University of Huddersfield Repository

Till, Rupert, Taylor, Andrew and Unver, Ertu

Stonehenge Ritual Sound

Original Citation


This version is available at http://eprints.hud.ac.uk/id/eprint/12210/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
The making of it

Stonehenge seems to be about the ancestors, the dead and their spirits, and ethnographic research suggested that a relevant ritual might involve trance, some kind of journey of the soul and consciousness, triggered by repetitive music and dancing. This fits in with concepts of Stonehenge as a site of healing, which again may have involved possession or shamanistic trance.

We knew from stone chips found in the space that Stonehenge was often filled with the percussive sound of stone on stone, as well as antler on stone and earth. We knew from traditional music cultures that music is often based on physical activities and work: that trance is a universal practice; and that percussion sounds are common in ancestor rituals. We knew that echoes in the space encourage one to play at a very specific tempo, something that would not normally be heard in prehistory without rain. This echo architecture of the space could set up very low entrainment. We had also discovered that playing in time with the echoes in the space could set up very low entrainment. We knew that prolonged dancing at such a tempo could cause heart rates of a very similar speed, aiding entrainment and entrancement. We had also discovered that playing in time with the echoes in the space could set up very low entrainment. We knew that prolonged dancing at such a tempo could cause heart rates of a very similar speed, aiding entrainment and entrancement.

The project imagines a group of people travelling from Durrington Walls, where they had watched the sun rising, to Stonehenge. We also imagined that the stones would have voices, adding their own sound to that made by the musical participants inside.

Research has shown that Stonehenge has complex acoustic effects present. Aaron Watson’s work with David Watson’s work with David has shown that Stonehenge has complex acoustic effects, including standing waves and filtering. However, this is only part of the story. Half of the stones at Stonehenge are missing or fallen. This project aimed to create an accurate digital model of what the last phase of Stonehenge looked like when all the stones were present. Digital modeling was also used to create an accurate acoustic model of the sound of the space.

The team are interested in creating experimental multimedia archaeology artworks that provide a phenomological exploration of archaeological sites. They set out to create an accurate digital replica of Stonehenge as it may have looked several thousand years ago. They draw on Johnson’s ideas of ecological understandings of perception, in which we perceive through a combined act of looking and listening, and thus want to produce works that have sonic content as well as visual imagery. Many archaeological reproducible projects take great care in ensuring that the imagery is as accurate as possible, but then use generic music and sound. This work takes a different approach, illustrating the dramatic sound effects possible at Stonehenge.

The team

Rupert Till, Andrew Taylor & Ertu Unver

Stonehenge Ritual Sound

This short 3D film tries to provide an immersive experience, in order to allow us to consider what it would have felt like to be at Stonehenge in prehistory.”

The FILM

The project imagines a musicalised ritual happening within the stone circle, on the winter solstice, at sunset. This, rather than the summer solstice, is the time that archaeologists tell was the most significant at Stonehenge in prehistory. Members of the Stonehenge Riverside Project, led by Mike Parker Pearson, gave us insight into prehistoric activity at Stonehenge.

The project imagines a group of people travelling from Durrington Walls, where they had watched the sun rising, to Stonehenge. We also imagined that the stones would have voices, adding their own sound to that made by the musical participants inside.

We therefore created a percussive sound playing inside Stonehenge, and illustrated how this sound would change as one approached the space using modeled textures. Stonehenge was often filled with the percussive sound of stone on stone, as well as antler on stone and earth. We knew from traditional music cultures that music is often based on physical activities and work; that trance is a universal practice; and that percussion sounds are common in ancestor rituals. We knew that echoes in the space could set up very low entrainment. We had also discovered that playing in time with the echoes in the space could set up very low entrainment. We knew that prolonged dancing at such a tempo could cause heart rates of a very similar speed, aiding entrainment and entrancement.

The light at dawn, the moon, the darkness has been winning in the battle of the skies. But today is a day of hope, a day marking the return of the sun (later Christians would mark the birth of the sun at the same time of the year). In the distance a group of people are making sounds in the stone circle. As we approach these sounds become clearer, changing as we move forward.

Stonehenge comes into view up the hill as we walk up the avenue, the ritual approach to the site. We walk to the heelstone, pausing to hear strange echoes, before walking up to the stone circle. Entering the circle the sound changes dramatically, enclosed by a ring of Stone. It is like being in a cave, but with the sky open above. The stones seem to have voices, adding their own sound to that made by the musical participants inside.

