
University of Huddersfield Repository

Chrpa, Lukáš

Combining Learning Techniques for Classical Planning: Macro-operators and Entanglements

Original Citation

Chrpa, Lukáš (2010) Combining Learning Techniques for Classical Planning: Macro-operators and
Entanglements. In: Tools with Artificial Intelligence (ICTAI), 2010 22nd IEEE International
Conference on. IEEE, Arras, France, pp. 79-86. ISBN 9781424488179

This version is available at http://eprints.hud.ac.uk/id/eprint/12170/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Combining Learning Techniques for Classical
Planning: Macro-operators and Entanglements

Lukáš Chrpa
Agent Technology Center

Faculty of Electrical Engineering
Czech Technical University in Prague

chrpa@agents.felk.cvut.cz

Abstract—Planning techniques recorded a significant progress
during recent years. However, many planning problems remain
still hard and challenging. One of the most promising approaches
is gathering additional knowledge by using learning techniques.
Advantageously, many sorts of knowledge can be encoded back
into planning domains (or problems) and common planning
systems can be applied on them. Macro-operators are well known
sort of knowledge. Macro-operators are operators that represent
a sequence of primitive planning operators that are formalized
like ‘normal‘ planning operators. The other sort of knowledge
consists of pruning unnecessary operators’ instances (actions) by
investigating connections (entanglements) between operators and
initial or goal predicates. In this paper, we will show how we can
put these approaches together. We will of course experimentally
evaluate how the performance of planners is improved. The
experiments showed that combining of these learning techniques
can improve the planning process.

I. INTRODUCTION

Planning problems [1] belong to one of the most important
research areas of Artificial Intelligence (AI). Despite a sig-
nificant progress in solving planning problems during recent
years, many of them are still remaining hard and challenging.
This is the main reason why more and more researchers
are focusing on using learning techniques that can gather
additional knowledge to support the planning process. Even
though the idea of using learning in planning is not very
new [2] the real boom came in recent years resulting in
organization of the learning track in the 6th International
Planning Competition (IPC)1.

Thanks to the IPC, a lot of planning systems has been
developed. Neo-classical planning techniques explores the
Planning Graph [3], a structure that helps to avoid symmetries
usually appearing during the ‘classical‘ forward or backward
search. Successful planning systems (like [4], [5]) are based
on heuristics search [6], where heuristics are usually computed
over the (relaxed) Planning Graph. Some planning systems
also benefit from a translation of planning problems into other
formalisms like Boolean Satisfiability (SAT) [7] or Constraint
Satisfaction Problems (CSP) [8].

Complexity of (classical) planning, however, is up to
EXPSPACE-complete [9] (considering the classical represen-
tation of planning problems [1]). Such a huge complexity can
simply cause that even the best planning systems often fail to

1http://ipc.icaps-conference.org

solve little harder planning problems. Despite the existence of
many powerful heuristics planning itself is still mainly about
‘brute force‘ search. There exists a possibility how the plan-
ning process can be improved. By using learning techniques
we can obtain knowledge describing some characteristics for
particular classes of planning problems. This knowledge can
be learnt from training plans - solutions of simpler planning
problems of the given class.

Generating macro-operators [10] is well known and thor-
oughly studied sort of knowledge. Macro-operators can be
understood as ‘normal‘ planning operators representing a
sequence of primitive planning operators. There have been
developed several approaches [11], [12], [13], [14], [15]
that can generate macro-operators. Macro-operators serve like
‘shortcuts‘ in the search space that reduce its depth. However,
on the other hand macro-operators are responsible for an
increase of the branching factor. Additionally, in [14], [15]
all the primitive operators replaced by the generated macro-
operators in all the training plans were removed. It gained very
promising results, especially the planners’ running times were
significantly reduced.

Eliminating unnecessary actions is a possibility how the
branching factor can be reduced. Many existing planning
systems (for instance FF [4]) are able to prune unreachable
actions, i.e., actions that cannot be applied in any point of
the planning process. Besides this, the work presented in [16],
[14] learns connections (called entanglements) between plan-
ning operators and initial or goal atoms (predicates). Actions
(normally reachable) that violate the learned entanglements
are eliminated. This method gained very promising results as
well.

