1025 (s).

3.1.9 Synthesis of 5-methylthio-2,3-diphenyl-8-(4-methylbenzenesulfonate)-1-azabicyclo[3.3.0]oct-2-en-4-one

3.1.9.1 Synthesis of (hydroxymethyl)pyrrolidin-2-thione p-toluenesulfonate

To a stirring solution of (S)-(+)-(hydroxymethyl)-2-pyrrolidinone p-toluenesulfonate (477 - 500 mg, 1.77 - 1.86 mmol, 1 eq) in anhydrous tetrahydrofuran (8 mL) was added Lawesson’s reagent (430 - 450.6 mg, 1.06 - 1.1 mmol, 0.6 eq) in one portion. The reaction mixture was monitored by TLC and stirred under an atmosphere of dry nitrogen at ambient temperature for an hour, followed by heating at reflux. After three hours the reaction was allowed to cool to ambient temperature. Evaporation of the solvent *in vacuo* gave a crude residue which was purified by column chromatography (eluent: hexane: EtOAc, 1:1) to yield (hydroxymethyl)pyrrolidin-2-thione p-toluenesulfonate (305 - 440 mg, 60 - 83%), as a white solid.

1H NMR δ (400.13 MHz, CDCl$_3$): 8.22 – 8.13 (1H, bs, NH), 7.80 (2H, d, J 8.2, O$_3$SCCH), 7.38 (2H, d, J 8.2, O$_3$SCCHCH), 4.24 – 4.16 (1H, m, NCH), 4.13 (1H, dd, J 3.8, 10.4, CHHO), 3.95 (1H, dd, J 7.3, 10.4, CHHO), 2.99 - 2.83 (2H, m, SCCCH$_2$)*, 2.46 (3H, s, Me), 2.38 – 2.27 (1H, m, NCHCHH)*, 1.93 – 1.83 (1H, m, NCHCHH)*.
Experimental

13C NMR (100 MHz, CDCl$_3$): 206.85 (q), 145.93 (q), 132.36 (q), 130.50 (CH), 128.28 (CH), 70.74 (CH$_2$), 60.67 (CH), 42.71 (CH$_2$), 25.49 (CH$_2$), 22.04 (CH$_3$).

* Assignments may be interchanged.

3.1.9.2 Synthesis of (hydroxymethyl) 2-methylthio-5-p-toluenesulfonate pyrroline

![Chemical structure](attachment:image.png)

A:

Dimethyl sulfate (1.2 mL, 12.6 mmol, 8.2 eq) was added in one portion to (hydroxymethyl)-pyrrolidin-2-thione p-toluenesulfonate (440 mg, 1.54 mmol, 1 eq) and the mixture was stirred for 18 hours at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was diluted with diethyl ether (10 mL), washed with 40 % aqueous potassium carbonate (20 mL) and extracted with dichloromethane (3 x 10 mL). The combined organic phases were dried over magnesium sulfate and filtered under gravity, and concentrated until ~2 mL, of liquid remained. This was used immediately in the next step.

B:

To a stirring solution of (hydroxymethyl)pyrrolidin-2-thione p-toluenesulfonate (300 mg, 1.05 mmol, 1 eq) in anhydrous dichloromethane (10 mL) was added a solution of Me$_3$O$^+$ BF$_4^-$ (155.52 mg, 1.05 mmol, 1 eq) in anhydrous dichloromethane (10 mL). The reaction mixture was stirred for an hour at ambient temperature under an atmosphere of dry nitrogen, followed by heating at reflux for a further hour; the mixture was cooled to ambient temperature and ice cold 50 % aqueous potassium carbonate (20 mL) was added and the mixture stirred overnight. The resulting mixture was filtered under vacuum with the aid of celite and extracted with
dichloromethane (4 x 10 mL). The combined organic phases were dried over magnesium sulfate, filtered under gravity and most of the solvent was removed in vacuo, to leave ~2 mL of liquid which was used directly in the next step.

\[^1H \text{ NMR } \delta (400.13 \text{ MHz, CDCl}_3): 7.78 (2H, d, J 8.2, O_5SCCH), 7.34 (2H, d, J 8.2, O_5SCCHCH), 4.30 – 4.23 (1H, m, CHN), 4.21 (1H, dd, J 4.0, 9.6, CHHO), 4.03 (1H, dd, J 5.6, 9.6, CHHO), 2.72 (1H, dddd, J 1.7, 6.1, 10.1, 16.7, NCHCHH)*, 2.61 (1H, dddd, J 0.9, 6.6, 10.1, 16.7, NCHCHH)*, 2.44 (3H, s, ArCH), 2.38 (3H, s, SCH), 2.15 (1H, dddd, J 6.0, 7.5, 8.1, 15.5, NCHCHCHH)*, 1.86 (1H, dddd, J 5.6, 6.6, 8.1, 14.7, NCHCHCHH)*.

\[^{13}C \text{ NMR } \delta (100 \text{ MHz, CDCl}_3): 176.71 (q), 145.14 (q), 133.10 (q), 130.16 (CH), 128.28 (CH), 72.54 (CH$_2$), 70.57 (CH), 38.93 (CH$_2$), 26.45 (CH$_2$), 21.97 (CH$_3$), 14.10 (CH$_3$).

* Assignments may be interchanged.

3.1.9.3 Synthesis of 5-methylthio-2,3-diphenyl-8-(4-methylbenzenesulfonate)-1-azabicyclo[3.3.0]oct-2-en-4-one

To a stirring solution of the pyrroline (415 mg, 1.39 mmol, 1 eq) in acetonitrile (10 mL) was added diphenylcyclopropenone (286 mg, 1.39 mmol, 1 eq) in one portion. The reaction mixture was stirred at ambient temperature under an atmosphere of dry nitrogen for three days. Analysis by TLC showed no reaction had taken place; therefore the mixture was heated at reflux, whilst being monitored by TLC. After 18 hours no reaction was observed.
To a stirring solution of the pyrroline (283.2 mg, 0.95 mmol, 1 eq) in acetonitrile (10 mL) was added diphenylcyclopropenone (195.1 mg, 0.95 mmol, 1 eq) in one portion. The reaction mixture was stirred at ambient temperature under an atmosphere of dry nitrogen for three days. Analysis by TLC showed no reaction had taken place; therefore the mixture was heated at reflux for 18 hours. The mixture was concentrated and purified by column chromatography (eluent: hexane: EtOAc, 1:1) to yield 5-methylthio-2,3-diphenyl-8-(4-methylbenzenesulfonate)-1-azabicyclo[3.3.0]oct-2-en-4-one (228 mg, 48%), as an orange/yellow oil. The product was formed as a single diastereoisomer.

1H NMR δ (400.13 MHz, CDCl$_3$): 7.48 (2H, d, J 8.3, Ar), 7.40 – 7.32 (2H, m, Ar), 7.25 – 7.09 (10H, m, Ar), 4.14 – 4.07 (1H, m, NCH), 3.54 (1H, dd, J 2.6, 10.3, CHHO), 3.35 (1H, dd, J 5.8, 10.3, CHHO), 2.84 (1H, ddd, J 7.7, 15.0, 22.5 (gem), CH$_3$SCCHH)*, 2.38 (3H, s, CHCHCH$_3$), 2.25 – 2.14 (2H, m, NCHCH$_2$CH$_2$)*, 2.10 – 2.03 (1H, m, CH$_3$SCCHH)*, 2.07 (3H, s, SCH$_3$).

13C NMR δ (100 MHz, CDCl$_3$): 198.72 (q), 168.49 (q), 145.24 (q), 132.27 (q), 131.31 (CH), 131.14 (q), 131.07 (q), 130.08 (CH), 129.09 (CH), 128.94 (CH), 128.72 (CH), 128.14 (CH), 127.77(CH), 126.51 (CH), 119.44 (q), 80.31 (q), 68.65 (CH$_2$), 56.88 (CH), 31.85 (CH$_2$), 28.21 (CH$_2$), 21.75 (CH$_3$) 11.38 (CH$_3$).

HRMS (ESI$^+$): 528.1274 [M+Na]$^+$, C$_{28}$H$_{27}$NNaO$_4$S$_2$, requires 528.1274.

IR ν_{max} (cm$^{-1}$): 3062 (w), 2920 (w), 1672 (vs), 1599 (s), 1582 (m), 1556 (s), 1497 (w), 1482 (w), 1364 (s), 1306 (w), 1189 (m), 1176 (vs).

* Assignments may be interchanged.
3.1.10 Attempted synthesis of 5-methylthio-2,3-diphenyl-8-hydroxymethyl-1-azabicyclo[3.3.0]oct-2-en-4-one

3.1.10.1 Attempted synthesis of 5-(hydroxymethyl)pyrrolidin-2-thione

Typical Procedure:

To a stirring solution of (S)-5-(hydroxymethyl)-2-pyrrolidinone (506 mg, 4.4 mmol, 1 eq) in anhydrous tetrahydrofuran (10 mL) was added Lawesson’s reagent (1.07 g, 2.64 mmol, 0.6 eq) in one portion. The reaction mixture was stirred under an atmosphere of dry nitrogen at ambient temperature for an hour, followed by heating at reflux. After 18 hours the reaction mixture was allowed to cool to ambient temperature, concentrated and purified by column chromatography, no indication of any new product or recovery of starting material was observed by TLC.
3.2 Reactivity of Pyrrolizidines

3.2.1 Reactivity of 5-methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

3.2.1.1 Synthesis of 5-methanesulfinyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

A:

To a stirring solution of 5-methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (110 mg, 0.343 mmol, 1 eq) in anhydrous dichloromethane (7 mL) was added a solution of meta-chloroperoxybenzoic acid (60 mg, 0.343 mmol, 1 eq) in anhydrous dichloromethane (4 mL) at 0 °C – -10 °C under an atmosphere of dry nitrogen. The reaction mixture was stirred for four and a half hours at 0 °C – -10 °C, before being quenched with saturated aqueous sodium thiosulfate (10 mL) and allowed to warm to ambient temperature. Saturated aqueous sodium hydrogen carbonate (10 mL) was added to the mixture which was stirred for a further ten minutes before extraction with dichloromethane (3 x 10 mL). The organic phase was dried over magnesium sulfate and filtered under gravity. The solvent was removed in vacuo and the crude material was purified by column chromatography (eluent: PE: EtOAc, 1:3) to yield 5-methanesulfinyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (104 mg, 90 %), as an orange solid.

B:

To a stirring solution of 5-methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (570 mg, 1.78 mmol, 1 eq) in anhydrous dichloromethane (10 mL) at 0 – -10 °C was added a
solution of *meta*-chloroperoxybenzoic acid (600 mg, 3.48 mmol, 2 eq) in anhydrous dichloromethane (6 mL) under an atmosphere of dry nitrogen. The reaction mixture was stirred for six hours at 0 – -10 °C before being quenched with saturated aqueous sodium thiosulfate (15 mL) and allowed to warm to ambient temperature. Saturated aqueous sodium hydrogen carbonate (10 mL) was added to the mixture which was stirred for a further ten minutes before extracting with dichloromethane (3 x 10 mL). The organic phase was dried over magnesium sulfate and filtered under gravity. The solvent was removed *in vacuo* and the crude material was purified by column chromatography (eluent: PE: EtOAc, 1:3) to yield 5-methanesulfanyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (275 mg, 46 %), as an orange solid.

The product was formed as a mixture of diastereoisomers in a ratio of 1:1.45.

1H NMR δ (400.13 MHz, CDCl$_3$): [mixture of diastereoisomers]: 7.55 – 7.43 (3H, m, Ar), 7.41 (2H, m, Ar), 7.27 – 7.14 (5H, m, Ar), 3.53 (2H, 2 x dd, J 6.8, 8.0, 11.1, m, NCH$_2$), 3.41 (1H, td, J 5.7, 11.1, CHH) 3.27 – 3.18 (2H, m, CH$_2$), 2.86 (1H, dt, J 7.5, 13.8, CHH), 2.83 – 2.75 (1H, m, CHH), 2.69 (3H, s, CH$_3$), 2.58 – 2.51 (1H, m, CHH), 2.57 (3H, s, CH$_3$), 2.37 – 2.18 (2H, m, CH$_2$), 2.03 – 1.83 (2H, m, CH$_2$).

13C NMR δ (100 MHz, CDCl$_3$): [mixture of diastereoisomers]: 196.00, 195.94, 178.05, 177.37, 120.12, 119.83 (6 x q), 131.03, 130.76, 130.62, 130.38 (4 x q, aromatic), 132.11, 131.93, 130.14, 129.95, 129.23, 129.09, 128.65, 128.53 (8 x CH aromatic), 128.88 (CH), 92.75, 91.86 (2 x q), 60.74, 51.20, 50.81, 28.91, 26.26, 22.15 (6 x CH$_2$), 33.33, 32.74 (2 x CH$_3$).

IR ν$_{max}$ (cm$^{-1}$): 2917 (m), 1737 (vs), 1603 (w), 1558 (w), 1447 (w), 1373 (s), 1237 (vs), 1140 (w), 1097 (w), 1044 (s), 938 (w), 846 (w), 701 (m).
3.2.1.2 Attempted Synthesis of 2-methanesulfinyl-1-pyrroline

\[
\begin{align*}
156 & \quad \text{SMe} \quad m\text{-CPBA} \quad \text{DCM, } 0^\circ \text{C} \\
& \quad \text{179}
\end{align*}
\]

To a stirring solution of 2-methylthio-1-pyrroline (235 - 495 mg, 2.05 - 2.87 mmol, 1 eq) in anhydrous dichloromethane (5 mL) was added a solution of \textit{meta}-chloroperoxybenzoic acid (353 - 742.8 mg, 2.05 - 2.87 mmol, 1 eq) in anhydrous dichloromethane (6 mL) at 0 °C – -10 °C under an atmosphere of dry nitrogen. The reaction mixture was maintained at 0 °C – -10 °C for 5-6 hours, and warmed to 5 °C after seven hours. The reaction was quenched with saturated aqueous sodium thiosulfate (10 mL) and allowed to warm to ambient temperature. The resulting mixture had saturated aqueous sodium hydrogen carbonate (10 mL) added and was stirred for ten minutes followed by extraction with dichloromethane (3 x 20 mL). The combined organic layers were dried over magnesium sulfate and filtered under gravity. The crude material was subjected to column chromatography (eluent: hexane: EtOAc, 1:1), but no identifiable products were isolated.

3.2.1.3 Synthesis of 5-methanesulfonyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

\[
\begin{align*}
157 & \quad \text{MeO}\text{-SMe} \quad m\text{-CPBA (2 eq)} \\
& \quad \text{DCM} \\
& \quad \text{180}
\end{align*}
\]

To a stirring solution of 5-methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (86 mg, 0.268 mmol, 1 eq) in anhydrous dichloromethane (6 mL) was added a solution of \textit{meta}-chloroperoxybenzoic acid (92.5 mg, 0.536 mmol, 2 eq) in anhydrous dichloromethane (5
mL) at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was stirred at ambient temperature for three days, before being quenched and stirred for ten minutes with saturated aqueous sodium thiosulfate (10 mL). Saturated aqueous sodium hydrogen carbonate (10 mL) was added to the mixture and the mixture was stirred for a further ten minutes before extracting with dichloromethane (3 x 10 mL). The organic phases were dried over magnesium sulfate and filtered under gravity. The solvent was removed in vacuo and the crude material was purified by column chromatography (eluent: hexane:EtOAc, 4:3) to yield 5-methanesulfonyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (71.2 mg, 75 %), as a yellow solid.

1H NMR δ (400.13 MHz, CDCl₃): 7.53 – 7.47 (3H, m, Ar), 7.40 (2H, t, J 7.6, Ar), 7.27 – 7.18 (5H, m, Ar), 3.57 (1H, ddd, J 6.4, 9.4, 11.4, NCHH), 3.24 (1H, dd, J 3.9, 11.4 NCHH), 3.01 (3H, s, CH₃), 2.72 (1H, dt, J 8.2, 13.9 CHH), 2.47 (1H dd, J 3.9, 13.9, CHH), 2.28 – 2.18 (1H, m, CHH), 1.99 – 1.87 (1H, m, CHH).

13C NMR δ (100 MHz, CDCl₃): 195.33 (q), 178.74 (q), 132.19 (CH), 130.63 (q), 130.46 (q), 130.10 (CH), 129.17 (CH), 129.03 (CH), 128.60 (CH), 127.29 (CH), 119.53 (q), 91.64 (q), 35.57 (CH₃), 30.04 (CH₂), 28.08 (CH₂), 25.99 (CH₂).

HRMS (ESI+): Found 376.0981, [M+Na]⁺, C₂₀H₁₉NNaO₃S requires 376.0978.

3.2.1.4 Synthesis of 2,3-diphenyl-1-azabicyclo[3.3.0]oct-5,7-dien-4-one

![Diagram](image_url)
A solution of 5-methanesulfinyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (100 mg, 0.297 mmol) in anhydrous toluene (5 mL) was warmed to reflux under an atmosphere of dry nitrogen. The reaction mixture was monitored by TLC and stopped after four hours, concentrated and purified by column chromatography twice (eluent: hexane: EtOAc, 10:1) to yield 2,3-diphenyl-1-azabicyclo[3.3.0]oct-5,7-en-4-one (19.5 mg, 24 %), as an orange/yellow oil.

1H NMR δ (400.13 MHz, CDCl₃): 7.42 – 7.31 (6H, m, Ar), 7.17 – 7.15 (2H, m, Ar), 7.10 – 7.07 (2H, m, Ar), 6.94 – 6.92 (2H, m, Ar), 6.65 (1H, dd, J 2.5, 3.8 pyrrole NCH), 5.46 (1H, d, J 4.4 CPh), 4.11 (1H, d, J 4.4 CPh).

13C NMR δ (100 MHz, CDCl₃): 188.76 (q), 139.82 (q), 137.53 (q), 133.22 (q), 129.63 (CH), 129.47 (CH), 129.08 (CH), 128.61 (CH), 128.13 (CH), 126.50 (CH), 123.26 (CH), 118.09 (CH), 109.10 (CH), 67.86 (CH), 67.78 (CH).

IR ν max (cm⁻¹): 3058 (w), 2924 (m), 2854 (w), 2360 (m), 2338 (m), 1673 (vs), 1498 (m), 1448 (m), 1392 (s), 1296 (m), 1219 (w), 1184 (m), 1093 (m), 1029 (w).

3.2.1.5 Synthesis of 5-hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

![Chemical structure of 5-hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one](image)
A:
To a stirring solution of 5-methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (1.79 g, 5.58 mmol, 1 eq) in DCM (10 mL) was added m-CPBA (1.92 g, 11.15 mmol, 2 eq). The reaction mixture was stirred for five days at ambient temperature under an atmosphere of dry nitrogen. Evaporation of the solvent followed by purification of the residue by column chromatography (eluent: 1:1, hexane: EtOAc) yielded pure 5-methanesulfonyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (667 mg), pure 5-hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (170 mg) and a mixture of both (140 mg).

B:
To a stirring solution of 5-methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (343 mg, 1.07 mmol, 1 eq) in DCM (10 mL) was added m-CPBA (184.4 mg, 1.07 mmol, 1 eq) followed by two drops of water (70 mg). The reaction mixture was stirred for 20 hours at ambient temperature under an atmosphere of dry nitrogen, before being quenched and stirred for ten minutes with saturated aqueous sodium thiosulfate (10 mL), followed by saturated aqueous sodium hydrogen carbonate (10 mL). The mixture was stirred for ten minutes before extraction with dichloromethane (5 x 10 mL). The organic phases were dried over magnesium sulfate and filtered under gravity. The solvent was removed in vacuo and the crude material was purified by column chromatography (eluent: hexane: EtOAc, 1:1) to yield 5-hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (22.5 mg), 5-methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (80 mg) and a mixture of 5-hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one/5-methansulfonyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (210 mg), all as yellow/orange oils.

5-methanesulfonyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4one – data as above.
5-Hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one:

1H NMR δ (500.13 MHz, CDCl$_3$): 7.47 – 7.40 (3H, m, Ar), 7.38 – 7.32 (2H, m, Ar), 7.21 – 7.09 (5H, m, Ar), 3.86 (1H, bs, OH), 3.56 (1H, ddd, J 3.8, 7.6, 11.0, NCHH), 2.89 (1H, ddd, J 7.6, 7.9, 10.6, NCHH), 2.47 – 2.36 (1H, m, CH$_2$CHHCH$_2$), 2.16 (1H, ddd, J 3.2, 6.7, 13.1, CCHH), 2.06 – 1.98 (1H, m, CH$_2$CHHCH$_2$), 1.91 (1H, ddd, J 7.6, 10.6, 13.1, CCHH).

13C NMR δ (125 MHz, CDCl$_3$): 199.92 (q), 176.70 (q), 131.60 (CH), 131.49 (q), 131.28 (q), 130.21 (CH), 129.24 (CH), 128.93 (CH), 128.36 (CH), 126.50 (CH), 114.22 (q), 96.61 (q), 49.26 (CH$_2$), 33.35 (CH$_2$), 26.65 (CH$_2$).

HRMS (ESI+): Found 292.1336, [M+H]$^+$, C$_{19}$H$_{18}$NO$_2$ requires 292.1332.

HRMS (ESI+): Found 314.1153 [M+Na]$^+$, C$_{19}$H$_{17}$NNaO$_2$ requires 314.1152.

IR υ_{max} (cm$^{-1}$): 3370 (br), 3061 (m), 2923 (m), 2851 (w), 1678 (vs), 1601 (s), 1580 (m), 1549 (s), 1501 (w).

3.2.1.6 Attempted synthesis of 5-hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

To a stirring solution of 5-methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (80 mg, 0.249 mmol, 1 eq) in DCM (10 mL) was added three drops of water (72 mg) and benzoic acid (30 mg, 0249 mmol, 1 eq). The reaction mixture was stirred for 19 hours at ambient temperature. TLC analysis showed no change, whereupon meta-chloroperoxybenzoic acid (43 mg, 0.249 mmol, 1 eq) was added to the mixture which was stirred at 0 – -10 °C for five hours and allowed to warm to ambient temperature. TLC analysis showed no reaction had occurred.
To a stirring solution of 5-methanesulfonyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (200 mg, 0.566 mmol, 1 eq) in DCM (10 mL) was added three drops of water (85 mg) and benzoic acid (70 mg, 0.566 mmol, 1 eq). The reaction mixture was stirred for 19 hours at ambient temperature. TLC analysis showed no change, whereupon m-CPBA (98 mg, 0.566 mmol, 1 eq) was added and the mixture was stirred at 0 – -10 °C for five hours and allowed to warm to ambient temperature. TLC analysis showed no reaction had occurred.