We approach the centre of the circle, and then our spirit rises up into the sky. The stones seem to have voices, adding their own sound to that made by the musical participants inside.

“Stonehenge was often filled with the percussive sound of stone on stone, as well as antler on stone and earth. We knew from traditional music cultures that music is often based on physical activities and work; that trance is a universal practice; and that percussion sounds are common in ancestor rituals. We knew that echoes in the space encourage one to play at a very specific tempo, something that would not normally be heard in prehistory without rain. This echo architecture of the space could set up very low entrainment. We had also discovered that playing in time with the echoes in the space could set up very low entrainment. We knew that prolonged dancing at such a tempo could cause heart rates of a very similar speed, aiding entrainment and entrancement. We had also discovered that playing in time with the echoes in the space could set up very low entrainment. We knew that prolonged dancing at such a tempo could cause heart rates of a very similar speed, aiding entrainment and entrancement.

The team are interested in creating experimental multimedia archaeology artworks that provide a phenomenological exploration of archaeological sites. They set out to create an accurate digital replica of Stonehenge as it may have looked several thousand years ago. They draw on Johnson’s ideas of ecological understandings of perception, in which we perceive through a combined act of looking and listening, and thus want to produce works that have sonic content as well as visual imagery. Many archaeological reproducible projects take great care in ensuring that the imagery is as accurate as possible, but then use generic music and sound. This work takes a different approach, illustrating the dramatic sound effects possible at Stonehenge.

Research has shown that Stonehenge has complex acoustic effects present. Aaron Watson’s work with David Keating showed that the current site has complex acoustic effects, including standing waves and filtering. However, this is only part of the story. Half of the stones at Stonehenge are missing or fallen. This project aimed to create an accurate digital model of what the last phase of Stonehenge looked like when all the stones were present. Digital modeling was also used to create an accurate acoustic model of the sound of the space.

The FILM

The project imagines a musically based ritual happening within the stone circle, on the winter solstice, at sunset. This, rather than the summer solstice, is the time that archaeologists tell was the most significant at Stonehenge in prehistory. Members of the Stonehenge Riverside Project, led by Mike Parker Pearson, gave us insight into prehistoric activity at Stonehenge.

The project imagines a group of people travelling from Durrington Walls, where they had watched the sun rising, to Stonehenge. We also imagined that the stones would have voices, adding their own sound to that made by the musical participants inside.

Stonehenge looks like when all the stones were present. Digital modeling was also used to create an accurate acoustic model of the space.

This short 3D film tries to provide an immersive experience, in order to allow us to consider what it would have felt like to be at Stonehenge in prehistory.”

The FILM

The project imagines a musically based ritual happening within the stone circle, on the winter solstice, at sunset. This, rather than the summer solstice, is the time that archaeologists tell was the most significant at Stonehenge in prehistory. Members of the Stonehenge Riverside Project, led by Mike Parker Pearson, gave us insight into prehistoric activity at Stonehenge.

The project imagines a group of people travelling from Durrington Walls, where they had watched the sun rising, to Stonehenge. We also imagined that the stones would have voices, adding their own sound to that made by the musical participants inside.

Stonehenge looks like when all the stones were present. Digital modeling was also used to create an accurate acoustic model of the space.

The FILM

The project imagines a musically based ritual happening within the stone circle, on the winter solstice, at sunset. This, rather than the summer solstice, is the time that archaeologists tell was the most significant at Stonehenge in prehistory. Members of the Stonehenge Riverside Project, led by Mike Parker Pearson, gave us insight into prehistoric activity at Stonehenge.

The project imagines a group of people travelling from Durrington Walls, where they had watched the sun rising, to Stonehenge. We also imagined that the stones would have voices, adding their own sound to that made by the musical participants inside.

Stonehenge looks like when all the stones were present. Digital modeling was also used to create an accurate acoustic model of the space.

The FILM

The project imagines a musically based ritual happening within the stone circle, on the winter solstice, at sunset. This, rather than the summer solstice, is the time that archaeologists tell was the most significant at Stonehenge in prehistory. Members of the Stonehenge Riverside Project, led by Mike Parker Pearson, gave us insight into prehistoric activity at Stonehenge.

The project imagines a group of people travelling from Durrington Walls, where they had watched the sun rising, to Stonehenge. We also imagined that the stones would have voices, adding their own sound to that made by the musical participants inside.

Stonehenge looks like when all the stones were present. Digital modeling was also used to create an accurate acoustic model of the space.