In this paper we are focusing on a combination of the both
learning techniques (macro-operators and entanglements). We
believe that it can help with reducing both the depth of the
search space and the branching factor. We will experimentally
evaluate how the planning process can be improved when
macro-operators and entanglements are used together.

This paper is organized as follows. First, we will introduce
basic notions from the planning theory, then we will say what
macro-operators and entanglements stand for. Then, we will
formally show how macro-operators and entanglements can
be combined. It is followed by an example which will help
the reader to understand how it works. Then, we will provide

a thorough experimental evaluation and then we will finally
conclude.

II. PRELIMINARIES

Traditionally, AI planning deals with the problem of finding
a sequence of actions transforming the world from some initial
state to a goal state. A predicate p(t1, . . . , tn) is a construct,
where p represents a predicate symbol and t1, . . . , tn are
terms (variables or constants). A predicate is grounded if
and only if all its terms are constants. A state s is a set of
(grounded) predicates that are true in s. Action a is a triple
(pre(a), eff−(a), eff+(a)) of sets of grounded predicates
such that pre(a) is a set of grounded predicates representing
the precondition of the action a, eff−(a) is a set of negative
effects of the action a, eff+(a) is a set of positive effects
of the action a, and eff−(a) ∩ eff+(a) = ∅ (in literature,
this condition is not always presented, but for a sequential
planning we are dealing with, obeying this condition does not
bring more expressiveness). An action a is applicable to a
state s if pre(a) ⊆ s. If the action a is applicable to the state
s, then the new state s′ obtained after applying the action is
s′ = (s \ eff−(a)) ∪ eff+(a). A planning operator o is a
3-tuple (pre(o), eff−(o), eff+(o)) of sets of predicates (not
necessarily grounded) and if there exists a substitution Θ from
variables to constants then (pre(o), eff−(o), eff+(o))Θ is
an action. A planning domain is represented by a set of
predicates and a set of operators (or actions if the planning
domain is grounded). A planning problem is represented by
a planning domain, a set of constants representing particular
objects, an initial state, and a set of goal predicates. A (valid)
plan is an ordered sequence of actions which leads from
the initial state to any goal state containing all of the goal
predicates. A planning problem is solvable if and only if there
exists a valid plan. For a deeper insight in this area, see [1].

Planning domains and problems are usually formalized in
a LISP-based language called Planning Domain Definition
Language (PDDL) [17]. PDDL representation of classical
planning problems, we are dealing with in this paper, is often
called STRIPS representation.

III. MACRO-OPERATORS

Macro-operators, as mentioned before, act as sequences of
primitive operators. Obviously, macro-operators can be under-
stood as ‘shortcuts‘ in the search space, because shorter plans
need to be explored to find a solution. Basically, the advantage
of using macro-operators takes place if the corresponding
sequences of instances of primitive operators appear frequently
in plans. A macro-operator oi,j is constructed by assembling
operators oi and oj (in this order) in the following way:
• pre(oi,j) = pre(oi) ∪ (pre(oj) \ eff+(oi))
• eff−(oi,j) = (eff−(oi) ∪ eff−(oj)) \ eff+(oj)
• eff+(oi,j) = (eff+(oi) ∪ eff+(oj)) \ eff−(oj)

By a simple consideration that a macro-operator is a planning
operator we can easily extend the construction for larger
sequences of primitive operators.

The idea of using macro-operators (or macro-actions) is
not very new, it is advisable to mention REFLECT [2] or
Macro Problem Solver [10]. State-of-the-art systems can be
divided into two main groups - planner dependent and planner
independent. MARVIN [18] or SOL-EP version of MACRO-
FF [13] are build upon FF planner [4], so they belong to
the planner dependent group. On the other hand, planner
independent macro-operator learning systems can be used with
an arbitrary planner without changing its code. CA-ED version
of MACRO-FF [13] or WIZARD [11] are good examples of
such planner independent systems. Finally, work described
in [14], [15] is also a planner independent macro-operator
learning system, but it in addition removes primitive operators
replaced by generated macro-operators in all the training plans.