3.2.1.7 Synthesis of 5-hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

To a stirring solution of 5-methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (250 mg, 0.779 mmol, 1 eq) in tetrahydrofuran/ dichloromethane (6 mL, 1:1) was added sodium hydroxide (250 mg), ethanol (7 mL) and water (2 mL). The reaction mixture was stirred for two days at ambient temperature. TLC analysis showed no change, and so the reaction mixture was heated to reflux for three days. Evaporation of the solvent gave a crude product which was purified by column chromatography (eluent: hexane: EtOAc, 1:1) to yield 5-hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (42 mg, 18 %), as a yellow solid. Spectroscopy results were identical to those mentioned in section 3.2.1.5.
3.2.2 Demethylation of 5-methoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

A:
To a stirring solution of 5-methoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (328 mg, 1.075 mmol, 1eq) in chloroform (10 mL) was added boron tribromide (1 M solution in DCM, 0.18 mL, 0.18 mmol, 0.17 eq) dropwise over an hour at 0 °C under an atmosphere of dry nitrogen. After the addition was complete, ethanol (8 mL) was added to quench the reaction. Large amounts of starting material remained; therefore the crude material in chloroform (10 mL) had boron tribromide (1 M solution in DCM, 0.9 mL, 0.9 mmol) added dropwise, and the mixture was stirred for an hour at 0 °C under an atmosphere of dry nitrogen. After the addition was complete, ethanol (9 mL) was added to quench the reaction. Evaporation of the volatile components gave a crude residue which was purified by column chromatography (eluent: hexane: EtOAc, 3:1) to yield 5-ethoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (35 mg, 10 %), as an orange oil.

B:
To a stirring solution of 5-methoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (102 mg, 0.33 mmol, 1 eq) in chloroform (10 mL) was added boron tribromide (1 M solution in DCM, 0.14 mL, 0.14 mmol, 0.42 eq) dropwise and the mixture was stirred for two and a half hours at 0 °C under an atmosphere of dry nitrogen. Ethanol (8 mL) was added to quench the reaction. Evaporation of the volatile components gave a crude residue which was purified by
column chromatography (eluent: hexane: EtOAc, 3:1) to yield 5-ethoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (47 mg, 44 %) and 5-hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]-oct-2-en-4-one (30 mg, 31 %) both as orange/ yellow oils.

5-Ethoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one:

\[\text{1}^H \text{NMR } \delta (400.13 \text{ MHz, CDCl}_3): \]
7.50 – 7.44 (3H, m, Ar), 7.41 – 7.36 (2H, m, Ar), 7.26 – 7.17 (4H, m, Ar), 7.16 – 7.11 (1H, m, Ar), 3.70 – 3.61 (1H, m, OCH\(\text{CH}_3\)), 3.50 – 3.38 (2H, m, OCH\(\text{HCH}_3\)), 3.02 – 2.94 (1H, m, NCH\(\text{H}\)), 2.36 – 2.25 (1H, m, OCH\(\text{HCH}_2\)), 2.24 – 2.15 (1H, m, OC\(\text{CH}_2\)), 2.00 – 1.89 (2H, m, \(\text{NCH}_2\text{CH}_2\)), 1.24 (3H, t, \(J = 7.0 \text{ OCH}_2\text{CH}_3\))

\[\text{13}^C \text{NMR } \delta (100 \text{ MHz, CDCl}_3): \]
199.31 (q), 176.78 (q), 131.57 (CH), 131.41 (q), 131.28 (q), 130.08 (CH), 129.16 (CH), 128.97 (CH), 128.36 (CH), 126.50 (CH), 116.08 (q), 100.51 (q), 60.08 (CH\(_2\)), 48.93 (CH\(_2\)), 32.63 (CH\(_2\)), 26.56 (CH\(_2\)), 15.80 (CH\(_3\)).

HRMS (ESI+): 342.1463 [M+H]+, C\(_{21}\)H\(_{21}\)NO\(_2\), requires 342.1465.

IR \(\nu_{\text{max}} \text{ (cm}^{-1})\): 3056 (w), 2973m (m), 2926 (w), 2889 (w), 1678 (vs), 1601 (s), 1581 (m), 1552 (s), 1500 (m).

C:

To a stirring solution of 5-methoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (100 mg, 0.33 mmol, 1 eq) in chloroform (10 mL) was added boron tribromide (1.0M solution in DCM, 0.15 mL, 0.15 mmol, 0.45 eq) dropwise and stirred for two and a half hours at 0 °C under an atmosphere of dry nitrogen. Water (10 mL) was added to quench the reaction. Evaporation of the solvents gave a crude residue which was purified by column chromatography (eluent: hexane: EtOAc, 3:1) to yield 5-hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (33 mg, 35%), as a orange/ yellow oil and recovered 5-methoxy-2,3-diphenyl-1-azabicyclo-
[3.3.0]oct-2-en-4-one. The spectroscopy results for 5-hydroxy-2,3-diphenyl-1-azabicyclo-
[3.3.0]oct-2-en-4-one were comparable to those mentioned in section 3.2.1.5.

3.2.3 Synthesis of 5-hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

A solution of 4-aminobutyraldehyde diethyl acetal (250 mg, 1.55 mmol, 1 eq) in a mixture of
2 M aqueous HCl (2 mL) and diethyl ether (5 mL) at 0 °C was stirred for 20 minutes, after
which it was basified with solid potassium carbonate and extracted with diethyl ether (4 x 7
mL) pre-cooled to 0 °C. The combined organic phases were dried over magnesium sulfate and
filtered under gravity at 0 °C. The solvent was evaporated in vacuo using an ice slush bath to
give an ethereal solution of 1-pyrroline (~10 mL). The resulting mixture was stirred at 0 °C
and diphenylcyclopropenone (319.7 mg, 1.55 mmol, 1 eq) was added in one portion under an
atmosphere of dry nitrogen and the mixture was stirred for five hours. The mixture was
concentrated and purified by column chromatography (eluent: hexane: EtOAc, 1:1) yielding
4-hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2,4-ene (162 mg, 38 %). Spectroscopic results
were comparable to those mentioned in section 3.2.1.5.
3.2.3.1 Synthesis of bis(3,4-dihydro-2H-pyrrol-1-yl)di-iodozinc (II)

A solution of 4-aminobutyraldehyde diethyl acetal (2.34 g, 14.5 mmol, 1 eq) in a mixture of 2 M aqueous HCl (20 mL) and diethyl ether (50 mL) at 0 °C was stirred for 20 minutes, after which it was basified with solid potassium carbonate and extracted with cold diethyl ether (3 x 50 mL) at 0 °C. The combined organic phases were dried over magnesium sulfate and filtered under gravity at 0 °C. Zinc iodide (2.08 g, 7.2 mmol) was added to the reaction mixture and the whole was stirred at 0 °C under an atmosphere of dry nitrogen. After 30 minutes the precipitate formed was filtered off and washed with diethyl ether to yield bis(3,4-dihydro-2H-pyrrol-1-yl)di-iodozinc (II) (2.2 g, 66 %), as a white solid.

3.2.3.2 Synthesis of 5-hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2,4-diene

To a stirring solution of bis(3,4-dihydro-2H-pyrrol-1-yl)di-iodozinc (II) (500 mg, 1.04 mmol, 1 eq) in chloroform (10 mL) was added diphenylcyclopropenone (214 mg, 1.04 mmol, 1 eq) and a solution of triethylamine (0.29 mL, 2.08 mmol, 2 eq) in water (2 mL). The reaction mixture was stirred at ambient temperature and was monitored by TLC and stopped after two and a half hours. Extraction with dichloromethane (4 x 10 mL), gave the organic layers which
Experimental

were dried over magnesium sulfate and filtered under gravity. Evaporation of the solvent in vacuo gave a crude product which was purified by column chromatography (eluent: hexane: EtOAc, 1:1) to yield hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2,4-ene (123 mg, 43%), as a yellow solid. Spectroscopic results were comparable to those mentioned in section 3.2.1.5.

3.2.4 Attempted synthesis of 5-trifyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

A stirring solution of LDA (0.05 mL, 2 M in THF) in anhydrous tetrahydrofuran (2 mL) was cooled to -78 °C. A solution of 2-pyrrolidinone (85.11 mg, 1 mmol) in anhydrous tetrahydrofuran (17 mL) was added, followed after 15 minutes by a solution of Comins’ reagent (392.69 mg, 1 mmol) in anhydrous tetrahydrofuran (2 x 3 mL). LDA (0.5 mL, 2 M in THF, 1 mmol) was added and the temperature was maintained at -78 °C for another hour and allowed to warm to ambient temperature over three hours. The reaction mixture was diluted with hexane (20 mL) and washed with saturated aqueous sodium carbonate solution (10 mL). The organic layer was dried over magnesium sulfate and filtered under gravity. The solvent was removed in vacuo and the crude material was subjected to column chromatography (eluent: hexane: EtOAc, 2:1, 3:2, 1:1) which yielded the crude triflate (22 mg) which was divided into two fractions, to each of which was added anhydrous acetonitrile (7 mL) and diphenylcyclopropenone (11 mg, 1 eq) in one portion at ambient temperature under an atmosphere of dry nitrogen. Both mixtures were stirred for five days, but neither showed any reaction occurring, and produced only recovered triflate.
experimental

triflate:

1H NMR δ (400.13 MHz, CDCl$_3$): 3.98 (2H, t, J 7.0, NCH$_2$), 2.68 (2H, t, J 8.0, OCCH$_2$), 2.23 (2H, quint, J 7.6, CH$_2$CH$_2$CH$_2$).

13C NMR δ (100 MHz, CDCl$_3$): 172.56 (q), 118.21 (q, CF$_3$), 48.97 (CH$_2$), 32.37 (CH$_2$), 18.96 (CH$_2$).

3.2.5 Attempted synthesis of 5-hydroxy-8-methyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

To a stirring solution of 5-methylthio-8-methyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (85 mg, 0.254 mmol, 1 eq) in tetrahydrofuran/ dichloromethane (4 mL, 1:1) was added sodium hydroxide (85 mg), in ethanol/ water (4 mL, 3:1). The reaction mixture was stirred for two hours at ambient temperature, followed by heating to reflux for three days. Upon completion, water (10 mL) was added turning the mixture from orange to bright yellow. Evaporation of the solvent gave a mixture which was subjected to column chromatography but no identifiable products were obtained.
3.2.6 Attempted synthesis of 5-methanesulfinyl-8-methyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

A:
To a stirring solution of 5-methylthio-8-methyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (85 mg, 0.254 mmol, 1 eq) in anhydrous dichloromethane (5 mL) was added a solution of *meta*-chloroperoxybenzoic acid (43.8 mg, 0.254 mmol, 1 eq) in anhydrous dichloromethane (4 mL) at 0–10 °C under an atmosphere of dry nitrogen. The reaction mixture was stirred for five and a half hours, before being quenched with saturated aqueous sodium thiosulfate (10 mL) and allowed to warm to ambient temperature. Saturated aqueous sodium hydrogen carbonate (10 mL) was added to the mixture which was stirred for a further ten minutes before extracting with dichloromethane (4 x 10 mL). The organic phases were dried over magnesium sulfate and filtered under gravity. The solvent was removed *in vacuo* and the crude material was subjected to column chromatography but no identifiable products were obtained.

B:
To a stirring solution of 5-methylthio-8-methyl-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (62 mg, 0.185 mmol, 1 eq) in anhydrous dichloromethane (10 mL) was added a solution of *meta*-chloroperoxybenzoic acid (32 mg, 0.185 mmol, 1 eq) in anhydrous dichloromethane (5 mL) at 0–10 °C under an atmosphere of dry nitrogen. The reaction mixture was stirred for four and a half hours, before being quenched with saturated aqueous sodium thiosulfate (15
mL) and allowed to warm to ambient temperature. Saturated aqueous sodium hydrogen carbonate (10 mL) was added to the mixture which was stirred for a further ten minutes before extracting with dichloromethane (3 x 10 mL). The organic phases were dried over magnesium sulfate and filtered under gravity. The solvent was removed \textit{in vacuo} and replaced with toluene (5 mL) and the mixture heated at reflux for four hours at which point TLC analysis showed a complex inseparable mixture.

3.2.7 Synthesis of 5-hydroxy-2,3-diphenyl-8(4-methylbenzenesulfonate)-1-azabicyclo[3.3.0]oct-2-en-4-one

![Chemical structure](smiley)

To a stirring solution of 5-methylthio-2,3-diphenyl-8(4-methylbenzenesulfonate)-1-azabicyclo[3.3.0]oct-2-en-4-one (228 mg, 0.45 mmol, 1 eq) in tetrahydrofuran (10 mL) was added water (0.5 mL) and concentrated HCl (0.5 mL). The resulting mixture was heated at reflux for four hours, after which time a complex multi-spot mixture was revealed by TLC. Purification by column chromatography yielded the title compound (<10 mg) as an orange oil.

\[^1H\text{NMR } \delta (500.13\text{ MHz, CDCl}_3):\] 7.77 (2H, d, \(J 8.0\), Ar), 7.40 – 7.30 (6H, m, Ar), 7.25 – 7.08 (4H, m, Ar), 7.05 (2H, bd, \(J 8.0\), Ar), 4.26 (1H, dd, \(J 6.4, 10.1\), OCHH), 4.06 (1H, dd, \(J 7.3, 10.1\), OCHH), 3.55 - 3.51 (1H, m, NCH/CH\(_2\)CH\(_2\)), 2.46 (3H, s, Me), 2.14 – 2.07 (4H, m, NCH/CH\(_2\)CH\(_2\)).
Experimental

13C NMR δ (125 MHz, CDCl$_3$): 199.61 (q), 176.03 (q), 145.42 (q), 133.07 (q), 131.60 (CH), 130.90 (q), 130.80 (q), 130.27 (CH), 129.68 (CH), 129.25 (CH), 129.14 (CH), 128.36 (CH), 128.24 (CH), 126.78 (CH), 114.87 (q), 97.31 (q), 71.58 (CH$_2$), 58.50 (CH), 33.02 (CH$_2$), 29.70 (CH$_2$), 21.98 (CH$_3$).

LRMS (ESI+): Found 498.1 [M+Na]$^+$, C$_{27}$H$_{25}$NNaO$_5$S, requires 498.

3.2.8 Attempted synthesis of 4-butyl-5-ethylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-ol

![Diagram of molecular structures](image)

To a stirring solution of 5-ethylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (100 mg, 0.299 mmol, 1 eq) in anhydrous THF (5 mL) was added dropwise n-BuLi (1.6 M in hexane, 0.35 mL, 1.32 mmol, 0.89 eq) at -78°C under an atmosphere of dry nitrogen. The reaction mixture was stirred for an hour at -78°C and allowed to reach ambient temperature, before being quenched with saturated aqueous ammonium chloride (2 mL) and stirred for ten minutes, followed by the addition of water (5 mL) and ethyl acetate (10 mL). The resulting mixture was extracted using further portions of ethyl acetate (2 x 10 mL), dried over magnesium sulfate and filtered under gravity. The crude product was analysed by thin layer chromatography, but no indication of any new product could be observed, the starting material (~90 mg) was recovered.
3.2.9 Attempted synthesis of 5-ethylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-ol

![Chemical structure](image)

To a stirring solution of 5-ethylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (162 mg, 0.484 mmol, 1 eq) in methanol (5 mL) at 0 °C was added sodium borohydride (84 mg, 2.21 mmol, 4.6 eq) in one portion under an atmosphere of dry nitrogen. The reaction mixture was maintained between 0 – -10 °C for three and a half hours and allowed to reach ambient temperature. The reaction had a mixture of dichloromethane (10 mL) and saturated sodium hydrogen carbonate (5 mL) added and was further stirred for 20 minutes. The resulting mixture was extracted with ethyl acetate (3 x 10 mL), dried over magnesium sulfate and filtered under gravity. The crude product was analysed by thin layer chromatography, but no indication of any new product or starting material was observed.

3.2.10 Attempted synthesis of 5-methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-ol

![Chemical structure](image)

To a stirring solution of 5-methylthio-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (101 mg, 0.315 mmol, 1 eq) in methanol (5 mL) at 0 °C was added sodium borohydride (48 mg, 1.26 mmol, 4.6 eq) in one portion under an atmosphere of dry nitrogen. The reaction mixture
was maintained between 0 – -10 °C for three and a half hours and allowed to reach ambient temperature. Dichloromethane (10 mL) and saturated sodium hydrogen carbonate (5 mL) were added and the mixture was further stirred for 20 minutes. The resulting mixture was extracted with ethyl acetate (3 x 10 mL), dried over magnesium sulfate and filtered under gravity. The crude product was analysed by thin layer chromatography, but no indication of any new product or starting material could be observed.
3.3 Synthesis of polyhydroxylated pyrrolizidines

3.3.1 Synthesis of 2,3-\textit{O}-isopropylidene-L-erythrose

To a stirring solution of L-arabinose (10.15 g, 67.7 mmol, 1 eq), in dimethylformamide (130 mL) was added p-toluenesulfonic acid (150 mg, 0.79 mmol) and 2,2-dimethoxypropane (27 mL) at ambient temperature and the mixture was stirred overnight. Anhydrous sodium carbonate was used to neutralise the mixture, the excess removed by filtration and the solution then concentrated. The crude product was partitioned between water (120 mL) and 40-60 petroleum ether (60 mL), the aqueous layer was separated and placed in a round bottom flask, wrapped in foil and had sodium periodate (35.6 g) added in small aliquots (3 g) every ten minutes at 0 °C. Upon completion, the reaction yielded a white slurry in a colourless solution. The reaction mixture was neutralised with anhydrous sodium carbonate and stirred for an hour. The aqueous layer was decanted off and extracted with ethyl acetate (3 x 100 mL), whilst the remaining white slurry was dissolved in ethyl acetate (100 mL) and stirred for an hour. The combined ethyl acetate layers were dried over magnesium sulfate, filtered under gravity and concentrated and purified by column chromatography (eluent: hexane, EtOAc, 3:1) to yield 2,3-\textit{O}-isopropylidene-L-erythrose (5.59 g, 52 %) as a yellow oil, with data consistent with that reported in the literature95-97 and a quantity (455 mg, 3 %) of the diprotected arabinose given as a white solid, the data for which is:-
Experimental

1H NMR δ (400.13 MHz, CDCl$_3$): 5.50 (1H, d, J 5.0, OCCHCHCHCH$_2$), 4.56 (1H, dd, J 2.3, 7.9, OCCHCHCHCHCHH), 4.30 (1H, dd, J 2.3, 5.0, OCCHCHCHCHCHH), 4.22 (1H, bd, OCCHCHCHCHCH$_2$), 3.82 (1H, dd, J 1.9, 13.0, OCCHCHCHCHCH$_2$), 3.66 (1H, bd, OCCHCHCHCHCH$_2$), 1.52 (3H, s, O$_2$CCH$_3$), 1.48 (3H, s, O$_2$CCH$_3$), 1.34 (3H, s, O$_2$CCH$_3$), 1.33 (3H, s, O$_2$CCH$_3$).

13C NMR δ (100 MHz, CDCl$_3$): 109.19 (q), 108.70 (q), 96.17 (CH), 71.04 (CH), 70.80 (CH), 70.13 (CH), 60.44 (CH$_2$), 26.34 (CH$_3$), 26.31 (CH$_3$), 25.24 (CH$_3$), 24.50 (CH$_3$).

3.3.2 Synthesis of (3S,4R)-3,4-isopropylidenedioxypyrroline 1-oxide

To a solution of 2,3-0-isopropylidene-L-erythrose (1.01 g, 6.3 mmol, 1 eq) in dry pyridine (12 mL) with 3Å activated molecular sieves (5 g) was added a solution of hydroxylamine hydrochloride (5.26.4 mg, 7.6 mmol, 1.2 eq) at ambient temperature under an atmosphere of dry nitrogen and the mixture was stirred overnight. A solution of methanesulfonyl chloride (585 µL, 7.56mmol, 1.2 eq) in dry pyridine (12.6 mL) was added to the reaction mixture which was stirred for 24 hours. Dichloromethane (12 mL) was added and the mixture was filtered under vacuum with the aid of a celite plug. The solvent was removed in vacuo and purified by column chromatography (elucent: hexane: EtOAc, 2:1) to yield (3S,4R)-3,4-isopropylidenedioxypyrroline 1-oxide (133 mg, 13 %) as a orange solid, with NMR data comparable with that quoted in the literature.
Experimental

1H NMR δ (400.13 MHz, CDCl$_3$): 6.75 (1H, b, ON=CHCH), 5.18 (1H, b, ON=CHCH), 4.79 (1H, b, ON=CH$_2$CH), 4.02 (1H, bd, J 13.0, ON=CHCH), 3.86 (1H, bd, J 14.6, ON=CHCH), 1.30 (3H, s, CH$_3$), 1.22 (3H, s, CH$_3$).

13C NMR δ (100 MHz, CDCl$_3$): 133.03 (CH), 111.90 (q), 79.76 (CH), 73.60 (CH), 29.58 (CH$_2$), 27.08 (CH$_3$), 25.56 (CH$_3$).

IR ν_{max} (cm$^{-1}$): 2964 (s), 2932 (s), 2875 (m), 1846 (s), 1683 (w), 1599 (m).

3.3.3 Attempted synthesis of 2,3-diphenyl-5,6-isoproylidenedioxy-1-azabicyclo[3.3.0]oct-2-en-4-one

![Chemical structure](image)

To a stirring solution of (3S,4R)-3,4-isoproylidenedioxypyrrole 1-oxide (26 mg, 0.166 mmol, 1 eq) in dry tetrahydrofuran (2 mL) was added tributylphosphine (0.1 mL, 2 eq) [caution pyrophoric] at 65 °C under an atmosphere of dry nitrogen. These conditions were maintained for 48 hours. The mixture was allowed to cool to ambient temperature and a solution of diphenylcyclopropenone (34 mg, 0.166 mmol, 1 eq) in anhydrous acetonitrile (15 mL) was added. The resulting mixture was stirred for four days under an atmosphere of dry nitrogen, after which TLC showed a clear new product. The solvent was removed in vacuo and the crude product was purified by column chromatography (eluent: PE: EtOAc, 1:1)[see discussion – the very late arrival of tributylphosphine (due to shipping restrictions) prevented a more thorough investigation of the process].
3.4 Synthesis of a highly substituted, functionalised pyrrolizidine

3.4.1 Synthesis of 2-methyl-4-phenyl-5-cyano-1H-pyrroline

\[
\begin{align*}
\text{Ph} & \\
\text{Me} & \\
\text{O} & \\
\text{Ph} & \\
\text{Me} & \\
\text{NC} & \\
\text{NH} & \\
\text{O} & \\
\text{H} & \\
\text{O} & \\
\text{Ph} & \\
\text{Me} & \\
\text{NC} & \\
\text{O} & \\
\text{N} & \\
\text{H} & \\
\text{206} & \\
\text{207} & \\
\text{Pyridine} & \\
\text{Ph} & \\
\text{Me} & \\
\text{208} & \\
\end{align*}
\]

A:

To a stirring solution of aminoacetonitrile bisulfate (494 mg, 3.21 mmol) in anhydrous pyridine (25 mL) was added 4-phenyl-3-buten-2-one (854 mg, 5.84 mmol) and the mixture was heated at reflux for two hours under an atmosphere of dry nitrogen. A further aliquot of aminoacetonitrile bisulfate (494 mg, 3.21 mmol) was added due to the presence of 4-phenyl-3-buten-2-one as judged by TLC and the mixture was heated at reflux for a further two hours. TLC analysis showed the remaining presence of 4-phenyl-3-buten-2-one therefore another aliquot of aminoacetonitrile bisulfate (250 mg, 1.62 mmol) was added and the mixture was heated at reflux for two hours. The reaction mixture was diluted with ethyl acetate (15 mL), washed with sodium hydrogen carbonate (25 mL), dried over magnesium sulfate and filtered under gravity. The solvent was removed \textit{in vacuo} and the residue was purified by column chromatography (eluent: hexane:EtOAc, 1:1) yielding the title compound (15 mg, 1.4 %), as a brown oil, with data consistent with that previously reported for the trans isomer.102

1H NMR \(\delta\) (400.13 MHz, CDCl\(_3\)): 7.39 – 7.27 (3H, m, Ar), 7.24 – 7.19 (2H, m, Ar), 4.72 – 4.66 (1H, m, NCHCN), 3.80 (1H, ddd, \(J\) 7.5, 7.6, 9.5, NCHCHCH\(_2\)C), 3.21 (1H, ddd, \(J\) 1.0, 9.5, 17.9, NCHCHCHHC), 2.83 (1H, ddd, \(J\) 1.0, 7.6, 17.9, NCHCHCHHC), 2.18 (3H, s, CH\(_3\)).
\[^{13}C\text{ NMR } \delta (100\text{ MHz, CDCl}_3): 180.13\text{ (q), 140.32\text{ (q), 129.37\text{ (CH), 127.92\text{ (CH), 126.85\text{ (CH), 119.56\text{ (q), 68.95\text{ (CH), 49.27\text{ (CH), 47.65\text{ (CH}, 20.07\text{ (CH}_3).}
\]

B:

To a stirring solution of aminoacetonitrile bisulfate (1.04 g, 6.75 mmol) in anhydrous pyridine (20 mL) was added 4-phenyl-3-buten-2-one (1.08 g, 7.43 mmol) and the mixture was heated at reflux for two hours under an atmosphere of dry nitrogen. The reaction mixture was allowed to cool to ambient temperature before being diluted with ethyl acetate (15 mL) washed with saturated aqueous sodium hydrogen carbonate (25 mL), dried over magnesium sulfate and filtered under gravity. The solvent was removed \textit{in vacuo} and the crude product was purified by column chromatography to yield the title compound (630 mg, 51 \%) as a dark brown oil, identical to that described above.

3.4.2 Synthesis of 5-methyl-2,3,7-triphenyl-8-cyano-1-azabicyclo[3.3.0]oct-2-en-4-one

Diphenylcyclopropenone (80 mg, 0.39 mmol, 1 eq) was added to a stirring solution of the pyrroline (72 mg, 0.39 mmol, 1 eq) in anhydrous acetonitrile (10 mL). The reaction mixture was stirred at ambient temperature under an atmosphere of dry nitrogen for three days. The solvent was removed \textit{in vacuo} and the mixture was purified by column chromatography (eluent: hexane: EtOAc, 1:1), to give both starting materials plus the required product (2 mg, 1 \%). The recovered starting materials were redissolved in anhydrous acetonitrile (10 mL) and
the mixture was heated at reflux for two days, after which it was concentrated and the residue subjected to column chromatography (eluent: hexane: EtOAc, 1:1) to give 5-methyl-2,3,7-triphenyl-8-cyano-1-azabicyclo[3.3.0]oct-2-en-4-one (26 mg, 17 %), as a mixture of two diastereoisomers in a 1:1.5 ratio.

1H NMR δ (500.13 MHz, CDCl$_3$): 7.60 – 7.16 (both diastereoisomers, 30H, m, Ar), 4.59 (1H, d, J 6.8, CH), 4.25 – 4.18 (1H, m, CH), 3.77 (1H, d, J 8.3, CH), 3.71 (1H, q, J 7.2, CH), 2.88 (1H, dd, J 7.6, 13.6, CHH), 2.46 (1H, dd, J 6.5, 13.0, CHH), 2.41 – 2.27 (1H, m, CHH), 2.21 (1H, dd, J 7.3, 13.6, CHH), 1.74 (3H, s, CH$_3$), 1.43 (3H, s, CH$_3$).

13C NMR δ (125 MHz, CDCl$_3$): 205.03 (q), 202.24 (q), 174.16 (q), 172.67 (q), 137.63 (q), 137.16 (q), 132.09 (CH), 131.92 (CH), 131.72 (q), 131.04 (q), 131.00 (q), 130.47 (q), 130.28 (CH), 130.24 (CH), 129.53 (CH), 129.45 (CH), 129.27 (CH), 129.18 (CH), 128.69 (CH), 128.52 (CH), 128.44 (CH), 127.35 (CH), 127.29 (CH), 127.10 (CH), 122.66 (q), 119.74 (q), 117.47 (q), 115.38 (q), 76.27 (q), 74.86 (q), 56.99 (CH), 56.05 (CH), 53.38 (CH), 51.04 (CH), 39.25 (CH$_2$), 38.80 (CH$_2$), 26.20 (CH$_3$), 22.72 (CH$_3$).

HRMS (ESI+): Found 413.1624 [M+Na]$^+$, requires C$_{27}$H$_{22}$N$_2$O 413.1624.

IR ν_{max} (cm$^{-1}$): 3400 (br), 3063 (w), 3017 (m), 2926 (s), 2853 (m), 2250 (vw), 1683 (vs) 1603(s).
3.5 Cyclopropenones

3.5.1 Unsubstituted cyclopropenones

3.5.1.1 Synthesis of dichloroacetone acetal

To a stirring solution of 1,3-dichloroacetone (25 g, 0.197 mol, 1 eq) in toluene (150 mL) was added neopentyl glycol (22.6 g, 0.2166 mol, 1.1 eq) followed by \(p \)-toluene sulfonic acid (0.75 g, 3.94 mmol, 0.02 eq). The reaction mixture was warmed to reflux for 24 hours with azeotropic removal of water (Dean-Stark trap) followed by extraction with hexane (120 mL) and washing with saturated aqueous sodium hydrogen carbonate (50 mL). The organic phase was washed with water (50 mL) followed by saturated sodium chloride (50 mL) and dried over magnesium sulfate and filtered under gravity. The solvent was removed under vacuum and the crude material yielded dichloroacetone acetal (37 g, 88 %), as a white solid with data as reported in the literature.\(^{36,35}\)

3.5.1.2 Attempted synthesis of 6,6-trimethyl-4,8-dioxaspiro[2.5]oct-1-ene

\[\text{Cl} \quad \text{O} \quad \text{Cl} \quad \text{O} \quad \text{Cl} \quad \text{Toluene} \quad \text{Neopentyl glycol, PTSA} \]

\[\text{213} \quad \text{214} \]

\[\begin{array}{c}
\text{Cl} \\
\text{O} \\
\text{Cl}
\end{array} \]

\[\frac{3\text{NaNH}_2}{\text{Et}_2\text{O}} \]

\[\text{liq NH}_3 \]

\[\text{214} \quad \text{215} \quad \text{216} \]

\[\text{NH}_4\text{Cl} \]

\[\text{217} \]
To a stirring solution of sodium amide (6.51 g, 166.8 mmol, 3.55 eq) in dry liquid ammonia (70 mL) at -70 °C was added dichloroacetone acetal (10 g, 46.9 mmol, 1 eq) in freshly distilled ether (25 mL) dropwise over 40 minutes. The reaction was stirred for an hour below -50 °C. An additional portion of sodium amide (1 g) was added and the reaction was stirred below -50 °C for a further 30 minutes. Ammonium chloride (3.13 g, 58.41 mmol, 1.2 eq) in dry ether (20 mL) was added slowly over 45 minutes to the reaction mixture which was maintained at -70 °C, and stirred for an additional 10 minutes. Once the cooling bath had reached -50 °C, ammonium chloride (6 g) was added slowly over 30 minutes. The cooling bath was removed and dry ether (70 mL) was added slowly to the mixture. The resulting mixture was stirred overnight, but analysis showed no identifiable products.

3.5.1.3 Attempted synthesis of 1-butyl-6,6-dimethyl-4,8-dioxaspiro[2.5]oct-1-ene

To a stirring solution of sodium amide (5.20 g, 130 mmol, 3.07 eq) in dry ammonia (35 mL) at -70 °C was added dichloroacetone acetal (9 g, 42.3 mmol, 1 eq) in freshly distilled ether (25 mL) dropwise over 40 minutes. The reaction was stirred for an hour below -50 °C. An additional portion of sodium amide (1 g) was added and the mixture was stirred below -50 °C for a further 30 minutes. 1-Bromobutane (4.6 mL, 42.3 mmol, 1 eq) in dry ether (20 mL) was added slowly over 45 minutes to the reaction mixture which was maintained at -70 °C, and stirred for an additional ten minutes. Once the cooling bath had warmed to -50 °C, ammonium chloride (6 g) was added slowly over 30 minutes. The cooling bath was removed and dry
ether (70 mL) was added slowly to the mixture. The resulting mixture was stirred overnight, but analysis showed no identifiable products.

3.5.1.4 Synthesis of 1-bromo-3-chloro-2,2-dimethoxypropane

![Reaction scheme](image)

To a stirring solution of 2,3-dichloro-1-propene (9.1 mL, 99.13 mmol, 1 eq) in anhydrous methanol (30 mL) with conc. sulfuric acid (two drops) was added N-bromosuccinimide (18 g, 1 eq) in small portions over one and a half hours. The reaction mixture was stirred for an hour at ambient temperature followed by the addition of anhydrous sodium carbonate (500 mg) to neutralize the catalyst. After a further 20 minutes of stirring the mixture was washed with water (30 mL), followed by the extraction of the aqueous layer with pentane (2 x 50 mL). The organic phases were combined and washed twice with an equimolar amount of water, dried over magnesium sulfate and filtered under gravity. The solvent was removed in vacuo to give a semi-crystalline mass which was dissolved in refluxing pentane (25 mL) and cooled in an acetone/liquid nitrogen bath for 30 minutes. The mixture was filtered under vacuum to yield a white crystalline solid (4.67 - 7.60 g, 22 - 36 %), with NMR data as reported in the literature.⁴

¹H NMR δ (400.13 MHz, CDCl₃): 3.70 (2H, s, ClCH₂), 3.55 (2H, s, BrCH₂), 3.30 (6H, s, 2 x OCH₃).

¹³C NMR δ (100 MHz, CDCl₃): 100.65 (q), 49.49 (CH₃), 41.75 (CH₂), 29.91 (CH₂).
3.5.1.5 Synthesis of 3,3-dimethoxycyclopropene

Potassium metal (125 mg) was added to liquid ammonia (~90 mL) condensed from a commercial cylinder at -78 °C. Upon the solution turning blue, the cooling bath was removed and anhydrous iron (III) chloride (~13 mg) was added to the reaction mixture. As the reaction started to reflux the colour changed to light grey and potassium metal (2.93 g) was added in small portions over 15 minutes maintaining the temperature to give a gentle reflux. 1-Bromo-3-chloro-2,2-dimethoxypropane (5.43 g, 24.97 mmol, 1 eq) in anhydrous ether (15 mL) was added dropwise over ten minutes maintaining the mixture at -60 °C for three hours. Solid ammonium chloride (2.7 g) was added and the mixture was allowed to stir for ten minutes; the liquid ammonia was evaporated by removing the cooling bath, whilst simultaneously adding anhydrous diethyl ether (~90 mL). The mixture was filtered from its inorganic salts upon reaching ~0 °C. The ethereal solution was cooled to 0 °C and concentrated by applying a vacuum (50 – 80 mm) through a condenser held at -25 °C. The ethereal solution was held at 0 °C and concentrated by applying a vacuum (50 – 80 mm) through a condenser cooled at -25 °C until ~20 mL of solution was present (2-3 hours). The cyclopropenone acetal was used in this form; further concentration resulted in significant loss of material. A small amount was concentrated and analysed – the NMR data was as reported in the literature.34
3.5.1.6 Synthesis of 5-methylthio-1-azabicyclo[3.3.0]oct-2-en-4-one

To a stirring mixture of dimethylcyclopropenone acetal in dichloromethane (20 mL) was added a solution of conc. sulfuric acid (three drops) in water (5 mL) dropwise at 0 °C. The reaction mixture was stirred for three hours followed by the addition of anhydrous sodium sulfate (30 g) added in small portions. The mixture was filtered and the solvent evaporated at 50 – 80 mm with a water bath maintained at 0 – 10 °C. The brown viscous residue of crude cyclopropenone was dissolved in anhydrous acetonitrile (6 mL) and was added to a solution of 2-methylthio-1-pyrroline (2.048 g) in dry acetonitrile (4 x 3 mL) turning the solution a brown/ red colour (exothermic). The mixture was allowed to stir over three nights, concentrated and purified by column chromatography (eluent: hexane: EtOAc, 1:1), yielding a crude mixture of products (335 mg). A small sample (40 mg) was further purified by flash chromatography (hexane: EtOAc, 1:1) yielding 5-methylthio-1-azabicyclo[3.3.0]oct-2-en-4-one (36 mg), as a brown/ orange oil.

1H NMR δ (400.13 MHz, CDCl\textsubscript{3}): 7.77 (1H, d, J 3.5, NCHCH), 5.30 (1H, d, J 3.5, NCHCH), 3.52 (1H, dt, J 7.4, 11.2, NCHH) 3.32 (1H, ddd, J 4.1, 7.1, 11.2, NCHH), 2.21 – 1.97 (3H, m, CHH + CH\textsubscript{2}), 1.96 (3H, s, CH\textsubscript{3}), 1.89 (1H, dd, J 6.6, 12.5, CHH).

13C NMR δ (100 MHz, CDCl\textsubscript{3}): 203.86 (q), 169.31 (CH), 105.57 (CH), 79.78 (q), 48.79 (CH\textsubscript{2}), 33.18 (CH\textsubscript{2}), 27.38 (CH\textsubscript{2}), 12.16 (CH\textsubscript{3}).

HRMS (ESI+): Found 192.0454, C\textsubscript{8}H\textsubscript{11}NOSNa, requires 192.0454.

IR ν\textsubscript{max} (cm-1): 3454 (br), 2980 (m), 2920 (w), 2889 (w), 1681 (vs), 1533 (s).
3.5.1.7 Attempted synthesis of 2-methyl-5-methylthio-1-azabicyclo[3.3.0]octan-4-one

A:

To a stirring suspension of copper iodide (81.1 mg, 0.426 mmol, 1.2 eq) in anhydrous diethyl ether (15 mL) at 0 °C was added methyllithium (1.6 M, 0.44 mL, 0.71 mmol, 2 eq). Upon addition the colour changes to yellow and quickly fades to a straw yellow. 5-Methylthio-1-azabicyclo[3.3.0]oct-2-en-4-one (60 mg, 0.36 mmol, 1 eq) in anhydrous diethyl ether (2 x 5 mL) was added over three minutes at -78 °C and the mixture was allowed to warm up slowly in the cooling bath overnight. Saturated aqueous ammonium chloride (5 mL) was added to the mixture which was allowed to stir for an hour in the cooling bath followed by the addition of brine (10 mL). The resulting mixture was extracted with ethyl acetate (4 x 10 mL), dried over magnesium sulfate and filtered under gravity. No identifiable products or starting material could be observed.

B:

To a stirring suspension of copper iodide (81.1 mg, 0.426 mmol, 1.2 eq) in anhydrous diethyl ether (15 mL) at 0 °C was added methyllithium (1.6 M, 0.44 mL, 0.71 mmol, 2 eq). Upon addition the colour changes to yellow and quickly fades to a straw yellow. 5-Methylthio-1-azabicyclo[3.3.0]oct-2-en-4-one (60 mg, 0.36 mmol, 1 eq) in anhydrous tetrahydrofuran (20 mL) was added to the reaction mixture over three minutes at -78 °C and the mixture was allowed to warm up slowly to -20 °C in the cooling bath over 80 minutes. Saturated aqueous ammonium chloride (5 mL) at 0 °C was added and the mixture stirred overnight. Brine (10 mL) was added and the mixture was allowed to stir for 15 minutes, and extracted with ethyl
acetate (4 x 10 mL), dried over magnesium sulfate and filtered under gravity. No identifiable products or starting material could be observed.

3.5.2 Synthesis of dialkycyclopropenone

3.5.2.1 Synthesis of dipropylcyclopropenone

Method 1

![Chemical reaction diagram]

To a stirring solution of 4-octyne (3 mL, 20.4 mmol, 1 eq) in anhydrous 1,2-dimethoxyethane (100 mL) was added sodium trichloroacetate (18.5 g, 100 mmol, 4.9 eq). The reaction mixture was heated at reflux for 24 hours under an atmosphere of dry nitrogen and allowed to cool to ambient temperature, whereupon 50 % aqueous sulfuric acid (200 mL) was added and the mixture was extracted with dichloromethane (3 x 100 mL). The combined organic extracts were neutralised by washing with saturated aqueous sodium hydrogen carbonate and washed with saturated aqueous sodium chloride. The resulting organic layer was dried over magnesium sulfate and filtered under gravity. The solvent was removed *in vacuo* and purified by column chromatography (eluent: hexane, with slow addition of EtOAc) to yield dipropylcyclopropenone (840 mg, 29 %). Spectroscopic data was as shown after Method 2, below.
Experimental

Method 2

To a stirring solution of 4-octyne (0.29 mL, 2 mmol, 1 eq) and chloroform (0.4 mL, 5 mmol, 2.5 eq) in anhydrous tetrahydrofuran (25 mL) was added *n*-butyllithium, (1.6 M in hexane, 2.8 mL, 4.4 mmol, 2.2 eq) dropwise over 100 minutes at -78 °C under an atmosphere of dry nitrogen. The reaction mixture was stirred and maintained at -78 °C for four hours. Conc. HCl (2 mL) was added dropwise over ten minutes. The cooling bath was removed and the mixture had a further ten minutes stirring followed by the addition of water (25 mL). The resulting mixture was extracted using dichloromethane (5 x 25 mL), and the combined organic extracts were dried over magnesium sulfate and filtered under gravity, to give the pure dipropylcyclopropenone (238 mg, 86%).

1H NMR δ (400.13 MHz, CDCl3): 2.47 – 2.38 (4H, m, CCH₂CH₂CH₃), 1.61 – 1.50 (4H, m, CCH₂CH₂CH₃), 0.86 (6H, t, J 7.2, CCH₂CH₂CH₃).

13C NMR δ (100 MHz, CDCl3): 160.68 (q), 160.06 (q), 28.11 (CH₂), 19.61 (CH₂), 13.63(CH₃).

IR ν max (cm⁻¹): 3468 (br), 2963 (m) 2934 (w), 2875 (w), 1840 (vs), 1629 (s), 1461 (m), 1382 (w).
3.5.2.2 Attempted synthesis of 5-methylthio-2,3-dipropyl-1-azabicyclo[3.3.0]oct-2-en-4-one

\[\text{156} + \text{16a} \xrightarrow{\text{MeCN/DMF}} \text{226} \]

A:

To a stirring solution of 2-methylthio-1-pyrrole (57.5 mg, 0.5 mmol, 1 eq) in acetonitrile (10 mL) was added dipropylcyclopropenone (71.4 mg, 0.52 mmol, 1.04 eq). The reaction mixture was stirred at ambient temperature under an atmosphere of dry nitrogen overnight, but yielded no identifiable products. The mixture was thus heated at reflux for a week, concentrated but only the dipropylcyclopropenone was recovered.

B:

To a stirring solution of dipropylcyclopropenone (71.4 mg, 0.52 mmol, 1.04 eq) in dimethylformamide (15 mL) was added 2-methylthio-1-pyrrole (57.5 mg, 0.5 mmol, 1 eq) at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was stirred for 24 hours, but showed no reaction. Therefore the reaction mixture was heated at 100 °C for four days, concentrated but only the dipropylcyclopropenone was recovered.

3.5.2.3 Attempted synthesis of 5-methoxy-2,3-dipropyl-1-azabicyclo[3.3.0]oct-2-en-4-one

\[\text{158} + \text{16a} \xrightarrow{\text{DMF}} \text{228} \]
A solution of dipropylcyclopropenone (149 mg, 1.08 mmol, 1 eq), and 2-methoxy-1-pyrroline (0.1 mL, 1.10 mmol, 1 eq) in dimethyl formamide (10 mL) was stirred at ambient temperature under an atmosphere of dry nitrogen for four days. TLC showed no reaction. The temperature was increased to 80 °C then 130 °C and finally to reflux. No identifiable products were observed.