IV. ENTANGLEMENTS

Entanglements [16], [15] refer to connections between
planning operators and initial or goal predicates. Such actions
(instances of operators) that violate entanglements can be
pruned even though these actions might be reachable. It is
good for reducing the branching factor. According to [16],
we provide formal definitions.

Definition 1: Let P = 〈Σ, s0, g〉 be a planning problem,
o be a planning operator from Σ and p be a predicate.
The operator o is entangled by init (resp. goal) with the
predicate p in the planning problem P if and only if
p ∈ pre(o) (resp. p ∈ eff+(o)) and there exists a plan
π that solves P and for every action a ∈ π which is an
instance of o and for every grounded instance pground of the
predicate p holds: pground ∈ pre(a) ⇒ pground ∈ s0 (resp.
pground ∈ eff+(a) ⇒ pground ∈ g).

Definition 2: Let Σ be a planning domain, o be a planning
operator from Σ and p be a predicate. The operator o is fully
entangled by init (resp. goal) with the predicate p if and only
if there does not exist any planning problem P over Σ where
o in not entangled by init (resp. goal) with p in P . In addition
we define a set plans(P, o, p, init (resp. goal)) = {π | π is
a solution of P and satisfy the conditions of entanglement of
o and p regarding def. 1}.

The entanglement by init (resp. goal) says that in a given
planning problem we use only such instances of operators,
whose predicates in preconditions (resp. positive effects)
correspond with the initial (resp. goal) predicates. The full
entanglement extends this for every solvable planning problem
in the given domain.

Definition 2 ensures the existence of plans for every
solvable planning problem when pruning actions violating
the full entanglement conditions. In a general case, each full
entanglement somehow restricts those sets of plans allowing
only such actions that do not violate the particular full
entanglement. However, such restrictions differ regarding the
particular full entanglements. The different full entanglements
can be used together in such a way that every solvable

planning problem remains solvable even if actions violating
all the full entanglements are pruned.

Definition 3: Let Σ be a planning domain, SFE a set of
triples SFE = {(o1, p1, t1), . . . , (on, pn, tn)}, where oi is an
operator from Σ, pi is a predicate from Σ, ti ∈ {init, goal}
and oi is fully entangled by ti on pi. If for every solvable
planning problem P over Σ

⋂n
i=1 plans(P, oi, pi, ti) 6= ∅

holds, then SFE is a set of compatible full entanglements.

Detecting (compatible) full entanglements might be done
theoretically, but it requires a domain expert who will theoret-
ically prove the entanglements for particular domains. In [16],
the (compatible) full entanglements are detected heuristically
in terms that it is investigated whether the particular full
entanglement holds for all the training plans (modified ver-
sion incorporates a ‘flaws‘ ratio allowing a small number of
violations of the entanglement condition in the training plans).

V. COMBINING MACRO-OPERATORS AND
ENTANGLEMENTS

As mentioned before in the text, the main issue of us-
ing macro-operators rests in the significant increase of the
branching factor. On the other hand, eliminating actions via
entanglements is a technique that reduces the branching factor.
Obviously, we believe that combining the both techniques
could result in an improvement of the planning process.

The main question is how macro-operators and
entanglements can be combined. In the following lines,
we will formally show how to combine macro-operators and
(full) entanglements.

Proposition 1: Let oi,j be a macro-operator constructed
from planning operators oi and oj (in this order). Let p be
a predicate. Then, the following statements hold:

1) If oi is fully entangled by init with p, then oi,j is also
fully entangled by init with p.

2) If oj is fully entangled by init with p, then oi,j is also
fully entangled by init with p iff p 6∈ eff+(oi).

3) If oi is fully entangled by goal with p, then oi,j is also
fully entangled by goal with p iff p 6∈ eff−(oj).

4) If oj is fully entangled by goal with p, then oi,j is also
fully entangled by goal with p.

Proof:
1) We know from the definition of entanglements that

p ∈ pre(oi). Considering that pre(oi,j) = pre(oi) ∪
(pre(oj) \ eff+(oi)) we get that p ∈ pre(oi,j).