3.5.2.4 Attempted synthesis of 5-hydroxy-2,3-dipropyl-1-azabicyclo[3.3.0]oct-2-en-4-one/ 2,3-dipropyl-1-azabicyclo[3.3.0]oct-2-en-4-one

\[
\begin{array}{c}
\text{N} \\
\text{Zn} \\
\text{I} \\
\text{I} \\
\end{array} + \begin{array}{c}
\text{O} \\
\text{Pr} \\
\text{Pr} \\
\text{Pr} \\
\end{array} \xrightarrow{\text{Chloroform, EtN, H}_2\text{O}} \begin{array}{c}
\text{X} \\
\text{O} \\
\text{Pr} \\
\text{Pr} \\
\end{array}
\]

\(X = \text{H/ OH}\)

Dipropylcyclopropenone (152 mg, 1.10 mmol, 1 eq), triethylamine (0.15 mL, 1.10 mmol, 1 eq) and water (2 mL) was added to a stirring solution of bis(3,4-dihydro-2H-pyrrol-1-yl)diodozinc (II) (251.8 mg, 0.551 mmol, 0.5 eq) in chloroform (8 mL). The reaction mixture was stirred at ambient temperature for four days. No identifiable products were observed.

3.5.2.5 Attempted synthesis of 5-methyl-2,3-dipropyl-1-azabicyclo[3.3.0]oct-2-en-4-one

\[
\begin{array}{c}
\text{N} \text{Me} \\
\text{Pr} \\
\text{Pr} \\
\end{array} + \begin{array}{c}
\text{O} \\
\text{Pr} \\
\text{Pr} \\
\end{array} \xrightarrow{\text{MeCN}} \begin{array}{c}
\text{Me} \\
\text{O} \\
\text{Pr} \\
\text{Pr} \\
\end{array}
\]

To a stirring solution of dipropylcyclopropenone (152 mg, 1.10 mmol, 1 eq) in anhydrous acetonitrile (10 mL) was added 2-methyl-1-pyrroline (0.1 mL, 1.10 mmol, 1 eq) at ambient...
temperature under an atmosphere of dry nitrogen. The reaction mixture was stirred for four days. No identifiable products were observed. The mixture was heated at reflux for a further three days. No identifiable products were observed.

3.5.2.6 Synthesis of dibutylcyclopropenone

Method 1

![Diagram of synthesis](image)

To a stirring solution of 5-decyne (3 mL, 16.6 mmol, 1 eq) in anhydrous 1,2-dimethoxyethane (100 mL) was added sodium trichloroacetate (15.4 g, 83.14 mmol, 5 eq). The reaction mixture was heated at reflux for 48 hours under an atmosphere of dry nitrogen and allowed to cool to ambient temperature overnight, whereupon 50 % aqueous sulfuric acid (200 mL) was added and the mixture was extracted with dichloromethane (3 x 100 mL). The combined organic extracts were neutralised with saturated aqueous sodium hydrogen carbonate and washed with saturated aqueous sodium chloride. The resulting organic layer was dried over magnesium sulfate and filtered under gravity. The solvent was removed *in vacuo* and purified by column chromatography (gradient eluent: hexane: EtOAc 1:1, EtOAc, EtOAc: MeOH 10:1, 1:1) to yield dibutylcyclopropenone (290 mg, 11 %). Spectroscopic data was as shown after Method 2.
Experimental

Method 2

![Chemical structure](image)

A:

To a stirring solution of 5-decyne (0.18 mL, 1 mmol, 1 eq) and chloroform (0.2 mL, 2.5 mmol, 2.5 eq) in anhydrous tetrahydrofuran (20 mL) was added \(n \)-butyllithium, (1.6 M in hexane, 1.4 mL, 2.2 mmol) dropwise over 80 minutes at -78 °C under an atmosphere of dry nitrogen. The reaction mixture was stirred and maintained at -78 °C for four hours. Conc. HCl (1 mL) was added dropwise over ten minutes. The cooling bath was removed and the mixture allowed to stir for a further ten minutes followed by the addition of water (20 mL). The resulting mixture was extracted using dichloromethane (5 x 20 mL), and the combined organic extracts were dried over magnesium sulfate and filtered under gravity to give the pure product dibutylcyclopropenone (133 mg, 80%).

B:

To a stirring solution of 5-decyne (0.9 mL, 5 mmol, 1 eq) and chloroform (1 mL, 12.5 mmol, 2.5 eq) in anhydrous tetrahydrofuran (20 mL) was added \(n \)-butyllithium, (1.6 M in hexane, 7 mL, 11 mmol, 2.2 eq) dropwise over 80 minutes at -78 °C under an atmosphere of dry nitrogen. The reaction mixture was stirred and maintained at -78 °C for four hours. Conc. HCl (5 mL) was added dropwise over ten minutes. The cooling bath was removed and the mixture allowed to stir for a further ten minutes followed by the addition of water (20 mL). The resulting mixture was extracted using dichloromethane (5 x 20 mL), and the combined organic extracts were dried over magnesium sulfate and filtered under gravity to give the pure product dibutylcyclopropenone (758 mg, 91%).
Experimental

1H NMR δ (400.13 MHz, CDCl$_3$): 2.61 (4H, t, J 7.3, CCH$_2$CH$_2$CH$_2$CH$_3$), 1.67 (4H, quint, J 7.3, CCH$_2$CH$_2$CH$_2$CH$_3$), 1.42 (4H, sext, J 7.4, CCH$_2$CH$_2$CH$_2$CH$_3$), 0.94 (6H, t, J 7.3, CCH$_2$CH$_2$CH$_2$CH$_3$).

13C NMR δ (100 MHz, CDCl$_3$): 159.89 (q), 159.08 (q), 27.47 (CH$_2$), 25.16 (CH$_2$), 21.45 (CH$_2$), 12.73 (CH$_3$).

IR ν_{max} (cm$^{-1}$): 2957 (m) 2932 (m), 2872 (m), 2209 (w), 1840 (vs), 1672 (w), 1635 (s), 1465 (m).

3.5.2.7 Attempted synthesis of 5-methylthio-2,3-dibutyl-1-azabicyclo[3.3.0]oct-2-en-4-one

A:

To a stirring solution of 2-methylthio-1-pyrroline (115 mg, 1 mmol, 1 eq) in acetonitrile (10 mL) was added dibutylcyclopropenone (166 mg, 1 mmol, 1 eq). The reaction mixture was stirred at ambient temperature under an atmosphere of dry nitrogen for a week, but showed no identifiable products. The mixture was heated at reflux for a week, concentrated and purified by column chromatography but only the dibutylcyclopropenone was recovered.

B:

To a stirring solution of 2-methylthio-1-pyrroline (57.5 mg, 0.5 mmol, 1 eq) in acetonitrile (10 mL) was added crude dibutylcyclopropenone (66.5 mg, 0.4 mmol, 0.8 eq). The reaction mixture was stirred at ambient temperature under an atmosphere of dry nitrogen overnight,
but showed no change. The mixture was thus heated at reflux for a week, concentrated and purified by column chromatography but only the dibutylcyclopropenone was recovered.

C:

To a stirring solution of 2-methylthio-1-pyrroline (57.5 mg, 0.5 mmol, 1 eq) in dimethylformamide (15 mL) was added dibutylcyclopropenone (66.5 mg, 0.4 mmol, 0.8 eq) at ambient temperature under an atmosphere of dry nitrogen. The mixture was stirred for 24 hours, but showed no reaction occurring, and therefore the mixture was heated at 100 °C for four days, concentrated and purified by column chromatography but only the dibutylcyclopropenone was recovered.

3.5.2.8 Attempted synthesis of 5-methoxy-2,3-dibutyl-1-azabicyclo[3.3.0]oct-2-en-4-one

To a stirring solution of 2-methoxypyrroline (108 mg, 1.1 mmol, 1.9 eq) in dimethylformamide (10 mL) was added crude dibutylcyclopropenone (100 mg, 0.6 mmol, 1 eq) at ambient temperature and the mixture was stirred for 30 minutes under an atmosphere of dry nitrogen, followed by heating at reflux for 24 hours. No products could be identified.
Experimental

3.5.2.9 Attempted synthesis of 5-hydroxy-2,3-dibutyl-1-azabicyclo[3.3.0]oct-2-en-4-one/2,3-dibutyl-1-azabicyclo[3.3.0]oct-2-en-4-one

![Chemical structure](image)

To a stirring solution of dibutylcyclopropenone (100 mg, 0.6 mmol, 1 eq) in chloroform (15 mL) was added bis(3,4-dihydro-2H-pyrrol-1-yl)di-iodozinc (II) (275 mg, 0.6 mmol, 1 eq) and a solution of triethylamine (0.167 mL, 1.2 mmol, 2 eq) in water (2 mL). The reaction mixture was stirred at ambient temperature for five days but only the dibutylcyclopropenone was recovered.

3.5.2.10 Attempted synthesis of 5-methyl-2,3-dibutyl-1-azabicyclo[3.3.0]oct-2-en-4-one

![Chemical structure](image)

To a stirring solution of dibutylcyclopropenone (150 mg, 0.9 mmol, 1 eq) in anhydrous acetonitrile (10 mL) was added 2-methyl-1-pyrroline (86 µL, 0.9 mmol, 1 eq) at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was stirred for four days. No identifiable products were observed. The mixture was heated at reflux for a further three days. No identifiable products were observed.
3.6 Acyclic imines

3.6.1 Synthesis of N-(benzylidene)-t-butanesulfinamide

To a stirring solution of 2-methyl-2-propanesulfamide (252 mg, 2.08 mmol, 1 eq) in anhydrous dichloromethane (15 mL) was added magnesium sulfate (1.25 g, 10.4 mmol, 5 eq) and benzaldehyde (661 mg, 6.24 mmol, 3 eq) at ambient temperature under an atmosphere of dry nitrogen. Upon completion (24 hours) the reaction was filtered, concentrated and purified by column chromatography (hexane: EtOAc, 1:10) yielding N-(benzylidene)-t-butanesulfinamide (250 mg, 58 %), as an off white oil.106

\[\text{H NMR } \delta (400.13 \text{ MHz, CDCl}_3): 8.63 (1H, s, NC-H), 7.86 (2H, dd, J 1.7, 8.1, Ar) 7.50 – 7.45 (3H, m, Ar), 1.28 (9H, s (CH}_3)_3). \]

\[\text{C NMR } \delta (100 \text{ MHz, CDCl}_3): 163.29 (\text{CH}), 134.27 (q), 132.75 (\text{CH}), 129.19 (\text{CH}), 128.64 (\text{CH}), 58.11 (q), 22.84 (\text{CH}_3). \]
3.6.2 Synthesis of 3-\textit{tert}-butyl-2-phenyl-1-indenone

\[
\text{Ph} \quad \text{N} \quad \text{S} \quad \text{Ph} \quad + \quad \text{Ph} \quad \text{C} \quad \text{Ph} \quad \text{Ph} \quad \text{MeCN} \quad \xrightarrow{\text{MkCN}} \quad \text{Ph} \quad \text{C} \quad \text{CH}_3
\]

A solution of the imine (250 mg, 1.2 mmol, 1 eq) and diphenylcyclopropenone (247 mg, 1.2 mmol, 1 eq) in anhydrous acetonitrile (10 mL) was stirred at ambient temperature under an atmosphere of dry nitrogen for 48 hours, at which point a significant new spot was present. The reaction mixture was concentrated and purified by column chromatography (eluent: hexane:EtOAc 1:1) to give 3-\textit{tert}-butyl-2-phenyl-1-indenone (41 mg, 13 %) as a yellow oil, a crystal was formed by slow evaporation of DCM.

\textbf{1H NMR} $\delta (400.13$ MHz, CDCl$_3$): 7.44 – 7.39 (2H, m, Ar), 7.42 (1H, td, J 1.2, 7.6, Ar), 7.38 – 7.33 (3H, m, Ar), 7.27 – 7.23 (1H, m, Ar), 7.18 – 7.15 (2H, m, Ar), 1.31 (9H, s, SC(CH$_3$)$_3$).

\textbf{13C NMR} $\delta (100$ MHz, CDCl$_3$): 198.41 (q), 164.74 (q), 145.44 (q), 134.50 (q), 134.26 (q), 133.54 (CH), 131.70 (q), 130.53 (CH), 128.33 (CH), 127.91 (CH), 127.80 (CH), 124.22 (CH), 122.77(CH), 36.54 (q), 30.79 (CH$_3$)$_3$.

\textbf{HRMS (ESI+)}: Found 285.1240 [M+Na]$^+$, C$_{19}$H$_{18}$NNaO requires 285.1250. [Structure was confirmed by X-ray crystallographic analysis].
3.6.3 Synthesis of N-(propylidene)-tert-butanesulfinamide

To a stirring solution of 2-methyl-2-propanesulfimide (294 mg, 2.43 mmol, 1 eq) in anhydrous dichloromethane (15 mL) was added magnesium sulfate (1.46 g, 12.15 mmol, 5 eq) and propionaldehyde (0.53 mL, 7.29 mmol, 3 eq) at ambient temperature under an atmosphere of dry nitrogen. Upon completion (48 hours) the reaction was filtered under vacuum through a celite plug, the solvent was removed \textit{in vacuo} and purified by column chromatography (eluent: hexane:EtOAc, 1:1) to yield the title compound (257 mg, 71 %) as a pale yellow oil.

\[\text{H NMR } \delta (400.13 \text{ MHz, CDCl}_3): \] 7.97 (1H, t, \textit{J} 4.2, NCH), 2.41 (1H, q, \textit{J} 7.4, NCHCH\textit{HCH}_3), 2.40 (1H, q, \textit{J} 7.4, NCHCH\textit{HCH}_3), 1.06 (9H, s, SC(CH\textit{H}_3)), 0.90 – 0.71 (3H, m, NCHCH\textit{HCH}_3).

\[\text{C NMR } \delta (100 \text{ MHz, CDCl}_3): \] 170.53 (CH), 56.53 (q), 29.57 (CH\textit{O}), 22.28 (CH\textit{3}), 9.57 (CH\textit{3}).

Consistent with data reported.106
3.6.4 Synthesis of N-(butylidene)-tert-butanesulfinamide

![Chemical Structure]

To a stirring solution of 2-methyl-2-propanesulfonamide (304 mg, 2.51 mmol, 1 eq) in anhydrous dichloromethane (15 mL) was added magnesium sulfate (1.51 g, 12.55 mmol, 5 eq) and butyraldehyde (0.66 mL, 7.53 mmol, 3 eq) at ambient temperature under an atmosphere of dry nitrogen. Upon completion (48 hours) the reaction was filtered under vacuum through a celite plug, the solvent was removed *in vacuo* and purified by column chromatography (eluent: hexane: EtOAc, 1:1) to yield the title compound (329 mg, 75 %), as a pale yellow oil.

1H NMR (400.13 MHz, CDCl$_3$): 7.84 (1H, t, J 4.7, NCH), 2.28 (2H, ddd, J 4.7, 7.4, 7.4 NHCH$_2$CH$_2$CH$_3$), 1.45 (2H, sext, J 7.4, NHCH$_2$CH$_2$CH$_3$), 0.97 (9H, s, C(CH$_3$)$_3$) 0.77 (3H, t, J 7.4, NHCH$_2$CH$_2$CH$_3$).

13C NMR (100 MHz, CDCl$_3$): 169.42 (CH), 56.27 (q), 37.89 (CH$_2$), 22.17 (CH$_3$), 18.77 (CH$_2$), 13.66 (CH$_3$).
3.6.5 Attempted synthesis of 2-ethyl-1-(2’-methyl-2’-propanesulfanyl)-4,5-diphenyl-2-pyrrolin-3-one

To a stirring solution of the imine (257 mg, 1.59 mmol, 1 eq) in anhydrous acetonitrile (15 mL) was added diphenylcyclopropenone (328 mg, 1.59 mmol, 1 eq) at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was stirred for five days at ambient temperature (no reaction was observed), and then heated at reflux for one day, but no new products were observed.

3.6.6 Attempted synthesis of 1-(2’-methyl-2’-propanesulfanyl)-4,5-diphenyl-2-propyl-pyrrolin-3-one

To a stirring solution of the imine (329 mg, 1.88 mmol, 1 eq) in anhydrous acetonitrile (15 mL) was added diphenylcyclopropenone (388 mg, 1.88 mmol, 1 eq) at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was stirred for five days at ambient temperature (no reaction was observed), and then heated at reflux for one day, but no new products were observed.
3.7 Synthesis of Indolizidines and Pyrroloazepines

3.7.1 Indolizidines

3.7.1.1 Synthesis of piperidone-2-thione

![Chemical structure diagram]

A solution of 2-piperidone (520 mg, 5.247 mmol, 1 eq) and Lawesson’s reagent (1.27 g, 3.147 mmol, 0.6 eq) in anhydrous tetrahydrofuran (15 mL) was stirred under an atmosphere of dry nitrogen at ambient temperature for an hour. The mixture was heated at reflux and monitored by TLC. Upon completion of the reaction (two hours) the mixture was left to cool to reach ambient temperature, concentrated and purified by column chromatography (elucent: hexane: EtOAc 3:2) to yield piperidine-2-thione (540 mg, 89 %) as white crystals. Data below is identical to literature values.\(^{124}\)

\(^{1}\text{H NMR } \delta (400.13 \text{ MHz, CDCl}_3):\) 9.23 (1H, s, NH), 3.36 – 3.32 (2H, m, NC\(_2\)H\(_2\)), 2.87 (2H, t, SC\(_2\)H\(_2\)), 1.83 – 1.70 (4H, m, CH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)).

\(^{13}\text{C NMR } \delta (100 \text{ MHz, CDCl}_3):\) 202.75 (q), 44.98 (CH\(_2\)), 39.38 (CH\(_2\)), 21.00 (CH\(_2\)), 20.39 (CH\(_2\)).
3.7.1.2 Synthesis of 2-methylthio-1-piperidine

Dimethyl sulfate (0.34 mL, 3.612 mmol, 1.1 eq) was added in one portion to piperidine-2-thione (378 mg, 3.28 mmol, 1 eq) and the mixture was stirred for 15 hours at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was diluted with ether (10 mL), washed with 10% potassium carbonate (20 mL) and extracted with dichloromethane (3 x 20 mL). The organic phase was dried over magnesium sulfate and filtered under gravity. Most of the solvent was removed in vacuo, to leave ~2 mL of liquid which was used crude in the next step. (Note that 2-methylthio-1-piperidine73,108 was found to be volatile).

1H NMR δ (400.13 MHz, CDCl\textsubscript{3}): 3.68 – 3.63 (2H, m, N\textsubscript{C}H\textsubscript{2}), 2.32 – 2.27 (2H, m SCCH\textsubscript{2}), 2.27 (3H, s, CH\textsubscript{3}), 1.76 – 1.68 (2H, m, CH\textsubscript{2}), 1.67 – 1.61 (2H, m, CH\textsubscript{2}).

13C NMR δ (100 MHz, CDCl\textsubscript{3}): 166.00 (q), 50.84 (CH\textsubscript{2}), 31.78 (CH\textsubscript{2}), 22.91 (CH\textsubscript{2}), 20.39 (CH\textsubscript{2}), 12.24 (CH\textsubscript{3}).

3.7.1.3 Synthesis of 6-methylthio-8,9-diphenyl-1-azabicyclo[4.3.0]non-8-en-7-one

Diphenylcyclopropenone (609.5 mg, 2.955 mmol, 1 eq) was added in one portion to a stirring solution of 2-methylthio-1-piperidine (381.6 mg, 2.955 mmol, 1 eq) dissolved in anhydrous
acetonitrile (8 mL) at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was stirred for a week, concentrated and purified by column chromatography (eluent: hexane: EtOAc, 3:1) to yield 6-methylthio-8,9-diphenyl-1-azabicyclo[4.3.0]non-8-en-7-one (596 mg, 60 %) as an orange/yellow oil.

1H NMR δ (400.13 MHz, CDCl$_3$): 7.53 – 7.41 (3H, m, Ar), 7.36 – 7.24 (2H, m, Ar), 7.14 – 7.09 (4H, m, Ar), 7.06 – 7.00 (1H, m, Ar), 3.69 – 3.61 (1H, m, NCH$_2$), 3.51 (1H, td, J 3.3, 13.1, NCHH), 2.27 – 2.20 (1H, m, SCCHH), 1.99 (3H, s, CH$_3$), 1.97 – 1.74 (3H, m, CHH, CH$_2$), 1.73 – 1.65 (1H, m, CHH), 1.38 – 1.24 (1H, m, CHH).

13C NMR δ (100 MHz, CDCl$_3$): 199.03 (q), 170.78 (q), 131.93 (q), 130.63 (q), 130.60 (CH), 129.44 (CH), 128.47 (CH), 128.09 (CH), 125.53 (CH), 110.17 (q), 72.46 (q), 41.69 (CH$_2$), 32.89 (CH$_2$), 27.67 (CH$_2$), 20.74 (CH$_2$), 10.86 (CH$_3$).

HRMS (ESI+): Found 358.1234 [M+H]$^+$, C$_{20}$H$_{19}$NO$_2$ requires 358.1236.

IR ν_{max} (cm$^{-1}$): 3056 (w), 2941 (m), 2859 (w), 1655 (vs), 1599 (m), 1578 (w), 1537 (m).

3.7.1.4 Synthesis of 6-hydroxy-8,9-diphenyl-1-azabicyclo[4.3.0]non-8-en-7-one

A:

To a stirring solution of 6-methylthio-8,9-diphenyl-1-azabicyclo[4.3.0]non-8-en-7-one (576 mg, 1.719 mmol, 1 eq) in anhydrous dichloromethane (5 mL) was added a solution of meta-chloroperoxybenzoic acid (296.6 mg, 1.719 mmol, 1 eq) in anhydrous dichloromethane (4
mL) at 0 – -10 °C under an atmosphere of dry nitrogen. The reaction mixture was stirred for four and a half hours, before being quenched with saturated aqueous sodium thiosulfate (10 mL) and allowed to warm to ambient temperature. Saturated aqueous sodium hydrogen carbonate (10 mL) was added to the mixture and the whole was stirred for a further ten minutes before extracting with dichloromethane (3 x 10 mL). The organic phases were dried over magnesium sulfate and filtered under gravity. The solvent was removed in vacuo and the crude material was purified by column chromatography (eluent: PE: EtOAc, 1:3) to yield 6-hydroxy-8,9-diphenyl-1-azabicyclo[4.3.0]non-8-en-7-one (224 mg, 43 %) as an orange solid.

B:

To a stirring solution of 6-methylthio-8,9-diphenyl-1-azabicyclo[4.3.0]non-8-en-7-one (172 mg, 0.513 mmol, 1 eq) in anhydrous dichloromethane (7 mL) was added a solution of meta-chloroperoxybenzoic acid (88.57 mg, 0.513 mmol, 1 eq) in anhydrous dichloromethane (4 mL) at 0 – -10 °C under an atmosphere of dry nitrogen. The reaction mixture was stirred for three hours, before being quenched with saturated aqueous sodium thiosulfate (10 mL) and allowed to warm to ambient temperature. Saturated aqueous sodium hydrogen carbonate (10 mL) was added to the mixture which was stirred for a further ten minutes before extracting with dichloromethane (3 x 10 mL). The organic phases were dried over magnesium sulfate and filtered under gravity. The solvent was removed in vacuo and the crude material was purified by column chromatography (eluent: PE: EtOAc, 1:3) to yield 6-hydroxy-8,9-diphenyl-1-azabicyclo[4.3.0]non-8-en-7-one (70 mg, 45 %) as an orange solid.

1H NMR δ (400.13 MHz, CDCl₃): 7.51 – 7.40 (5H, m, Ar), 7.13 – 7.00 (5H, m, Ar), 3.63 (1H, dd, J 4.6, 13.4, NCHH), 3.46 (1H, ddd, J 3.3, 12.6, 13.4, NCHH), 2.21 (1H, d, J 13.4, HOCCCHH), 2.05 (1H, ddd, J 3.5, 3.5, 13.2, HOCCCHH), 2.00 (1H, dd, J 6.0, 11.6,
NCH₂CHH), 1.77 – 1.71 (1H, m, NCH₂CHH), 1.66 (1H, dd, J 4.1, 13.6, NCH₂CH₂CHH),
1.28 (1H, ddd J 4.1, 4.2, 13.2, NCH₂CH₂CHH).

¹³C NMR δ (100 MHz, CDCl₃): 200.62 (q, C=O), 172.31 (q), 131.93(q), 130.62 (CH),
130.40 (q), 129.37 (CH), 128.72 (CH), 128.54 (CH), 128.09 (CH), 125.45 (CH), 107.58 (q),
86.81 (q), 42.23 (CH₂), 34.56 (CH₂), 27.76 (CH₂), 19.46 (CH₂).

IR νₘₐₓ (cm⁻¹): 3295 (br) 2929 (m), 1639 (s), 1600 (m), 1527 (m).

3.7.1.5 Attempted synthesis of 6-ethanesulfinyl-8,9-diphenyl-1-azabicyclo[4.3.0]non-8-
en-7-one

To a stirring solution of 6-ethylthio-8,9-diphenyl-1-azabicyclo[4.3.0]non-8-en-7-one (96 mg,
0.275 mmol, 1 eq) in anhydrous dichloromethane (7 mL) at 0 – -10 °C was added a solution
of meta-chloroperoxybenzoic acid (47.5 mg, 0.275 mmol, 1 eq) in anhydrous
dichloromethane (4 mL) under an atmosphere of dry nitrogen. The reaction mixture was
stirred for six hours before being quenched with saturated aqueous sodium thiosulfate (10
mL) and allowed to warm to ambient temperature. Saturated aqueous sodium hydrogen
carbonate (10 mL) was added to the mixture which was stirred for a further ten minutes
before extracting with dichloromethane (3 x 10 mL). The organic phases were dried over
magnesium sulfate and filtered under gravity. The solvent was removed in vacuo and the
 crude material was subjected to column chromatography (eluent: hexane: EtOAc, 1:1), but
NMR and TLC showed no identifiable products.
3.7.2 Pyrroloazepines

3.7.2.1 Synthesis of Azepan-2-thione

A solution of azepan-2-one (780 mg, 6.89 mmol, 1 eq) and Lawesson’s reagent (1672 mg, 4.14 mmol, 0.6 eq) in anhydrous tetrahydrofuran (20 mL) was stirred under an atmosphere of dry nitrogen at ambient temperature for an hour. The mixture was then heated at reflux and monitored by TLC. Upon completion of the reaction (two hours) the mixture was left to cool to ambient temperature, concentrated and purified by column chromatography (eluent: hexane: EtOAc, 3:2) to yield azepan-2-thione (650 mg, 73 %) as white crystals. Data below is identical to literature values.124

\[
^1H\text{ NMR } \delta(400.13 \text{ MHz, CDCl}_3): 9.19 (1H, s, NH), 3.36 (2H, dd, J 6.0, 10.2, NCH}_2), 2.97 (2H, t, J 5.5, SCCH}_2) 1.81 – 1.74 (2H, m, CH}_2), 1.73 – 1.68 (2H, m, CH}_2), 1.67 – 1.61 (2H, m, CH}_2).
\]

\[
^{13}C\text{ NMR } \delta(100 \text{ MHz, CDCl}_3): 210.31 (q), 47.27 (CH}_2), 45.13 (CH}_2), 30.53 (CH}_2), 28.20 (CH}_2), 24.64 (CH}_2).
\]

3.7.2.2 Synthesis of 2-methylthio-1-azepane

A solution of azepan-2-one (780 mg, 6.89 mmol, 1 eq) and Lawesson’s reagent (1672 mg, 4.14 mmol, 0.6 eq) in anhydrous tetrahydrofuran (20 mL) was stirred under an atmosphere of dry nitrogen at ambient temperature for an hour. The mixture was then heated at reflux and monitored by TLC. Upon completion of the reaction (two hours) the mixture was left to cool to ambient temperature, concentrated and purified by column chromatography (eluent: hexane: EtOAc, 3:2) to yield azepan-2-thione (650 mg, 73 %) as white crystals. Data below is identical to literature values.124

\[
^1H\text{ NMR } \delta(400.13 \text{ MHz, CDCl}_3): 9.19 (1H, s, NH), 3.36 (2H, dd, J 6.0, 10.2, NCH}_2), 2.97 (2H, t, J 5.5, SCCH}_2) 1.81 – 1.74 (2H, m, CH}_2), 1.73 – 1.68 (2H, m, CH}_2), 1.67 – 1.61 (2H, m, CH}_2).
\]

\[
^{13}C\text{ NMR } \delta(100 \text{ MHz, CDCl}_3): 210.31 (q), 47.27 (CH}_2), 45.13 (CH}_2), 30.53 (CH}_2), 28.20 (CH}_2), 24.64 (CH}_2).
\]
Dimethyl sulfate (0.525 mL, 5.536 mmol, 1.1 eq) was added in one portion to azepan-2-thione (650 mg, 5.033 mmol, 1 eq) and the mixture was stirred for 15 hours at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was diluted with diethyl ether (10 mL), washed with 10% aqueous potassium carbonate (20 mL) and extracted with dichloromethane (3 x 20 mL). The organic phase was dried over magnesium sulfate and filtered under gravity. Most of the solvent was removed in vacuo, to leave ~2 mL of crude liquid which was used in the next step. (Note that 2-methylthio-1-azepane was found to be volatile).

\[^1H \text{NMR} \delta \text{(400.13 MHz, CDCl}_3\text{): 3.60 – 3.58 (2H, m, NCH}_2\text{), 2.39 – 2.35 (2H, m, SCCH}_2\text{), 2.18 (3H, s, CH}_3\text{), 1.73 – 1.67 (2H, m, CH}_2\text{), 1.49 – 1.41 (4H, m, 2 x CH}_2\text{).} \]

\[^13C \text{NMR} \delta \text{(100 MHz, CDCl}_3\text{): 172.44 (q), 52.86 (CH}_2\text{), 37.04 (CH}_2\text{), 31.34 (CH}_2\text{), 27.13 (CH}_2\text{), 24.41 (CH}_2\text{), 13.42 (CH}_3\text{).} \]

3.7.2.3 Synthesis of 7-methylthio-9,10-diphenyl-1-azabicyclo[5.3.0]dec-9-en-8-one

Diphenylcyclopropenone (923.4 mg, 4.478 mmol, 1 eq) was added in one portion to a stirring solution of 2-methylthio-1-azepane (641 mg, 4.478 mmol, 1 eq) dissolved in anhydrous acetonitrile (15 mL) at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was stirred for three weeks, concentrated and purified by column
chromatography (eluent: hexane: EtOAc, 1:1) to yield 7-methylthio-9,10-diphenyl-1-azabicyclo[5.3.0]dec-9-en-8-one (257 mg, 16 %) as a yellow oil.

\[^1\text{H NMR } \delta (500.13 \text{ MHz, CDCl}_3): \]
7.51 – 7.45 (3H, m, Ar), 7.38 – 7.33 (2H, m, Ar), 7.13 – 7.10 (4H, m, Ar), 7.07 – 7.01 (1H, m, Ar), 3.85 – 3.78 (1H, m, NCH_2\), 3.44 – 3.37 (1H, m, NCH_2\), 2.78 (1H, dd, J 7.8, 14.4, CH_2\CSMe\), 1.97 (3H, s, Me), 1.83 – 1.74 (2H, m, CH_2\), 1.71 (1H, dd, J 11.4, 14.4, CH_2\CSMe\), 1.52 – 1.45 (1H, dd, J 1.7, 14.1, CH_H\), 1.30 – 1.19 (1H, m, CH_H\), 1.18 – 1.10 (1H, m, CHH\), 1.10 – 1.01 (1H, m, CHH).

\[^13\text{C NMR } \delta (125 \text{ MHz, CDCl}_3): \]
197.65 (q, C=O), 174.31 (q), 131.73 (q), 130.95 (q), 130.53 (CH), 129.38 (CH), 128.83 (CH), 128.55 (CH), 128.06 (CH), 125.66 (CH), 113.27 (q), 77.03 (q), 43.36 (CH_2\), 37.31 (CH_2\), 29.71 (CH_2\), 29.51 (CH_2\), 23.97 (CH_2\), 11.60 (CH_3\).

IR \upsilon_{max} (cm\(^{-1}\)): 3053 (w) 2920 (m), 2851 (m), 1656 (vs), 1599 (s), 1577 (w), 1540 (s).

3.7.2.4 Attempted synthesis of 7-methanesulfonyl-9,10-diphenyl-1-azabicyclo[5.3.0]dec-9-en-8-one

![diagram](image)

To a stirring solution of 7-methylthio-9,10-diphenyl-1-azabicyclo[5.3.0]dec-9-en-8-one (257 mg, 0.738 mmol, 1 eq) in anhydrous dichloromethane (7 mL) was added a solution of meta-chloroperoxybenzoic acid (128 mg, 0.738 mmol, 1 eq) in anhydrous dichloromethane (4 mL) at 0 – -10 \(^\circ\text{C}\) under an atmosphere of dry nitrogen. The reaction mixture was stirred for five hours, before being quenched with saturated aqueous sodium thiosulfate (10 mL) and allowed
Experimental

to warm to ambient temperature. Saturated aqueous sodium hydrogen carbonate (10 mL) was added to the mixture which was stirred for a further ten minutes before extracting with dichloromethane (3 x 10 mL), the organic phases were dried over magnesium sulfate and filtered under gravity. The solvent was removed \textit{in vacuo} and the crude material was purified by column chromatography (eluent: PE: EtOAc, 1:3) to give only the starting material (51 mg, 20 %).

3.7.2.5 Synthesis of 7-methoxy-9,10-diphenyl-1-azabicyclo[5.3.0]dec-9-en-8-one

\[
\text{Diphenylcyclopropenone (324.3 mg, 1.572 mmol, 1 eq) was added in one portion to a stirring solution of 2-methoxy-1-azepane (200 mg, 1.572 mmol, 1 eq) in anhydrous acetonitrile (6 mL). The reaction mixture was stirred for two days at ambient temperature under an atmosphere of dry nitrogen. TLC analysis showed little or no change, and so the mixture was heated to reflux for five days, changing in colour from light yellow to dark orange. Evaporation of the solvent gave a crude product which was purified by column chromatography (eluent: hexane: EtOAc, 1:1) to yield 7-methoxy-9,10-diphenyl-1-azabicyclo[5.3.0]dec-9-en-8-one (145 mg, 28 %) as a yellow/orange oil.}
\]

\[\text{1H NMR (400.13 MHz, CDCl}_3): 7.52 – 7.43 (3H, m, Ar), 7.40 – 7.35 (2H, m, Ar), 7.15 – 7.01 (5H, m, Ar), 3.74 (1H, ddd, J 3.2, 3.2, 14.9, NCHH), 3.22 (3H, s, Me), 3.28 (1H, ddd, J 1.8, 12.5, 14.9, NCHH), 2.53 (1H, dd, J 8.6, 14.4, MeOCCCHH), 1.87 (1H, dd, J 10.9, 14.4,}
\]
Experimental

MeOCCHH), 1.80 – 1.69 (2H, m, CH₂), 1.47 – 1.38 (1H, m, CHH), 1.37 – 1.25 (1H, m, CHH), 1.20 – 1.04 (2H, m, CH₂).

\(^{13}\text{C NMR (100 MHz, CDCl}_3\):} 198.15 (q), 176.63 (q), 131.23 (q), 130.93 (q), 130.66 (CH), 129.31 (CH), 128.77 (CH), 128.64 (CH), 128.07 (CH), 125.76 (CH), 112.88 (q), 94.92 (q), 51.43 (CH₃), 43.02 (CH₂), 37.09 (CH₂), 29.59 (CH₂), 29.07 (CH₂), 22.03 (CH₂).

3.8 1,3-Dipolar cycloadditions

3.8.1 Attempted synthesis of ethyl-5-methylthio-4,1,3-oxadiazobicyclo[3.3.0]oct-2-ene-2-carboxylate

Method 1:

A:
To a stirring solution of 2-methylthio-1-pyrroline (260 mg, 2.26 mmol, 1 eq) and ethyl chlorooximidoacetate (342.5 mg, 2.26 mmol, 1 eq) in ether (5 mL) was added triethylamine (0.32 mL, 2.26 mmol, 1 eq) diluted in ether (5 mL) dropwise over four to five hours at ambient temperature using a syringe pump. The reaction was purified by column chromatography, but only the nitrile oxide dimer was formed with no other identifiable products.

B:
To a stirring solution of 2-methylthio-1-pyrroline (209 mg, 1.817 mmol, 1 eq) and triethylamine (0.25 ml, 1.817 mmol, 1 eq) in ether (5 mL) was added ethyl chlorooximidoacetate (275.4 mg, 1.817 mmol, 1 eq) diluted in ether (15 mL) dropwise over 30 hours at ambient temperature under an atmosphere of dry nitrogen. The reaction was purified by column chromatography, but only the nitrile oxide dimer was formed with no other identifiable products.
Nitrile oxide dimer:

\[
\begin{align*}
\text{CO}_2\text{Et} & \quad \text{OH} \\
\text{Cl} & \quad \text{N} \quad \text{O} \\
\end{align*}
\]

\[
\quad \xrightarrow{\text{Ether}} \quad \text{Et}_2\text{N}
\]

\[
\begin{align*}
\text{CO}_2\text{Et} & \quad \text{OH} \\
\text{EtO}_2\text{C} & \quad \text{N} \quad \text{O} \\
\end{align*}
\]

\[
\begin{align*}
\delta \delta \delta (400.13 \text{ MHz, CDCl}_3): 4.43 \text{ (2H, q, } J 7.1, \text{ CH}_2\text{CH}_3), 4.36 \text{ (2H, q, } J 7.1, \text{ CH}_2\text{CH}_3), \\
1.36 \text{ (3H, t, } J 7.1, \text{ CH}_2\text{CH}_3), 1.31 \text{ (3H, t, } J 7.1, \text{ CH}_2\text{CH}_3).
\end{align*}
\]

Method 2:

\[
\begin{align*}
\text{CO}_2\text{Et} & \quad \text{OH} \\
\text{Cl} & \quad \text{N} \quad \text{O} \\
\end{align*}
\]

To a stirring solution of 2-methylthio-1-pyrroline (232 mg, 2.017 mmol, 1 eq) and triethylamine (0.28 ml, 2.017 mmol, 1 eq) in THF (5 mL) was added ethyl chloro-oximidoacetate (305.7 mg, 2.017 mmol, 1 eq) diluted in THF (20 mL) dropwise over 20 hours at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was filtered, concentrated and the residue purified by column chromatography (eluent: 10:1, 7:1, 5:1, 2:1, 1:1 hexane: EtOAc) to give ethyl-[N-(2-pyrrolidone)]oximidoacetate (231.9 mg, 50 %), as an orange/ yellow oil and the nitrile oxide dimer.

\[
\delta \delta \delta (400.13 \text{ MHz, CDCl}_3): 10.81 \text{ (1H, bs, OH)}, 4.27 \text{ (2H, q, } J 7.1, \text{ COOCH}_2\text{CH}_3), \\
3.79 \text{ (2H, t, } J 7.0, \text{ NCH}_2), 2.44 \text{ (2H, t, } J 8.0, \text{ OCCH}_2), 2.17 \text{ (2H, quint, J, } 7.5, \text{ OCCH}_2\text{CH}_2), \\
1.28 \text{ (3H, t, } J 7.1, \text{ CH}_2\text{CH}_3).
$^{13}\text{C NMR}$ (100 MHz, CDCl$_3$): 176.81 (q), 160.50 (q), 139.67 (q), 62.72 (CH$_2$), 47.56 (CH$_2$), 30.16 (CH$_2$), 20.08 (CH$_2$), 14.14 (CH$_3$).

3.8.1.1 Attempted synthesis of ethyl-[N-(2-pyrrolidone)]oximidoacetate

![Chemical structure](image)

To a stirring solution of 2-pyrrolidinone (213 mg, 2.503 mmol, 1 eq) and triethylamine (0.35 mL, 2.503 mmol, 1 eq) in THF (7 mL) was added ethyl chlorooximidoacetate (379.3 mg, 2.503 mmol, 1 eq) in THF (23 mL), dropwise over 12 hours at ambient temperature under an atmosphere of dry nitrogen. The reaction was purified by column chromatography, to give the nitrile oxide dimer (150 mg, 33 %) as the only identifiable product.

3.8.2 Synthesis of 4-methoxy-(α-[N-(2-pyrrolidinone)])benzaldoxime

![Chemical structure](image)

To a stirring solution of 2-methylthio-1-pyrroline (217 mg, 1.89 mmol, 1 eq) and anhydrous triethylamine (0.27 mL, 1.89 mmol, 1 eq) in THF (7 mL) was added the α-chloroxime (351 mg, 1.89 mmol, 1 eq) diluted in THF (25 mL) dropwise over 30 hours under an atmosphere of dry nitrogen. The reaction mixture was filtered, concentrated and the residue was purified by
column chromatography (eluent: hexane: EtOAc, 10:1, 8:1, 6:1, 3:2, 1:1) to give 4-methoxy-(α-[N-(2-pyrrolidinone)])benzaldoxime (141.8 mg, 32 %), as an orange oil.

1H NMR δ (400.13 MHz, CDCl$_3$): 8.63 – 5.58 (1H, bs, OH), 7.51 (2H, d, J 8.9, MeOCCH), 6.90 (2H, d, J 8.9, MeOCCHCH), 3.83 (3H, s, CH$_3$), 3.73 (2H, t, J 7.0 NCH$_2$), 2.58 (2H, t, J 8.0, OCCH$_2$), 2.26 (2H, quint, J 7.5, CH$_2$CH$_2$CH$_2$).

13C NMR δ (100 MHz, CDCl$_3$): 175.53 (q), 161.58 (q), 147.39 (q), 128.50 (CH), 123.80 (q), 114.48 (CH), 55.70 (CH$_3$), 48.05 (CH$_2$), 31.07 (CH$_2$), 20.23 (CH$_2$).

HRMS (ESI+): Found 257.0900 [M+Na]$^+$, C$_{12}$H$_{14}$N$_2$NaO$_3$ requires 257.0894.

IR ν_{max} (cm$^{-1}$): 3167 (m) 3024 (w), 2960 (w), 2899 (w), 2838 (w) 1660 (s), 1601 (s) 1513 (s).

3.8.3 Synthesis of 2-azido-(α-[N-(2-pyrrolidinone)])benzaldoxime

To a stirring solution of 2-methylthio-1-pyrroline (217 mg, 1.89 mmol, 1 eq) and anhydrous triethylamine (0.27 mL, 1.89 mmol, 1 eq) in THF (7 mL) was added the α-chloroxime (342 mg, 1.89 mmol, 1 eq) in THF (15 mL) dropwise over 20 hours via a reservoir at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was filtered, concentrated and the residue was purified by column chromatography (eluent: hexane: EtOAc, 1:1) to yield 2-azido-(α-[N-(2-pyrrolidinone)])benzaldoxime (66 mg, 14 %) as a pale orange solid.
Experimental

1H NMR δ (400.13 MHz, CDCl$_3$): 9.25 (1H, bs, OH), 7.53 – 7.51 (1H, m, Ar), 7.45 (1H, td, J 1.4, 15.6, Ar), 7.20 – 7.15 (2H, m, Ar), 3.89 (2H, t, J 7.0, NCH$_2$), 2.47 (2H, t, J 8.0, OCCH$_2$), 2.21 (2H, quint, J 7.5, OCCH$_2$CH$_2$CH$_2$).

13C NMR δ (100 MHz, CDCl$_3$): 175.87 (q), 146.26 (q), 138.22 (q), 131.86 (CH), 131.41 (CH), 125.42 (CH), 124.06 (q), 118.70 (CH), 48.31 (CH$_2$), 30.96 (CH$_2$), 20.32 (CH$_2$).

3.8.4 Synthesis of 2-[triphenylphosphoranylimino]-α-[N-(2-pyrrolidinone)]-benzaldoxime

![Diagram]

A stirring solution of the azide (66 mg, 0.269 mmol, 1 eq) in anhydrous toluene (15 mL) had triphenylphosphine (70.7 mg, 0.269 mmol, 1 eq) added in one portion at ambient temperature under an atmosphere of dry nitrogen. The reaction mixture was stirred for three days, concentrated and purified by column chromatography (eluent: 1:1 hexane: EtOAc) to yield 2-[triphenylphosphoranylimino]-α-[N-(2-pyrrolidinone)]benzaldoxime (120 mg, 93 %) as an orange solid.