2) We know from the definition of entanglements that
p ∈ pre(oj). Considering that pre(oi,j) = pre(oi) ∪
(pre(oj) \ eff+(oi)) and p 6∈ eff+(oi) we get that
p ∈ pre(oi,j).

3) We know from the definition of entanglements that p ∈
eff+(oi). Considering that eff+(oi,j) = (eff+(oi) ∪
eff+(oj)) \ eff−(oj) and p 6∈ eff−(oj) we get that
p ∈ eff+(oi,j).

4) We know from the definition of entanglements that p ∈
eff+(oj). Considering that eff+(oi,j) = (eff+(oi) ∪
eff+(oj)) \ eff−(oj) and eff−(oj) ∩ eff+(oj) = ∅
we get that p ∈ eff+(oi,j).

We showed that the predicate (p) is inherited from the prim-
itive operators (o1 or o2) if the ceratin conditions (listed in
1-4) held. Considering the fact (from the definition of full
entanglements) that there exist a plan solving every solvable
planning problem such that all instances of o1 (resp. o2) satisfy
the entanglement conditions. It means that the certain instance
of the predicate p (involved in the entanglement) corresponds
with some initial or goal predicate. If the (consecutive) in-
stances of o1 and o2 are assembled into the macro-action (the
instance of o1,2), then we know that the same instance of p
is also presented in the precondition (resp. positive effects)
of this macro-action. Obviously, this instance of p satisfy the
entanglement conditions with respect to oi,j .

We proved that macro-operators assembled from two primi-
tive operators can inherit the entanglements from them. It can
be easily extended, because every macro-operator is also a
planning operator that can be assembled with other primitive
operator or macro-operator, and so on.

VI. EXAMPLE

Let us consider the well known planning domain
Blocksworld [19]. In the Blocksworld domain, there is a
robotic arm which can move blocks on or off the table
or the other blocks. Blocks can be stacked only in tower
structures (i.e., no block can be stacked directly on more
than one block and at most one block can be stacked on
another block). In the Blocksworld domain, we have four
planning operators: STACK (stacks a block on another block),
UNSTACK (unstacks a block from another block), PICKUP
(picks a block from the table), and PUTDOWN (puts a block
to the table). Operators STACK and UNSTACK have two
arguments (they operate with two blocks), the other operators
just one.

From the macro-operators point of view, we can simply
observe that the instances of UNSTACK are followed by
the instances of PUTDOWN or STACK and the instances of
PICKUP are followed by the instances of STACK. It results
in a creation of macro-operators UNSTACK-PUTDOWN (un-
stacks a block from another block and puts it to the table),
UNSTACK-STACK (unstacks a block from another block and
stacks it to another block) and PICKUP-STACK (picks up a
block from the table and stacks it to another block). If no initial
or goal state consider situation where the robotic arm holds
some block, then we can remove all the primitive operators.

From the entanglements point of view, we can see that
to find a solution we have to take down the initial ‘towers‘
of blocks and then we have to build the required ‘towers‘
of blocks. By a simple observation we can find out that
UNSTACK (resp. STACK) operators are (fully) entangled by
init (resp. goal) with a predicate describing what block is
stacked on another block. For instance, if a block B is initially

Fig. 1. An example of entanglements in a simple Blocksworld problem

stacked on a block A, then we allow action UNSTACK(B,A),
otherwise we prune this action (see fig. 1).

If we put both approaches together, then according to the
proposition 1 the (full) entanglements are inherited by the
macro-operators from the primitive operators. UNSTACK-
PUTDOWN (resp. PICKUP-STACK) has the same arguments
as UNSTACK (resp. STACK), it means that inheriting the
(full) entanglements results in allowing the same instances,
i.e., we allow the same instances of UNSTACK-PUTDOWN
as we allowed for UNSTACK (similarly for PICKUP-STACK
and STACK). UNSTACK-STACK is the most interesting
macro-operator, because it inherits the (full) entanglements
from the both UNSTACK and STACK operators. It results
in the fact that action UNSTACK-STACK(A,B,C) is allowed
if and only if A is initially stacked on B and A is required to
be stacked on C.