1H NMR δ (400.13 MHz, CDCl$_3$): 7.72 – 7.64 (6H, m, Ar), 7.57 – 7.51 (3H, m, Ar), 7.49 – 7.43 (6H, m, Ar), 7.36 (1H, ddd, J 2.1, 2.1, 7.5, Ar), 6.90 (1H, ddd, J 1.7, 7.7, 8.1, Ar), 6.65 (1H, t, J 7.5, Ar), 6.40 (1H, d, J 8.1, Ar), 3.55 (2H, t, J 7.0, NCH$_2$) 2.19 (2H, t, J 8.1, NCOCH$_2$), 1.84 (2H, quint, J 7.5, NCH$_2$CH$_2$CH$_2$).
Experimental

13C NMR δ (100 MHz, CDCl$_3$): 177.10 (q), 151.33 (q), 150.30 (q), 142.00 (q), 133.08 (CH), 132.79 (CH), 132.69 (CH), 132.37 (CH), 132.34 (CH), 132.31 (CH), 132.27 (CH), 132.24 (CH), 132.04 (q), 130.37 (CH), 129.14 (CH), 129.02 (CH), 128.84 (CH), 128.72(CH), 128.44 (q), 110.34 (q), 48.83 (CH$_2$), 31.75 (CH$_2$), 19.72 (CH$_2$).

HRMS (ESI+): Found 480.1838 [M+H]$^+$, C$_{29}$H$_{27}$N$_3$O$_2$P requires 480.1835.

3.8.5 Synthesis of pyrrolo[1,2-b][1,3]benzodiazin-4-oxime

A stirring solution of the iminophosphorane (120 mg, 0.251 mmol) in anhydrous toluene (10 mL) was warmed to reflux under an atmosphere of dry nitrogen. The reaction mixture was stirred for 17 hours, concentrated and purified by column chromatography (eluent: 1:4, hexane: EtOAc) to yield pyrrolo[1,2-b][1,3]benzodiazin-4-oxime (22 mg, 44 %) as a pale yellow solid.

1H NMR δ (400.13 MHz, CDCl$_3$): 10.15 (1H, bs, OH), 8.17 (1H, d, J 8.3, Ar), 7.36 (2H, dd, J 0.7, 3.8 Ar), 7.14 (1H, ddd, J 3.2, 4.8, 8.3, Ar), 4.09 (2H, t, J 7.1, NCH$_2$), 2.68 (2H, t, J 8.1, NCCCH$_2$), 2.28 (2H, quint, J 7.6, CH$_2$CH$_2$CH$_2$).

13C NMR δ (100 MHz, CDCl$_3$): 174.43 (q), 142.70 (q), 142.06 (q), 127.75 (CH), 123.91 (CH), 120.90 (CH), 116.31 (q), 109.96 (CH), 49.32 (CH$_2$), 32.36 (CH$_2$), 30.03 (CH$_2$).

HRMS (ESI+): Found 224.0801 [M+Na]$^+$, C$_{11}$H$_{11}$N$_3$NaO requires 224.0794.

IR ν_{max} (cm$^{-1}$): 3219 (br), 2923 (m), 2854 (w), 1681 (vs), 1508 (vs), 1174 (m).
3.8.6 Attempted reaction of 2-methylthio-1-pyrroline with a nitrilimine

To a stirring solution of 2-methylthio-1-pyrroline (241 mg, 2.096 mmol, 1 eq) and anhydrous triethylamine (0.3 mL, 2.096 mmol, 1 eq) in THF (4 mL) was added the nitrile imine precursor (483 mg, 2.096 mmol, 1 eq) diluted in THF (25 mL) dropwise over 30 hours under an atmosphere of dry nitrogen. The reaction was purified by column chromatography but no identifiable products were isolated.
4 References

55. Duvall, J. R. *Ph.D. Thesis*, Brandeis University, **2007**.

References

Appendix
Crystal Data for

5-Methoxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one (159)
data_mo_ilyas_iq114_0m

_audit_creation_method SHELXL-97
_chemical_name_systematic ;
;
_chemical_name_common ;
_chemical_melting_point ;
_chemical_formula_moiety ;
_chemical_formula_sum 'C20 H19 N O2'
_chemical_formula_weight 305.36

loop_
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
'C' 'C' 0.0033 0.0016
'H' 'H' 0.0000 0.0000
'N' 'N' 0.0061 0.0033
'O' 'O' 0.0106 0.0060

_International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting ?
_symmetry_space_group_name_H-M ?

loop_
_symmetry_equiv_pos_as_xyz
'x, y, z'
'-y, x-y, z+2/3'
'-x+y, -x, z+1/3'
'-x, -y, z+1/2'
'y, -x+y, z+1/6'
'x-y, x, z+5/6'

_cell_length_a 9.316(3)
_cell_length_b 9.316(3)
_cell_length_c 33.188(9)
_cell_angle_alpha 90.00
_cell_angle_beta 90.00
_cell_angle_gamma 120.00
_cell_volume 2494.6(12)
_cell_formula_units_Z 6
_cell_measurement_temperature 296(2)
_cell_measurement_reflns_used ?
_cell_measurement_theta_min ?
_cell_measurement_theta_max ?

_exptl_crystal_description ?
_exptl_crystal_colour ?
_exptl_crystal_size_max 0.70
_exptl_crystal_size_mid 0.60
Appendix

Compound 159

_exptl_crystal_size_min 0.20
_exptl_crystal_density_meas ?
_exptl_crystal_density_diffrn 1.220
_exptl_crystal_density_method 'not measured'
_exptl_crystal_F_000 972
_exptl_absorpt_coefficient_mu 0.079
_exptl_absorpt_correction_type ?
_exptl_absorpt_correction_T_min 0.9471
_exptl_absorpt_correction_T_max 0.9845
_exptl_absorpt_process_details ?

_exptl_special_details
;
?
;

_diffrn_ambient_temperature 296(2)
_diffrn_radiation_wavelength 0.71073
_diffrn_radiation_type MoK\a
_diffrn_radiation_source 'fine-focus sealed tube'
_diffrn_radiation_monochromator graphite
_diffrn_measurement_device_type ?
_diffrn_measurement_method ?
_diffrn_detector_area_resol_mean ?
_diffrn_reflns_number 6341
_diffrn_reflns_av_R_equivalents 0.0213
_diffrn_reflns_av_sigmaI/netI 0.0368
_diffrn_reflns_limit_h_min -4
_diffrn_reflns_limit_h_max 12
_diffrn_reflns_limit_k_min -7
_diffrn_reflns_limit_k_max 12
_diffrn_reflns_limit_l_min -36
_diffrn_reflns_limit_l_max 37
_diffrn_reflns_theta_min 2.52
_diffrn_reflns_theta_max 28.26
_reflns_number_total 3751
_reflns_number_gt 2851
_reflns_threshold_expression >2sigma(I)

_computing_data_collection ?
_computing_cell_refinement ?
_computing_data_reduction ?
_computing_structure_solution 'SHELXS-97 (Sheldrick, 2008)'
_computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)'
_computing_molecular_graphics ?
_computing_publication_material ?

_refine_special_details
;
Refinement of F^2^ against ALL reflections. The weighted R-factor wR and
goodness of fit S are based on F^2^, conventional R-factors R are based
on F, with F set to zero for negative F^2^. The threshold expression of
F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is

210
not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

;

_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details 'calc w=1/[\sigma^2(Fo^2)+(0.0500P)^2+0.0433P] where P=(Fo^2^+2Fc^2^)/3'
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refine_ls_hydrogen_treatment mixed
_refine_ls_extinction_method SHELXL
_refine_ls_extinction_coef 0.0059(10)
_refine_ls_extinction_expression 'Fc^*_L=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^'
_refine_ls_abs_structure_Flack 1.9(12)
_refine_ls_number_reflns 3751
_refine_ls_number_parameters 210
_refine_ls_number_restraints 1
_refine_ls_R_factor_all 0.0603
_refine_ls_R_factor_gt 0.0408
_refine_ls_WR_factor_ref 0.0987
_refine_ls_WR_factor_gt 0.0904
_refine_ls_goodness_of_fit_ref 1.009
_refine_ls_restrained_S_all 1.009
_refine_ls_shift/su_max 0.000
_refine_ls_shift/su_mean 0.000

loop
 _atom_site_label
 _atom_site_type_symbol
 _atom_site_fract_x
 _atom_site_fract_y
 _atom_site_fract_z
 _atom_site_U_iso_or_equiv
 _atom_site_adp_type
 _atom_site_occupancy
 _atom_site_symmetry_multiplicity
 _atom_site_calc_flag
 _atom_site_refinement_flags
 _atom_site_disorder_assembly
 _atom_site_disorder_group
C1 C -0.1431(2) 0.3414(2) 0.06621(6) 0.0445(4) Uani 1 1 d . . .
C13 C 0.1166(2) 0.3414(2) 0.09219(5) 0.0386(4) Uani 1 1 d . . .
C14 C 0.0352(2) 0.4150(2) 0.07508(5) 0.0417(4) Uani 1 1 d . . .
C6 C -0.2406(2) 0.1756(2) 0.05579(6) 0.0526(5) Uani 1 1 d . . .
H6 H -0.1953 0.1065 0.0564 0.063 Uiso 1 l calc R . .
C16 C 0.3312(2) 0.5984(2) 0.07280(6) 0.0450(4) Uani 1 1 d . . .
C7 C 0.0467(2) 0.1824(2) 0.11397(5) 0.0435(4) Uani 1 1 d . . .
C2 C -0.2144(3) 0.4418(3) 0.06499(7) 0.0589(5) Uani 1 1 d . . .
<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U_{11}</th>
<th>U_{22}</th>
<th>U_{33}</th>
<th>U_{12}</th>
<th>U_{13}</th>
<th>U_{23}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.0432(9)</td>
<td>0.0565(11)</td>
<td>0.0385(11)</td>
<td>0.0078(8)</td>
<td>0.0050(7)</td>
<td>0.0285(8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13</td>
<td>0.0371(8)</td>
<td>0.0444(9)</td>
<td>0.0347(10)</td>
<td>0.0032(7)</td>
<td>0.0020(7)</td>
<td>0.0206(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>0.0406(8)</td>
<td>0.0439(9)</td>
<td>0.0452(11)</td>
<td>0.0048(7)</td>
<td>0.0019(7)</td>
<td>0.0242(8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>0.0472(10)</td>
<td>0.0603(12)</td>
<td>0.0497(13)</td>
<td>0.0052(9)</td>
<td>-0.0012(9)</td>
<td>0.0264(9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16</td>
<td>0.0428(9)</td>
<td>0.0443(9)</td>
<td>0.0419(11)</td>
<td>0.0070(7)</td>
<td>0.0002(8)</td>
<td>0.0173(8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>0.0379(8)</td>
<td>0.0429(9)</td>
<td>0.0450(12)</td>
<td>0.0080(8)</td>
<td>-0.0035(7)</td>
<td>0.0168(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>0.0575(11)</td>
<td>0.0793(14)</td>
<td>0.0577(15)</td>
<td>0.0016(11)</td>
<td>0.0019(10)</td>
<td>0.0474(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15</td>
<td>0.0547(10)</td>
<td>0.0491(10)</td>
<td>0.0500(13)</td>
<td>0.0088(8)</td>
<td>0.0004(9)</td>
<td>0.0293(9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>0.0405(9)</td>
<td>0.0600(11)</td>
<td>0.0493(13)</td>
<td>0.0083(9)</td>
<td>0.0019(8)</td>
<td>0.0167(9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12</td>
<td>0.0573(11)</td>
<td>0.0554(11)</td>
<td>0.0767(16)</td>
<td>0.0158(11)</td>
<td>0.0078(10)</td>
<td>0.0304(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C17</td>
<td>0.0675(13)</td>
<td>0.0562(11)</td>
<td>0.0500(14)</td>
<td>-0.0039(10)</td>
<td>-0.0034(10)</td>
<td>0.0181(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C19</td>
<td>0.0453(10)</td>
<td>0.0746(13)</td>
<td>0.0414(13)</td>
<td>0.0147(9)</td>
<td>-0.0016(8)</td>
<td>0.0265(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>0.0489(11)</td>
<td>0.0779(15)</td>
<td>0.0555(15)</td>
<td>0.0042(11)</td>
<td>-0.0034(9)</td>
<td>0.0192(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td>0.0489(12)</td>
<td>0.0764(15)</td>
<td>0.0634(16)</td>
<td>0.0264(12)</td>
<td>0.0057(10)</td>
<td>0.0085(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C20</td>
<td>0.0584(12)</td>
<td>0.0839(15)</td>
<td>0.0437(14)</td>
<td>0.0035(11)</td>
<td>-0.0021(10)</td>
<td>0.0275(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix

Compound 159

<table>
<thead>
<tr>
<th>Atom</th>
<th>U1</th>
<th>U2</th>
<th>U3</th>
<th>U12</th>
<th>U13</th>
<th>U23</th>
</tr>
</thead>
<tbody>
<tr>
<td>C18</td>
<td>0.0531(12)</td>
<td>0.0805(15)</td>
<td>0.0470(14)</td>
<td>-0.0022(10)</td>
<td>-0.0134(10)</td>
<td>0.0137(11)</td>
</tr>
<tr>
<td>C3</td>
<td>0.0629(13)</td>
<td>0.112(2)</td>
<td>0.0667(17)</td>
<td>0.0044(14)</td>
<td>0.0033(11)</td>
<td>0.0623(15)</td>
</tr>
<tr>
<td>C11</td>
<td>0.0714(15)</td>
<td>0.0555(13)</td>
<td>0.113(2)</td>
<td>0.0200(13)</td>
<td>-0.0100(15)</td>
<td>0.0325(11)</td>
</tr>
<tr>
<td>C4</td>
<td>0.0428(11)</td>
<td>0.120(2)</td>
<td>0.0614(17)</td>
<td>0.0123(14)</td>
<td>0.0017(10)</td>
<td>0.0398(14)</td>
</tr>
<tr>
<td>C10</td>
<td>0.0558(13)</td>
<td>0.0577(14)</td>
<td>0.103(2)</td>
<td>0.0400(13)</td>
<td>-0.0159(14)</td>
<td>0.0028(11)</td>
</tr>
<tr>
<td>O2</td>
<td>0.0411(6)</td>
<td>0.0575(8)</td>
<td>0.0400(13)</td>
<td>0.0100(6)</td>
<td>-0.0002(6)</td>
<td>0.0120(6)</td>
</tr>
<tr>
<td>O1</td>
<td>0.0720(10)</td>
<td>0.0622(9)</td>
<td>0.1035(14)</td>
<td>0.0307(8)</td>
<td>0.0002(9)</td>
<td>0.0389(8)</td>
</tr>
<tr>
<td>N1</td>
<td>0.0387(7)</td>
<td>0.0469(8)</td>
<td>0.0391(9)</td>
<td>0.0093(6)</td>
<td>0.0004(6)</td>
<td>0.0214(6)</td>
</tr>
</tbody>
</table>

_all_geom_special_details

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

loop

_all_geom_bond_atom_site_label_1
_all_geom_bond_atom_site_label_2
_all_geom_bond_distance
_all_geom_bond_site_symmetry_2
_all_geom_bond_publ_flag

C1 C6 1.388(3) . ?
C1 C2 1.392(3) . ?
C1 C14 1.476(2) . ?
C13 C14 1.374(2) . ?
C13 N1 1.381(2) . ?
C13 C7 1.475(2) . ?
C14 C15 1.453(3) . ?
C6 C5 1.395(3) . ?
C16 O2 1.410(2) . ?
C16 N1 1.476(2) . ?
C16 C17 1.512(3) . ?
C16 C15 1.539(3) . ?
C7 C8 1.385(3) . ?
C7 C12 1.384(3) . ?
C2 C3 1.386(3) . ?
C15 O1 1.218(2) . ?
C8 C9 1.377(3) . ?
C12 C11 1.385(3) . ?
C17 C18 1.514(3) . ?
C19 N1 1.487(2) . ?
C19 C18 1.512(3) . ?
C5 C4 1.376(3) . ?
C9 C10 1.356(4) . ?
C20 O2 1.425(3) . ?
C3 C4 1.369(4) . ?
C11 C10 1.368(4) . ?
Appendix

Compound 159

<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (deg)</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6 C1 C2</td>
<td>118.25(17)</td>
<td></td>
</tr>
<tr>
<td>C6 C1 C14</td>
<td>121.68(15)</td>
<td></td>
</tr>
<tr>
<td>C2 C1 C14</td>
<td>119.86(17)</td>
<td></td>
</tr>
<tr>
<td>C14 N1</td>
<td>113.89(14)</td>
<td></td>
</tr>
<tr>
<td>C14 C7</td>
<td>128.82(15)</td>
<td></td>
</tr>
<tr>
<td>N1 C7</td>
<td>117.28(14)</td>
<td></td>
</tr>
<tr>
<td>C13 C15</td>
<td>106.72(14)</td>
<td></td>
</tr>
<tr>
<td>C13 C14</td>
<td>128.66(15)</td>
<td></td>
</tr>
<tr>
<td>C15 C14</td>
<td>124.32(15)</td>
<td></td>
</tr>
<tr>
<td>C1 C6 C5</td>
<td>120.85(19)</td>
<td></td>
</tr>
<tr>
<td>O2 C16 N1</td>
<td>112.54(15)</td>
<td></td>
</tr>
<tr>
<td>O2 C16 C17</td>
<td>107.80(15)</td>
<td></td>
</tr>
<tr>
<td>N1 C16</td>
<td>103.11(15)</td>
<td></td>
</tr>
<tr>
<td>O2 C16 C15</td>
<td>112.91(15)</td>
<td></td>
</tr>
<tr>
<td>N1 C16 C15</td>
<td>103.01(13)</td>
<td></td>
</tr>
<tr>
<td>C17 C16 C15</td>
<td>117.05(17)</td>
<td></td>
</tr>
<tr>
<td>C8 C7 C12</td>
<td>118.60(17)</td>
<td></td>
</tr>
<tr>
<td>C8 C7 C13</td>
<td>120.62(17)</td>
<td></td>
</tr>
<tr>
<td>C12 C7 C13</td>
<td>120.66(17)</td>
<td></td>
</tr>
<tr>
<td>C3 C2 C1</td>
<td>120.7(2)</td>
<td></td>
</tr>
<tr>
<td>O1 C15 C14</td>
<td>130.03(17)</td>
<td></td>
</tr>
<tr>
<td>O1 C15 C16</td>
<td>122.49(17)</td>
<td></td>
</tr>
<tr>
<td>C14 C15 C16</td>
<td>107.44(14)</td>
<td></td>
</tr>
<tr>
<td>C9 C8 C7</td>
<td>120.1(2)</td>
<td></td>
</tr>
<tr>
<td>C7 C12 C11</td>
<td>120.4(2)</td>
<td></td>
</tr>
<tr>
<td>C16 C17 C18</td>
<td>102.68(17)</td>
<td></td>
</tr>
<tr>
<td>N1 C19 C18</td>
<td>104.16(15)</td>
<td></td>
</tr>
<tr>
<td>C4 C5 C6</td>
<td>119.6(2)</td>
<td></td>
</tr>
<tr>
<td>C10 C9 C8</td>
<td>120.8(2)</td>
<td></td>
</tr>
<tr>
<td>C19 C18 C17</td>
<td>103.25(16)</td>
<td></td>
</tr>
<tr>
<td>C4 C3 C2</td>
<td>120.3(2)</td>
<td></td>
</tr>
<tr>
<td>C10 C11 C12</td>
<td>119.9(2)</td>
<td></td>
</tr>
<tr>
<td>C9 C10 C11</td>
<td>120.1(2)</td>
<td></td>
</tr>
<tr>
<td>C16 O2 C20</td>
<td>114.96(14)</td>
<td></td>
</tr>
<tr>
<td>C13 N1 C16</td>
<td>108.18(13)</td>
<td></td>
</tr>
<tr>
<td>C13 N1 C19</td>
<td>120.81(15)</td>
<td></td>
</tr>
<tr>
<td>C16 N1 C19</td>
<td>109.81(14)</td>
<td></td>
</tr>
</tbody>
</table>

_diffrn_measured_fraction_theta_max 0.935
_diffrn_reflns_theta_full 28.26
_diffrn_measured_fraction_theta_full 0.935
_refine_diff_density_max 0.099
_refine_diff_density_min -0.123
_refine_diff_density_rms 0.024
Crystal Data for

5-Hydroxy-2,3-diphenyl-8-methyl-1-azabicyclo[3.3.0]oct-2-en-4-one

(167)
data_mo_ilyas_1_0m

_audit_creation_method SHELXL-97
_chemical_name_systematic ;

_chemical_name_common ?
_chemical_melting_point ?
_chemical_formula_moiety ?
_chemical_formula_sum 'C20 H19 N O2 S'
_chemical_formula_weight 337.42

loop_
_atom_type_symbol _atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
'C' 'C' 0.0033 0.0016
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'H' 'H' 0.0000 0.0000
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'N' 'N' 0.0061 0.0033
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'O' 'O' 0.0106 0.0060
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'S' 'S' 0.1246 0.1234
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting triclinic
_symmetry_space_group_name_H-M 'P -1'
_symmetry_group_name_Hall '-P 1'

loop_
_symmetry_equiv_pos_as_xyz
'x, y, z'
'-x, -y, -z'

_cell_length_a 9.3235(8)
_cell_length_b 10.0115(9)
_cell_length_c 10.2395(10)
_cell_angle_alpha 86.573(2)
_cell_angle_beta 67.289(2)
_cell_angle_gamma 63.916(2)
_cell_volume 784.87(12)
_cell_formula_units_Z 2
_cell_measurement_temperature 100(2)
_cell_measurement_reflns_used 9337
_cell_measurement_theta_min 2.3875
_cell_measurement_theta_max 28.3261

_exptl_crystal_description block
_exptl_crystal_colour colourless
_exptl_crystal_size_max 0.50
_exptl_crystal_size_mid 0.20
_exptl_crystal_size_min 0.20
Appendix

Compound 167

_exptl_crystal_density_meas ?
_exptl_crystal_density_diffnrn 1.428
_exptl_crystal_density_method 'not measured'
_exptl_crystal_F_000 356
_exptl_absorpt_coefficient_mu 0.219
_exptl_absorpt_correction_type multi-scan
_exptl_absorpt_correction_T_min 0.8985
_exptl_absorpt_correction_T_max 0.9576
_exptl_absorpt_process_details sadabs

_exptl_special_details
;
?
;

diffrn_ambient_temperature 100(2)
diffrn_radiation_wavelength 0.71073
diffrn_radiation_type MoK\a
diffrn_radiation_source 'fine-focus sealed tube'
diffrn_radiation_monochromator graphite
diffrn_measurement_device_type 'Bruker APEX-II CCD'
diffrn_measurement_method ' and \w scans'
diffrn_detector_area_resol_mean ?
diffrn_reflns_number 4176
diffrn_reflns_av_R_equivalents 0.0122
diffrn_reflns_av_sigmaI/netI 0.0261
diffrn_reflns_limit_h_min -7
diffrn_reflns_limit_h_max 12
diffrn_reflns_limit_k_min -9
diffrn_reflns_limit_k_max 13
diffrn_reflns_limit_l_min -13
diffrn_reflns_limit_l_max 13
diffrn_reflns_theta_min 2.18
diffrn_reflns_theta_max 28.38
reflns_number_total 3326
reflns_number_gt 2786
reflns_threshold_expression >2sigma(I)

_computing_data_collection ?
_computing_cell_refinement ?
_computing_data_reduction ?
_computing_structure_solution 'SHELXS-97 (Sheldrick, 2008)'
_computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)'
_computing_molecular_graphics ?
_computing_publication_material ?

_refine_special_details
;

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and
goodness of fit S are based on F^2^,, conventional R-factors R are
based
on F^2^, with F set to zero for negative F^2^. The threshold expression
of
F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc.
and is
not relevant to the choice of reflections for refinement. R-factors
based

217
on F^2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

;

```plaintext
_refine_ls_structure_factor_coef  Fsqd
_refine_ls_matrix_type            full
_refine_ls_weighting_scheme       calc
_refine_ls_weighting_details      'calc w=1/(\|\Delta^2 (Fo^2)\|^2+(0.0651P)^2+0.2208P) where P=(Fo^2+2Fc^2)/3'
_atom_sites_solution_primary      direct
_atom_sites_solution_secondary    difmap
_atom_sites_solution_hydrogens    geom
_refine_ls_hydrogen_treatment     constr
_refine_ls_extinction_method      none
_refine_ls_extinction_coef        ?
_refine_ls_number_reflns          3326
_refine_ls_number_parameters      210
_refine_ls_number_restraints      0
_refine_ls_R_factor_all           0.0519
_refine_ls_R_factor_gt            0.0423
_refine_ls_wR_factor_ref          0.1178
_refine_ls_wR_factor_gt           0.1105
_refine_ls_goodness_of_fit_ref    1.043
_refine_ls_restrained_S_all       1.043
_refine_ls_shift/su_max           0.000
_refine_ls_shift/su_mean          0.000

loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fRACT_x
_atom_site_fRACT_y
_atom_site_fRACT_z
_atom_site_U_iso_or_equiv
_atom_site_adp_type
_atom_site_occupancy
_atom_site_symmetry_multiplicity
_atom_site_calc_flag
_atom_site_refinement_flags
_atom_site_disorder_assembly
_atom_site_disorder_group
  C1  C 0.23970(16)  0.60389(16)  0.34746(13)  0.0174(3)  Uani 1 1 d ...
  C3  C 0.05368(17)  0.78717(17)  0.24610(14)  0.0212(3)  Uani 1 1 d ...
  H3  H -0.0249  0.8139  0.2006  0.025  Uiso 1 1 calc R ...
  C6  C 0.28142(17)  0.71050(17)  0.38145(14)  0.0200(3)  Uani 1 1 d ...
  H6  H  0.3589  0.6845  0.4280  0.024  Uiso 1 1 calc R ...
  C2  C 0.12691(16)  0.64179(16)  0.27740(14)  0.0184(3)  Uani 1 1 d ...
  H2  H  0.1007  0.5683  0.2515  0.022  Uiso 1 1 calc R ...
  C8  C 0.00359(17)  0.66123(16)  0.67757(14)  0.0195(3)  Uani 1 1 d ...
  H8  H -0.0263  0.6797  0.5972  0.023  Uiso 1 1 calc R ...
  C4  C 0.09494(18)  0.89334(17)  0.28105(15)  0.0233(3)  Uani 1 1 d ...
  H4  H  0.0443  0.9927  0.2595  0.025  Uiso 1 1 calc R ...
  C9  C -0.10656(17)  0.75780(17)  0.80384(15)  0.0222(3)  Uani 1 1 d ...
  H9  H -0.2111  0.8419  0.8094  0.027  Uiso 1 1 calc R ...
  C12 C 0.19954(17)  0.51148(17)  0.78709(15)  0.0218(3)  Uani 1 1 d ...
  H12 H  0.3038  0.4277  0.7824  0.026  Uiso 1 1 calc R ...
```
C7 0.15939(16) 0.53588(16) 0.66642(14) 0.0184(3) Uani 1 1 d . . .
C5 0.21012(18) 0.85547(17) 0.34759(15) 0.0223(3) Uani 1 1 d . . .
H5 0.2399 0.9281 0.3697 0.027 Uiso 1 1 calc R . . .
C11 0.08825(19) 0.60870(18) 0.91298(15) 0.0254(3) Uani 1 1 d . . .
H11 0.1170 0.5906 0.9939 0.029 Uiso 1 1 calc R . . .
C10 -0.06510(18) 0.73247(16) 0.92284(15) 0.0243(3) Uani 1 1 d . . .
H10 -0.1405 0.7988 1.0096 0.029 Uiso 1 1 calc R . . .
C13 0.30152(16) 0.45421(16) 0.39501(14) 0.0171(3) Uani 1 1 d . . .
C14 0.27396(16) 0.42726(16) 0.53554(14) 0.0181(3) Uani 1 1 d . . .
C20 0.47265(19) 0.32324(19) 0.03342(15) 0.0273(3) Uani 1 1 d . . .
H20A 0.4387 0.2437 0.0323 0.041 Uiso 1 1 calc R . . .
H20B 0.5691 0.3110 -0.0575 0.041 Uiso 1 1 calc R . . .
H20C 0.3730 0.4212 0.0470 0.041 Uiso 1 1 calc R . . .
C16 0.45563(17) 0.19811(16) 0.37366(15) 0.0196(3) Uani 1 1 d . . .
C17 0.65349(17) 0.14216(18) 0.39501(14) 0.0248(3) Uani 1 1 d . . .
H17A 0.6897 0.2042 0.3421 0.030 Uiso 1 1 calc R . . .
H17B 0.7170 0.0359 0.3142 0.030 Uiso 1 1 calc R . . .
C15 0.36693(17) 0.26764(16) 0.53096(15) 0.0198(3) Uani 1 1 d . . .
C18 0.68292(18) 0.16085(18) 0.14659(16) 0.0260(3) Uani 1 1 d . . .
H18A 0.6798 0.0789 0.0999 0.031 Uiso 1 1 calc R . . .
H18B 0.7964 0.1617 0.0928 0.031 Uiso 1 1 calc R . . .
C19 0.53027(17) 0.31365(17) 0.15490(14) 0.0216(3) Uani 1 1 d . . .
H19 0.5651 0.3948 0.1552 0.026 Uiso 1 1 calc R . . .
N1 0.39168(14) 0.32724(13) 0.29900(12) 0.0185(3) Uani 1 1 d . . .
O1 0.37540(13) 0.19208(12) 0.62971(11) 0.0252(3) Uani 1 1 d . . .
O3 0.40367(13) 0.09216(12) 0.35296(11) 0.0242(2) Uani 1 1 d . . .
N3A 0.4654 0.0088 0.3713 0.036 Uiso 1 1 calc R . . .

loop_
_atom_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
_atom_site_aniso_U_13
_atom_site_aniso_U_12
C1 0.0164(6) 0.0140(7) 0.0202(6) 0.0021(5) -0.0056(5) -0.0071(5)
C3 0.0182(6) 0.0190(8) 0.0237(6) 0.0034(5) -0.0084(5) -0.0064(5)
C6 0.0190(6) 0.0185(8) 0.0235(6) 0.0028(5) -0.0082(5) -0.0096(5)
C2 0.0171(6) 0.0164(8) 0.0215(6) 0.0012(5) -0.0064(5) -0.0084(5)
C8 0.0196(6) 0.0170(8) 0.0246(6) 0.0058(5) -0.0101(5) -0.0099(5)
C4 0.0226(6) 0.0142(8) 0.0280(7) 0.0043(6) -0.0079(5) -0.0063(5)
C9 0.0177(6) 0.0184(8) 0.0292(7) 0.0054(6) -0.0077(5) -0.0087(5)
C12 0.0190(6) 0.0203(8) 0.0271(7) 0.0053(6) -0.0108(5) -0.0089(5)
C7 0.0177(6) 0.0158(8) 0.0247(6) 0.0048(5) -0.0084(5) -0.0105(5)
C5 0.0251(7) 0.0152(8) 0.0278(7) 0.0007(5) -0.0080(5) -0.0120(6)
C11 0.0261(7) 0.0273(9) 0.0244(7) 0.0046(6) -0.0119(6) -0.121(6)
C10 0.0223(6) 0.0219(8) 0.0250(7) -0.0005(6) -0.0057(5) -0.0096(6)
C13 0.0144(5) 0.0138(7) 0.0254(6) 0.0025(5) -0.0090(5) -0.0076(5)
C14 0.0169(6) 0.0148(8) 0.0246(6) 0.0041(5) -0.0097(5) -0.0077(5)
C20 0.0212(6) 0.0303(9) 0.0238(7) 0.0019(6) -0.0049(5) -0.0094(6)
C16 0.0193(6) 0.0131(8) 0.0286(7) 0.0029(5) -0.0127(5) -0.0064(5)
C17 0.0176(6) 0.0196(8) 0.0346(8) 0.0002(6) -0.0123(6) -0.0044(5)
C15 0.0185(6) 0.0168(8) 0.0276(7) 0.0034(5) -0.0120(5) -0.0086(5)
C18 0.0189(6) 0.0199(8) 0.0326(8) -0.0011(6) -0.0078(6) -0.0048(6)
C19 0.0168(6) 0.0188(8) 0.0250(7) 0.0004(5) -0.0044(5) -0.0077(5)
N1 0.0173(5) 0.0142(6) 0.0232(5) 0.0030(4) -0.0083(4) -0.0063(4)
O1 0.0306(5) 0.0161(6) 0.0320(5) 0.0077(4) -0.0179(4) -0.0092(4)
O3 0.0272(5) 0.0149(6) 0.0371(6) 0.0046(4) -0.0187(4) -0.0101(4)

_geom_special_details

; All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes.

;

loop_
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_site_symmetry_2
_geom_bond_publ_flag
C1 C6 1.388(2) . ?
C1 C2 1.4013(17) . ?
C1 C13 1.4780(18) . ?
C3 C4 1.385(2) . ?
C3 C2 1.3881(19) . ?
C3 H3 0.9500 . ?
C6 C5 1.392(2) . ?
C6 H6 0.9500 . ?
C2 H2 0.9500 . ?
C8 C9 1.383(2) . ?
C8 C7 1.4085(18) . ?
C8 H8 0.9500 . ?
C4 C5 1.392(2) . ?
C4 H4 0.9500 . ?
C9 C10 1.392(2) . ?
C9 H9 0.9500 . ?
C12 C11 1.384(2) . ?
C12 C7 1.4025(18) . ?
C12 H12 0.9500 . ?
C7 C14 1.472(2) . ?
C5 H5 0.9500 . ?
C11 C10 1.391(2) . ?
C11 H11 0.9500 . ?
C10 H10 0.9500 . ?
C13 N1 1.3639(19) . ?
C13 C14 1.3923(18) . ?
C14 C15 1.4377(19) . ?
C20 C19 1.517(2) . ?
C20 H20A 0.9800 . ?
C20 H20B 0.9800 . ?
C20 H20C 0.9800 . ?
C16 O3 1.4010(18) . ?
C16 N1 1.4722(17) . ?
C16 C17 1.5329(18) . ?
Appendix

Compound 167

C16 C15 1.537(2) . ?
C17 C18 1.529(2) . ?
C17 H17A 0.9900 . ?
C17 H17B 0.9900 . ?
C15 O1 1.2322(16) . ?
C18 C19 1.543(2) . ?
C18 H18A 0.9900 . ?
C18 H18B 0.9900 . ?
C19 N1 1.5042(16) . ?
C19 H19 1.0000 . ?
O3 H3A 0.8400 . ?

loop_
__geom_angle_atom_site_label_1
__geom_angle_atom_site_label_2
__geom_angle_atom_site_label_3
__geom_angle
__geom_angle_site_symmetry_1
__geom_angle_site_symmetry_2
__geom_angle_site_symmetry_3
__geom_angle_publ_flag
C6 C1 C2 119.90(13) . . ?
C6 C1 C13 120.51(11) . . ?
C2 C1 C13 119.40(13) . . ?
C4 C3 C2 120.16(12) . . ?
C4 C3 H3 119.9 . . ?
C2 C3 H3 119.9 . . ?
C1 C6 C5 120.24(12) . . ?
C1 C6 H6 119.9 . . ?
C5 C6 H6 119.9 . . ?
C3 C2 C1 119.67(14) . . ?
C3 C2 H2 120.2 . . ?
C1 C2 H2 120.2 . . ?
C9 C8 C7 120.95(12) . . ?
C9 C8 H8 119.5 . . ?
C7 C8 H8 119.5 . . ?
C3 C4 C5 120.44(13) . . ?
C3 C4 H4 119.8 . . ?
C5 C4 H4 119.8 . . ?
C8 C9 C10 120.35(13) . . ?
C8 C9 H9 119.8 . . ?
C10 C9 H9 119.8 . . ?
C11 C12 C7 120.42(13) . . ?
C11 C12 H12 119.8 . . ?
C7 C12 H12 119.8 . . ?
C12 C7 C8 118.15(13) . . ?
C12 C7 C14 119.89(12) . . ?
C8 C7 C14 121.87(12) . . ?
C4 C5 C6 119.56(14) . . ?
C4 C5 H5 120.2 . . ?
C6 C5 H5 120.2 . . ?
C12 C11 C10 121.01(13) . . ?
C12 C11 H11 119.5 . . ?
C10 C11 H11 119.5 . . ?
C11 C10 C9 119.12(14) . . ?
C11 C10 H10 120.4 . . ?
C9 C10 H10 120.4 . . ?
N1 C13 C14 114.01(12) . . ?
N1 C13 C1 120.56(11) . . ?
Appendix

Compound 167

C14 C13 C1 125.42(13) . . ?
C13 C14 C15 106.49(12) . . ?
C13 C14 C7 127.90(13) . . ?
C15 C14 C7 125.36(12) . . ?
C19 C20 H20A 109.5 . . ?
C19 C20 H20B 109.5 . . ?
H20A C20 H20B 109.5 . . ?
C19 C20 H20C 109.5 . . ?
H20B C20 H20C 109.5 . . ?
O3 C16 N1 109.66(10) . . ?
O3 C16 C17 113.28(12) . . ?
N1 C16 C17 102.32(11) . . ?
O3 C16 C15 111.42(11) . . ?
N1 C16 C15 103.42(11) . . ?
C17 C16 C15 115.70(11) . . ?
C18 C17 C16 101.71(10) . . ?
C18 C17 H17A 111.4 . . ?
C16 C17 H17A 111.4 . . ?
C18 C17 H17B 111.4 . . ?
C16 C17 H17B 111.4 . . ?
H17A C17 H17B 109.3 . . ?
O1 C15 C14 129.57(13) . . ?
O1 C15 C16 123.00(13) . . ?
C14 C15 C16 107.38(11) . . ?
C17 C18 C19 103.97(12) . . ?
C17 C18 H18A 111.0 . . ?
C19 C18 H18A 111.0 . . ?
C17 C18 H18B 111.0 . . ?
C19 C18 H18B 111.0 . . ?
H18A C18 H18B 109.0 . . ?
N1 C19 C20 113.28(11) . . ?
N1 C19 C18 102.46(11) . . ?
C20 C19 C18 113.59(13) . . ?
N1 C19 H19 109.1 . . ?
C20 C19 H19 109.1 . . ?
C18 C19 H19 109.1 . . ?
C13 N1 C16 108.04(11) . . ?
C13 N1 C19 122.03(11) . . ?
C16 N1 C19 111.24(10) . . ?
C16 O3 H3A 109.5 . . ?

_diffrrn_measured_fraction_theta_max 0.843
_diffrrn_reflns_theta_full 28.38
_diffrrn_measured_fraction_theta_full 0.843
_refine_diff_density_max 0.356
_refine_diff_density_min -0.190
_refine_diff_density_rms 0.045
Crystal Data for

5-Hydroxy-2,3-diphenyl-1-azabicyclo[3.3.0]oct-2-en-4-one

(185)
data_mo_iq165cfinalrt_0m

_audit_creation_method SHELXL-97
_chemical_name_systematic
;
;
_chemical_name_common ?
_chemical_melting_point ?
_chemical_formula_moiety ?
_chemical_formula_sum 'C19 H17 N O2'
_chemical_formula_weight 291.34

loop_
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
'C' 'C' 0.0033 0.0016
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'H' 'H' 0.0000 0.0000
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'N' 'N' 0.0061 0.0033
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'O' 'O' 0.0106 0.0060
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting
_symmetry_space_group_name_H-M

loop_
_symmetry_equiv_pos_as_xyz
'x, y, z'
'-x+1/2, y+1/2, -z+1/2'
'-x, -y, -z'
'x-1/2, -y-1/2, z-1/2'

_cell_length_a 9.1059(9)
_cell_length_b 17.3664(16)
_cell_length_c 9.7973(10)
_cell_angle_alpha 90.00
_cell_angle_beta 106.482(2)
_cell_angle_gamma 90.00
_cell_volume 1485.6(3)
_cell_formula_units_Z 4
_cell_measurement_temperature 240(2)
_cell_measurement_reflns_used
_cell_measurement_theta_min
_cell_measurement_theta_max

_exptl_crystal_description
_exptl_crystal_colour
_exptl_crystal_size_max 0.30
_exptl_crystal_size_mid 0.30
_exptl_crystal_size_min 0.20
_exptl_crystal_density_meas
Appendix

Compound 185

_exptl_crystal_density_diffrn 1.303
_exptl_crystal_density_method 'not measured'
_exptl_crystal_F_000 616
_exptl_absorpt_coefficient_mu 0.084
_exptl_absorpt_correction_type ?
_exptl_absorpt_correction_T_min 0.9751
_exptl_absorpt_correction_T_max 0.9833
_exptl_absorpt_process_details multi-scan

_exptl_special_details
;
;

diffrn_ambient_temperature 240(2)
diffrn_radiation_wavelength 0.71073
diffrn_radiation_type MoKα
diffrn_radiation_source 'fine-focus sealed tube'
diffrn_radiation_monochromator graphite
diffrn_measurement_device_type ?
diffrn_measurement_method ?
diffrn_detector_area_resol_mean ?
diffrn_reflns_number 17530
diffrn_reflns_av_R_equivalents 0.0306
diffrn_reflns_av_sigmaI/netI 0.0279
diffrn_reflns_limit_h_min -12
diffrn_reflns_limit_h_max 12
diffrn_reflns_limit_k_min -24
diffrn_reflns_limit_k_max 24
diffrn_reflns_limit_l_min -13
diffrn_reflns_limit_l_max 13
diffrn_reflns_theta_min 2.46
diffrn_reflns_theta_max 30.03
reflns_number_total 4345
reflns_number_gt 3077
reflns_threshold_expression >2sigma(I)

_computing_data_collection ?
_computing_cell_refinement ?
_computing_data_reduction ?
_computing_structure_solution 'SHELXS-97 (Sheldrick, 2008)'
_computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)'
_computing_molecular_graphics ?
_computing_publication_material ?