Let us assume we have a planning problem with n blocks.
It is straightforward that if we use the macro-operators
(and remove the primitive operators), then we reduce the
depth of the search space to half (all the macro-operators
consist of two primitive operators). The question is how
many actions (instances of operators or macro-operators) are
considered. Here we provide upper estimation for all the cases:

Original: 2n2 + 2n - UNSTACK and STACK have
two arguments, PICKUP and PUTDOWN
have only one argument.

Macro-operators: n3 + 2n2 - UNSTACK-STACK has three
arguments, UNSTACK-PUTDOWN and
PICKUP-STACK have two arguments.

Entanglements: 4n - as explained before the (full) entan-
glements allow to instantiate UNSTACK
actions in such a way that we can only
unstack a block from its initial position.
As we know from the domain description,
the block can be stacked on at most one
other block. It similarly holds for STACK.

Both: 3n - UNSTACK-PUTDOWN and
PICKUP-STACK are affected by the

(full) entanglements in the similar way
as UNSTACK and STACK. UNSTACK-
STACK is affected in such a way that a
block can be moved only from its initial
position to its goal position. It results
that for every block that is going to move
we can have at most one instance of
UNSTACK-STACK.

The number of considered actions in particular planning
problems do not have to be necessarily in correlation with the
branching factor. On the other hand, it may give us an insight
how difficult it could be for planners to find a solution. We
can see that in the Blocksworld domain combining macro-
operators and entanglements results either in the reduction of
the depth of the search space and the number of considerable
actions. It gives us a positive outlook for using both learning
methods (macro-operators and entanglements) together.

VII. EXPERIMENTAL EVALUATION

A. Tested domains

We chose several planning domains for our experiments
to ensure that the proposed approach is generally applicable
(rather than specific for a particular planning domain). In
particular, we used domains well known from the IPC.

Depots is a planning domain from the 3rd IPC. This domain
accommodates both blocks and logistics environments. They
are combined to form a domain in which trucks can transport
crates around and then the crates must be stacked onto pallets
at their destinations. The stacking is achieved using hoists,
so the stacking problem is like a blocks-world problem with
hands. Trucks can behave like ‘tables‘, since the pallets on
which crates are stacked are limited.

Zeno Travel is a planning domain from the 3rd IPC. This
domain involves transporting people around in planes, using
different modes of movement: fast and slow.

Gold Miner is a planning domain from the 6th IPC learning
track. A robot is in a mine and has the goal of reaching a
location that contains gold. The mine is organized as a grid
with each cell either being hard or soft rock. There is a special
location where the robot can either pickup an endless supply
of bombs or pickup a laser cannon. The laser cannon can shoot
through both hard and soft rock, whereas the bomb can only
penetrate soft rock. However, the laser cannon will also destroy
the gold if used to uncover the gold location. The bomb will
not destroy the gold.

Rovers is a planning domain from the 3rd IPC. Inspired
by planetary rovers problems, this domain requires that a
collection of rovers navigate a planet surface, finding samples
and communicating them back to a lander.

Gripper is a planning domain from the 1st IPC. In this
domain, there is a robot with two grippers. It can carry a ball
in each. The goal is to take N balls from one room to another.

Domain MO added PO removed Ent
Depots 2 4 5
Zeno 1 1 2
Gold-Miner 2 3 3
Rovers 1 2 7
Gripper 2 3 4

TABLE I
THE TABLE SHOWS THE RESULTS OF THE LEARNING PHASE (MO =

MACRO-OPERATORS ADDED, PO = PRIMITIVE OPERATORS REMOVED AND
ENT = ENTANGLEMENTS DETECTED.)

Domain Macro Ent Both
Depots 266% 20% 7%
Zeno 85% 85% 70 %
Gold-Miner 108% 96% 76%
Rovers 59% 100% 59%
Gripper 3152% 51% 1576%

TABLE III
THE TABLE SHOWS HOW MANY ACTIONS IN COMPARISON TO ORIGINAL

PROBLEMS (IN AVERAGE) WERE CONSIDERED DURING COMPUTATION
(RESULTS OBTAINED BY LAMA).

B. Learning phase

Regarding the macro-operator generation we took the results
gained in [14], [15], where the number of training plans
(generated by SATPLAN [20] or SGPLAN [21]) varied from
3-6. Similarly, regarding the entanglements we took the results
gained in [16], [15] or generate the new ones by the method
listed also in [16], [15]. The number of training plans (gen-
erated by SATPLAN [20] only in this case) varied also from
3-6. In the table I we can see the results of the learning phase.
The generated macro-operators were assembled in the most
cases from a sequence of two primitive operators, except the
Gripper domain, where the macro-operators were assembled
from a sequence of 5, respectively 6 primitive operators, and
the Gold Miner domain, where one of the macro-operators
were assembled from a sequence of 4 primitive operators.

The advantage of these methods rests in a little time (tenths
of seconds) that was spent on learning. Combining macro-
operators and entanglements (according to the proposition 1)
can be also done very quickly.

C. Comparisons

In the table III we can see the number of actions considered
by the planners during searching for plans (obtained by the
LAMA planner [22]). It is clear (from the definition of
entanglements) that the number of actions considered by the
planners in the ‘entanglement‘ case cannot be larger than
in the original case. However, in the Rovers domain the
entanglements were able to prune only unreachable actions,
so the number of considered actions remained the same.
Regarding the macro-operators we expected that the number
of considered actions will grow (in the Gripper domain it
grew rapidly). On the other hand the results showed (thanks
to removing replaced primitive operators) that in some cases
the number of considered actions may be lower. When the
both learning techniques are combined it in the most cases

(except the Gripper domain) leaded to the lowest number of
considerable actions as the example in the previous section
indicated.

In the table II there are presented the results of time com-
parison2. The results were obtained by SATPLAN 2006 [20],
SGPLAN 5.22 [21] and LAMA [22]. These planners per-
formed well on the last IPCs. The cell value ’>600’ means that
the planner did not find the solution within the timeout 600
seconds. The cell value ’err’ means that the planner terminated
with unexpected error, for instance, SATPLAN terminated in
the most cases from out of memory reasons.

In the table IV there are presented summarized results for
the both time comparison and plan quality. Speed-ups are
computed as a geometric mean of torig/t (torig stands for
the running time of the original problem, t stands for the
running time of the reformulated problem). We took into the
account only such problems, where the original and reformu-
lated problem were both successfully solved. Similarly, plans
quality is computed as a geometric mean of |πorig|/|π|. Speed-
ups as presented here give us an overview of the potential
improvement of the planning process achieved by the learning
techniques. However, in cases when the original problems
were unsolved or, on the other hand, solved very quickly,
then the speed-up values may become inaccurate (to get deeper
insight about speed-ups and time comparisons at all, remember
the table II).

D. Discussion

The presented results showed that combining macro-
operators and entanglements is reasonable and can help to
improve the planning process.

SATPLAN [20] is a planner that translates the Planning
Graph [3] into boolean formulae and then applies a SAT solver
that solves it. Straightforwardly, SATPLAN’s performance
depends mainly on the Planning Graph itself. The Planning
Graph, simply said, allows to perform a bunch of actions
that do not interfere in one step (it prunes many symmetries).
The number of such steps is denoted as Makespan. By using
entanglements we can prune unnecessary actions. It makes
the Planning Graph less complex even though makespan
mostly remained the same. The experiments showed speed-
ups in all the tested problems that were solved within the
timeout. Surprisingly, the experiments showed speed-ups in
the Rovers domain (entanglements) even though there have
not been pruned any reachable actions. Potential success of
using macro-operators rests in the reduction of makespan. For
instance in the Gripper domain, SATPLAN was able to solve
problems with macro-operators in two steps (makespan=2)
even though the original problems were unsolved. However,
if makespan grows or is reduced only slightly, it may result
in slow-down, because the Planning Graph can be much more
complex (increased branching factor). The good example of
this is the Rovers domain. Combining the both approaches
(macro-operators and entanglements) brought benefits like