_refine_special_details
;
Refinement of F^2 against ALL reflections. The weighted R-factor wR and
goodness of fit S are based on F^2, conventional R-factors R are based
on F, with F set to zero for negative F^2. The threshold expression of
$F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is
not relevant to the choice of reflections for refinement. R-factors based
on F^2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

;

_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details
 'calc $w=1/[(\sigma^2(F_0^2)+(0.0620P)^2+0.1244P)]/3$'
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refine_ls_hydrogen_treatment mixed
_refine_ls_extinction_method SHELXL
_refine_ls_extinction_coef 0.000(5)
_refine_ls_extinction_expression
 'Fc'=kFc[1+0.001xFc^2\sin(2\phi)]^{-1/4}'
_refine_ls_number_reflns 4345
_refine_ls_number_parameters 201
_refine_ls_number_restraints 0
_refine_ls_R_factor_all 0.0668
_refine_ls_R_factor_gt 0.0436
_refine_ls_WR_factor_ref 0.1245
_refine_ls_WR_factor_gt 0.1113
_refine_ls_goodness_of_fit_ref 1.037
_refine_ls_restrained_S_all 1.037
_refine_ls_shift/su_max 1.719
_refine_ls_shift/su_mean 0.010

loop_
 _atom_site_label
 _atom_site_type_symbol
 _atom_site_fract_x
 _atom_site_fract_y
 _atom_site_fract_z
 _atom_site_U_iso_or_equiv
 _atom_site_occupancy
 _atom_site_symmetry_multiplicity
 _atom_site_calc_flag
 _atom_site_refinement_flags
 _atom_site_disorder_assembly
 _atom_site_disorder_group
 C1 C 0.44969(13) 0.14391(6) 0.34828(11) 0.0324(2) Uani 1 1 d . . .
 C2 C 0.57979(13) 0.09956(6) 0.36248(11) 0.0358(3) Uani 1 1 d . . .
 C3 C 0.55346(14) 0.05396(7) 0.23568(12) 0.0396(3) Uani 1 1 d . . .
 C4 C 0.39647(14) 0.07683(6) 0.13648(11) 0.0364(3) Uani 1 1 d . . .
 C5 C 0.26617(16) 0.01888(7) 0.11433(14) 0.0471(3) Uani 1 1 d . . .
 H5A H 0.2775 -0.0131 0.1992 0.056 Uiso 1 1 calc R . . .
 H5B H 0.2609 -0.0145 0.0325 0.056 Uiso 1 1 calc R . . .
 C6 C 0.12525(16) 0.07072(8) 0.08714(15) 0.0523(3) Uani 1 1 d . . .
 H6A H 0.0397 0.0436 0.1079 0.063 Uiso 1 1 calc R . . .
 H6B H 0.0392 0.0885 0.0119 0.063 Uiso 1 1 calc R . . .
 C7 C 0.17888(14) 0.13816(8) 0.18943(14) 0.0453(3) Uani 1 1 d . . .
 H7A H 0.1335 0.1867 0.1461 0.054 Uiso 1 1 calc R . . .
 H7B H 0.1516 0.1301 0.2782 0.054 Uiso 1 1 calc R . . .
Appendix

Compound 185

C8 C 0.41045(12) 0.19123(6) 0.45789(11) 0.0324(2) Uani 1 1 d . . .
C9 C 0.32798(14) 0.25951(7) 0.42091(13) 0.0404(3) Uani 1 1 d . . .
H9 H 0.3015 0.1912 0.4579 0.032 Uiso 1 1 calc R . . .
C10 C 0.32361(16) 0.27637(8) 0.42091(13) 0.0404(3) Uani 1 1 d . . .
H10 H 0.2850 0.2089 0.4209 0.040 Uiso 1 1 calc R . . .
C11 C 0.40528(15) 0.20888(8) 0.52395(15) 0.0485(3) Uani 1 1 d . . .
H11 H 0.4312 0.1919 0.5239 0.048 Uiso 1 1 calc R . . .
C12 C 0.44899(14) 0.16622(7) 0.59904(12) 0.0389(3) Uani 1 1 d . . .
H12 H 0.5047 0.1204 0.5990 0.039 Uiso 1 1 calc R . . .
C13 C 0.72767(13) 0.10436(7) 0.47413(10) 0.0370(3) Uani 1 1 d . . .
C15 C 0.79769(15) 0.17544(8) 0.51502(13) 0.0466(3) Uani 1 1 d . . .
H15 H 0.7458 0.2210 0.4779 0.056 Uiso 1 1 calc R . . .
C16 C 0.94317(16) 0.17968(10) 0.60995(16) 0.0590(4) Uani 1 1 d . . .
H16 H 0.9895 0.2279 0.6357 0.071 Uiso 1 1 calc R . . .
C17 C 1.02009(16) 0.11340(12) 0.66655(15) 0.0634(4) Uani 1 1 d . . .
H17 H 1.1187 0.1164 0.7308 0.076 Uiso 1 1 calc R . . .
C18 C 0.80607(15) 0.03795(9) 0.53269(14) 0.0485(3) Uani 1 1 d . . .
H18 H 1.0034 -0.0023 0.6681 0.072 Uiso 1 1 calc R . . .
N1 N 0.34733(11) 0.13871(5) 0.21562(10) 0.0350(2) Uani 1 1 d . . .
O1 O 0.63820(12) 0.00693(6) 0.20131(10) 0.0581(3) Uani 1 1 d . . .
O2 O 0.41219(12) 0.10612(5) 0.00720(9) 0.0479(2) Uani 1 1 d . . .
Appendix

Compound 185

_geom_special_details
;
All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes.
;
loop_
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_site_symmetry_2
_geom_bond_publ_flag
C1 N1 1.3707(13) . ?
C1 C2 1.3866(15) . ?
C1 C8 1.4744(14) . ?
C2 C3 1.4349(15) . ?
C2 C14 1.4768(16) . ?
C3 O1 1.2343(14) . ?
C3 C4 1.5354(17) . ?
C4 O2 1.4094(14) . ?
C4 N1 1.4673(14) . ?
C4 C5 1.5237(17) . ?
C5 C6 1.528(2) . ?
C6 C7 1.5286(18) . ?
C7 N1 1.4816(16) . ?
C8 C9 1.3953(16) . ?
C8 C13 1.3960(15) . ?
C9 C10 1.3884(16) . ?
C10 C11 1.3720(19) . ?
C11 C12 1.382(2) . ?
C12 C13 1.3880(17) . ?
C14 C15 1.3950(18) . ?
C14 C19 1.3915(18) . ?
C15 C16 1.388(2) . ?
C16 C17 1.380(2) . ?
C17 C18 1.376(2) . ?
C18 C19 1.394(2) . ?

loop_
_geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_3
_geom_angle_publ_flag
N1 C1 C2 112.98(9) . . ?
N1 C1 C8 119.16(10) . . ?
Compound 185

<table>
<thead>
<tr>
<th>Bond</th>
<th>Lipid 185</th>
<th>Lipid 186</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2 C1 C8</td>
<td>127.82(10)</td>
<td></td>
</tr>
<tr>
<td>C1 C2 C3</td>
<td>106.95(10)</td>
<td></td>
</tr>
<tr>
<td>C1 C2 C14</td>
<td>128.07(10)</td>
<td></td>
</tr>
<tr>
<td>C3 C2 C14</td>
<td>124.45(10)</td>
<td></td>
</tr>
<tr>
<td>O1 C3 C2</td>
<td>129.61(11)</td>
<td></td>
</tr>
<tr>
<td>O1 C3 C4</td>
<td>109.54(9)</td>
<td></td>
</tr>
<tr>
<td>O2 C4 C5</td>
<td>112.58(10)</td>
<td></td>
</tr>
<tr>
<td>N1 C4 C5</td>
<td>102.54(9)</td>
<td></td>
</tr>
<tr>
<td>O2 C4 C3</td>
<td>110.39(10)</td>
<td></td>
</tr>
<tr>
<td>N1 C4 C3</td>
<td>102.92(8)</td>
<td></td>
</tr>
<tr>
<td>C5 C4 C3</td>
<td>117.83(10)</td>
<td></td>
</tr>
<tr>
<td>C4 C5 C6</td>
<td>102.54(10)</td>
<td></td>
</tr>
<tr>
<td>C5 C6 C7</td>
<td>103.94(10)</td>
<td></td>
</tr>
<tr>
<td>N1 C7 C6</td>
<td>103.95(10)</td>
<td></td>
</tr>
<tr>
<td>O2 C4 C3</td>
<td>119.15(10)</td>
<td></td>
</tr>
<tr>
<td>N1 C7 C6</td>
<td>120.55(10)</td>
<td></td>
</tr>
<tr>
<td>C9 C8 C13</td>
<td>120.22(10)</td>
<td></td>
</tr>
<tr>
<td>C11 C9 C8</td>
<td>119.95(11)</td>
<td></td>
</tr>
<tr>
<td>C10 C9 C8</td>
<td>120.39(12)</td>
<td></td>
</tr>
<tr>
<td>C11 C10 C9</td>
<td>120.40(11)</td>
<td></td>
</tr>
<tr>
<td>C12 C13 C8</td>
<td>119.93(12)</td>
<td></td>
</tr>
<tr>
<td>C13 C12 C13</td>
<td>120.18(11)</td>
<td></td>
</tr>
<tr>
<td>C15 C14 C19</td>
<td>118.41(12)</td>
<td></td>
</tr>
<tr>
<td>C15 C14 C2</td>
<td>120.60(11)</td>
<td></td>
</tr>
<tr>
<td>C19 C14 C2</td>
<td>120.80(11)</td>
<td></td>
</tr>
<tr>
<td>C16 C15 C14</td>
<td>120.73(14)</td>
<td></td>
</tr>
<tr>
<td>C17 C16 C15</td>
<td>120.30(15)</td>
<td></td>
</tr>
<tr>
<td>C18 C17 C16</td>
<td>119.62(13)</td>
<td></td>
</tr>
<tr>
<td>C17 C18 C19</td>
<td>120.54(14)</td>
<td></td>
</tr>
<tr>
<td>C14 C19 C18</td>
<td>120.38(14)</td>
<td></td>
</tr>
<tr>
<td>C4 N1 N1 C7</td>
<td>123.82(10)</td>
<td></td>
</tr>
<tr>
<td>C4 N1 C7</td>
<td>111.08(9)</td>
<td></td>
</tr>
</tbody>
</table>

Diffrn Statistics

- **_differn_measured_fraction_theta_max**: 0.997
- **_differn_reflns_theta_full**: 30.03
- **_differn_measured_fraction_theta_full**: 0.997
- **_refine_diff_density_max**: 0.261
- **_refine_diff_density_min**: -0.174
- **_refine_diff_density_rms**: 0.032
Crystal Data for

3-Tert-butyl-2-phenyl-1-indenone

(237)
Appendix

Compound 237

data_mo_iylas_iql161_0ma

_audit_creation_method SHELXL-97
_chemical_name_systematic ;
 ?
 ;
_chemical_name_common ?
_chemical_melting_point ?
_chemical_formula_moiety ?
_chemical_formula_sum 'C19 H18 O2'
_chemical_formula_weight 278.33

loop_
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
'C' 'C' 0.0033 0.0016
'H' 'H' 0.0000 0.0000
'O' 'O' 0.0106 0.0060

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting
_symmetry_space_group_name_H-M ?

loop_
_symmetry_equiv_pos_as_xyz
 'x, y, z'
 '-x, -y, -z'

_cell_length_a 8.8973(4)
_cell_length_b 9.8539(4)
_cell_length_c 10.0315(7)
_cell_angle_alpha 106.0860(10)
_cell_angle_beta 113.2970(10)
_cell_angle_gamma 103.9330(10)
_cell_volume 712.36(7)
_cell_formula_units_Z 1
_cell_measurement_temperature 150(2)
_cell_measurement_reflns_used ?
_cell_measurement_theta_min ?
_cell_measurement_theta_max ?

_exptl_crystal_description
_exptl_crystal_colour ?
_exptl_crystal_size_max ?
_exptl_crystal_size_mid ?
_exptl_crystal_size_min ?
_exptl_crystal_density_meas ?
_exptl_crystal_density_diffrn 0.649
_exptl_crystal_density_method 'not measured'
_exptl_crystal_F_000 148
_exptl_absorp coefficent_mu 0.041
Appendix

Compound 237

_exptl_absorpt_correction_type
_exptl_absorpt_correction_T_min
_exptl_absorpt_correction_T_max
_exptl_absorpt_process_details

_exptl_special_details

;

_diffrn_ambient_temperature 150(2)
_diffrn_radiation_wavelength 0.71073
_diffrn_radiation_type MoK\a
_diffrn_radiation_source 'fine-focus sealed tube'
_diffrn_measurement_device_type
_diffrn_measurement_method
_diffrn_detector_area_resol_mean
_diffrn_reflns_number 19076
_diffrn_reflns_av_R_equivalents 0.0230
_diffrn_reflns_av_sigmaI/netI 0.0220
_diffrn_reflns_limit_h_min -13
_diffrn_reflns_limit_h_max 13
_diffrn_reflns_limit_k_min -14
_diffrn_reflns_limit_k_max 14
_diffrn_reflns_limit_l_min -14
_diffrn_reflns_limit_l_max 14
_diffrn_reflns_theta_min 2.34
_diffrn_reflns_theta_max 32.03
_reflns_number_total 4942
_reflns_number_gt 4080
_reflns_threshold_expression >2sigma(I)

_computing_data_collection
_computing_cell_refinement
_computing_data_reduction
_computing_structure_solution 'SHELXS-97 (Sheldrick, 2008)'
_computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)'
_computing_molecular_graphics
_computing_publication_material

_refine_special_details

Refinement of F^2 against ALL reflections. The weighted R-factor wr and
goodness of fit S are based on F^2, conventional R-factors R are based
on F, with F set to zero for negative F^2. The threshold expression of
$F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is
not relevant to the choice of reflections for refinement. R-factors based
on F^2 are statistically about twice as large as those based on F, and R-
factors based on ALL data will be even larger.
Appendix

Compound 237

_refine_ls_structure_factor_coeff Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details 'calc w=1/[\sigma^2(Fo^2)+(0.1000P)^2+0.0000P] where P=(Fo^2+2Fc^2)/3'
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refine_ls_hydrogen_treatment mixed
_refine_ls_extinction_method none
_refine_ls_extinction_coef ?
_refine_ls_number_reflns 4942
_refine_ls_number_parameters 184
_refine_ls_number_restraints 0
_refine_ls_R_factor_all 0.0528
_refine_ls_R_factor_gt 0.0421
_refine_ls_wR_factor_ref 0.1452
_refine_ls_wR_factor_gt 0.1353
_refine_ls_goodness_of_fit_ref 1.107
_refine_ls_restrained_S_all 1.107
_refine_ls_shift/su_max 0.001
_refine_ls_shift/su_mean 0.000

loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_occupancy
_atom_site_symmetry_multiplicity
_atom_site_calc_flag
_atom_site_refinement_flags
_atom_site_disorder_assembly
_atom_site_disorder_group
C1 C 0.88952(10) 0.71503(9) 0.47950(9) 0.01705(16) Uani 1 1 d . . .
C10 C 0.67715(11) 0.77400(9) 0.10134(9) 0.01729(16) Uani 1 1 d . . .
C9 C 0.67062(10) 0.75426(9) 0.24348(9) 0.01605(15) Uani 1 1 d . . .
C8 C 0.82721(10) 0.74819(9) 0.33700(9) 0.01644(15) Uani 1 1 d . . .
C16 C 0.51411(10) 0.75361(9) 0.27069(10) 0.01818(16) Uani 1 1 d . . .
O1 O 1.10424(9) 0.78994(9) 0.32878(9) 0.02939(17) Uani 1 1 d . . .
C11 C 0.84707(11) 0.79348(9) 0.12105(10) 0.01840(16) Uani 1 1 d . . .
C7 C 0.95035(11) 0.77874(9) 0.27066(10) 0.01854(16) Uani 1 1 d . . .
C2 C 1.04122(11) 0.82369(10) 0.62253(10) 0.02127(17) Uani 1 1 d . . .
H2 H 1.1006 0.9217 0.5297 0.026 Uiso 1 1 calc R . .
C12 C 0.89709(12) 0.81685(10) 0.01315(11) 0.02334(18) Uani 1 1 d . . .
H12 H 1.0144 0.8321 0.0316 0.028 Uiso 1 1 calc R . .
C15 C 0.55120(12) 0.77266(10) -0.03652(10) 0.02174(17) Uani 1 1 d . . .
H15 H 0.4339 0.7571 -0.0548 0.026 Uiso 1 1 calc R . .
C18 C 0.34878(12) 0.60515(11) 0.14401(11) 0.02550(19) Uani 1 1 d . . .
H18A H 0.3272 0.5943 0.0372 0.038 Uiso 1 1 calc R . .
H18B H 0.2448 0.6104 0.1537 0.038 Uiso 1 1 calc R . .
H18C H 0.3692 0.5163 0.1605 0.038 Uiso 1 1 calc R . .
C6 C 0.80779(12) 0.57012(10) 0.47023(11) 0.02234(17) Uani 1 1 d . . .
H6 H 0.7053 0.4944 0.3733 0.027 Uiso 1 1 calc R . .

233
Appendix

Compound 237

C13 C 0.76981(14) 0.81756(11) -0.12497(11) 0.02651(19) Uani 1 1 d . . .
H13 H 0.8002 0.8337 -0.2017 0.032 Uiso 1 1 calc R . .
C14 C 0.59995(13) 0.79466(10) -0.14881(10) 0.02504(19) Uani 1 1 d . . .
H14 H 0.5140 0.7938 -0.2433 0.030 Uiso 1 1 calc R . .
C5 C 0.87498(13) 0.53548(11) 0.60169(12) 0.0273(2) Uani 1 1 d . . .
H5 H 0.8191 0.4363 0.5939 0.033 Uiso 1 1 calc R . .
C19 C 0.47733(13) 0.89687(11) 0.25950(12) 0.02583(19) Uani 1 1 d . . .
H19A H 0.5838 0.9902 0.3405 0.039 Uiso 1 1 calc R . .
H19B H 0.3773 0.8982 0.2779 0.039 Uiso 1 1 calc R . .
H19C H 0.6622 0.8513 0.5185 0.039 Uiso 1 1 calc R . .
C17 C 0.54920(13) 0.76444(12) 0.43657(11) 0.02577(19) Uani 1 1 d . . .
H17A H 0.5559 0.6689 0.4444 0.039 Uiso 1 1 calc R . .
H17B H 0.4520 0.7801 0.4528 0.039 Uiso 1 1 calc R . .
H17C H 0.6622 0.8513 0.5185 0.039 Uiso 1 1 calc R . .
C3 C 1.10625(13) 0.78992(12) 0.75460(11) 0.0275(2) Uani 1 1 d . . .
H3 H 1.2076 0.8657 0.8523 0.033 Uiso 1 1 calc R . .
C4 C 1.02336(14) 0.64568(13) 0.74382(12) 0.0290(2) Uani 1 1 d . . .
H4 H 1.0684 0.6225 0.8339 0.035 Uiso 1 1 calc R . .

loop_
_atom_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
_atom_site_aniso_U_23
_atom_site_aniso_U_13
_atom_site_aniso_U_12
C1 0.0166(3) 0.0191(4) 0.0180(3) 0.0087(3) 0.0094(3) 0.0084(3)
C10 0.0186(3) 0.0165(3) 0.0170(3) 0.0068(3) 0.0088(3) 0.0073(3)
C9 0.0163(3) 0.0149(3) 0.0170(3) 0.0061(3) 0.0088(3) 0.0060(3)
C8 0.0162(3) 0.0171(3) 0.0172(3) 0.0077(3) 0.0090(3) 0.0068(3)
C16 0.0164(3) 0.0198(4) 0.0212(4) 0.0093(3) 0.0106(3) 0.0083(3)
O1 0.0198(3) 0.0440(4) 0.0343(4) 0.0228(3) 0.0158(3) 0.0164(3)
C11 0.0192(4) 0.0184(3) 0.0187(3) 0.0079(3) 0.0105(3) 0.0072(3)
C7 0.0175(3) 0.0200(4) 0.0208(3) 0.0093(3) 0.0110(3) 0.0079(3)
C2 0.0188(4) 0.0202(4) 0.0205(4) 0.0068(3) 0.0076(3) 0.0069(3)
C12 0.0251(4) 0.0252(4) 0.0235(4) 0.0114(3) 0.0153(3) 0.0085(3)
C15 0.0218(4) 0.0229(4) 0.0205(4) 0.0106(3) 0.0088(3) 0.0100(3)
C18 0.0188(4) 0.0253(4) 0.0280(4) 0.0098(4) 0.0105(3) 0.0055(3)
C6 0.0211(4) 0.0212(4) 0.0246(4) 0.0108(3) 0.0111(3) 0.0074(3)
C13 0.0343(5) 0.0261(4) 0.0227(4) 0.0131(3) 0.0165(4) 0.0100(4)
C14 0.0308(5) 0.0236(4) 0.0202(4) 0.0117(3) 0.0105(3) 0.0109(3)
C5 0.0316(5) 0.0301(5) 0.0351(5) 0.0224(4) 0.0213(4) 0.0166(4)
C19 0.0276(4) 0.0252(4) 0.0365(5) 0.0158(4) 0.0209(4) 0.0167(4)
C17 0.0254(4) 0.0355(5) 0.0248(4) 0.0141(4) 0.0169(4) 0.0157(4)
C3 0.0246(4) 0.0346(5) 0.0191(4) 0.0098(4) 0.0065(3) 0.0145(4)
C4 0.0327(5) 0.0425(5) 0.0272(4) 0.0227(4) 0.0177(4) 0.0242(4)

_geom_special_details
;
All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are
taken into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

loop_
__geom_bond_atom_site_label_1
__geom_bond_atom_site_label_2
__geom_bond_distance
__geom_bond_site_symmetry_2
__geom_bond_publ_flag
C1 C2 1.3956(12) . ?
C1 C6 1.3962(11) . ?
C1 C8 1.4754(10) . ?
C10 C15 1.3876(11) . ?
C10 C11 1.4015(11) . ?
C10 C9 1.5127(11) . ?
C9 C8 1.3646(10) . ?
C9 C16 1.5202(11) . ?
C8 C7 1.5042(11) . ?
C16 C17 1.5338(12) . ?
C16 C18 1.5406(12) . ?
C16 C19 1.5472(12) . ?
O1 C7 1.2194(10) . ?
C11 C12 1.3757(11) . ?
C11 C7 1.4873(11) . ?
C2 C3 1.3897(12) . ?
C12 C13 1.4037(13) . ?
C15 C14 1.4073(12) . ?
C6 C5 1.3918(12) . ?
C13 C14 1.3828(14) . ?
C5 C4 1.3848(15) . ?
C3 C4 1.3866(15) . ?

loop_
__geom_angle_atom_site_label_1
__geom_angle_atom_site_label_2
__geom_angle_atom_site_label_3
__geom_angle
__geom_angle_site_symmetry_1
__geom_angle_site_symmetry_3
__geom_angle_publ_flag
C2 C1 C6 118.67(7) . . ?
C2 C1 C8 120.36(7) . . ?
C6 C1 C8 120.73(7) . . ?
C15 C10 C11 118.40(8) . . ?
C15 C10 C9 132.79(8) . . ?
C11 C10 C9 108.79(7) . . ?
C8 C9 C10 108.14(7) . . ?
C8 C9 C16 129.85(7) . . ?
C10 C9 C16 121.89(7) . . ?
C9 C8 C1 132.72(7) . . ?
C9 C8 C7 109.05(7) . . ?
C1 C8 C7 118.22(7) . . ?
C9 C16 C17 113.58(7) . . ?
C9 C16 C18 109.59(7) . . ?
C17 C16 C18 108.39(7) . . ?
<table>
<thead>
<tr>
<th>Bond</th>
<th>C9 C16 C19</th>
<th>Angle (°)</th>
<th>Error (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C17 C16 C19</td>
<td>106.01(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C18 C16 C19</td>
<td>110.49(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12 C11 C10</td>
<td>123.21(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12 C11 C7</td>
<td>129.25(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10 C11 C7</td>
<td>107.52(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11 C7 C11</td>
<td>127.09(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11 C7 C8</td>
<td>126.71(8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond</th>
<th>C3 C2 C1</th>
<th>Angle (°)</th>
<th>Error (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C11 C12 C13</td>
<td>118.08(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10 C15 C14</td>
<td>118.96(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5 C6 C1</td>
<td>120.63(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14 C13 C12</td>
<td>119.67(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13 C14 C15</td>
<td>121.64(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4 C5 C6</td>
<td>119.99(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4 C3 C2</td>
<td>120.05(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5 C4 C3</td>
<td>120.01(8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

_diffrn_measured_fraction_theta_max_ 0.996
_diffrn_reflns_theta_full_ 32.03
_diffrn_measured_fraction_theta_full_ 0.996
_refine_diff_density_max_ 0.428
_refine_diff_density_min_ -0.265
_refine_diff_density_rms_ 0.046