2Performed on Core2Duo 2.4GHz, 4GB RAM, Ubuntu Linux

problem SATPLAN SGPLAN LAMA
orig macro ent both orig macro ent both orig macro ent both

depotprob1817 >600 err >600 >600 24.47 15.52 0.16 err 331.11 93.68 3.68 0.12
depotprob1916 137.85 err 5.36 0.62 0.40 1.73 80.53 16.90 1.74 2.46 0.14 0.05
depotprob4321 5.25 2.07 0.46 0.02 0.03 0.04 0.00 0.01 4.94 0.25 0.03 0.01
depotprob4398 1.11 2.76 0.29 0.03 0.03 0.13 0.00 0.50 0.23 0.41 0.03 0.01
depotprob4534 >600 err >600 218.62 >600 0.53 >600 0.02 362.81 1.39 5.86 0.02
depotprob5646 0.38 6.08 0.09 0.14 0.02 0.05 0.00 0.01 0.17 0.25 0.02 0.00
depotprob5656 222.28 143.33 5.92 1.10 410.61 0.32 0.24 0.03 >600 0.53 3.41 0.02
depotprob6178 6.92 26.11 1.49 0.19 0.10 0.27 0.02 371.19 11.61 1.44 0.06 0.02
depotprob6587 3.36 19.02 0.59 0.08 0.07 0.41 0.01 err 0.42 0.98 0.05 0.02
depotprob7615 >600 err >600 >600 8.06 1.88 >600 err >600 5.71 >600 0.06
depotprob7654 10.08 16.45 1.41 0.11 0.09 0.07 0.00 28.40 1.45 0.59 12.32 0.01
depotprob8715 36.04 err 8.70 0.96 0.27 2.84 0.04 0.05 1.65 6.35 0.17 0.04
depotprob9876 >600 err >600 67.86 0.23 0.42 516.15 19.84 580.18 1.27 0.19 0.02
ztravel-3-7 1.87 2.62 1.54 2.36 0.01 0.00 0.00 0.01 0.04 0.05 0.04 0.04
ztravel-3-8a 1.68 2.14 1.33 1.75 0.01 0.01 0.00 0.00 0.05 0.04 0.04 0.04
ztravel-3-8b 0.86 1.01 0.62 0.86 0.01 0.00 0.00 0.00 0.04 0.03 0.04 0.02
ztravel-3-10 3.76 4.17 3.71 5.04 0.01 0.02 0.00 0.02 0.05 0.06 0.05 0.06
ztravel-5-10 34.23 48.19 22.23 33.91 0.22 0.24 0.19 0.20 0.25 0.22 0.20 0.18
ztravel-5-15a 92.57 30.93 40.84 17.17 0.12 0.06 0.10 0.04 0.48 0.19 0.37 0.12
ztravel-5-15b err err err err 0.56 0.59 0.46 0.51 0.63 0.50 0.49 0.40
ztravel-5-20a err err err err 0.87 0.75 0.67 0.55 1.22 0.87 1.20 0.52
ztravel-5-20b err err err err 1.07 0.77 0.87 0.52 1.57 0.75 1.15 0.54
ztravel-5-25a err err err err 1.72 1.05 1.35 0.70 2.82 0.98 2.90 0.56
ztravel-5-25b err err err err 0.56 0.58 0.44 0.35 7.22 1.42 3.78 0.88
gold-miner-7x7-01 5.98 6.06 4.90 3.32 err 0.02 0.00 0.01 0.30 0.04 0.05 0.02
gold-miner-7x7-02 4.39 4.26 3.60 2.43 err 0.01 0.00 0.01 0.16 0.04 0.03 0.02
gold-miner-7x7-03 4.12 4.01 3.44 2.36 err 0.01 0.00 0.00 0.29 0.04 0.04 0.02
gold-miner-7x7-04 9.31 10.51 7.58 5.52 err 0.01 0.00 0.00 0.21 0.04 0.02 0.02
gold-miner-7x7-05 9.71 9.99 8.17 5.62 err 0.01 0.01 0.00 0.38 0.04 0.03 0.02
gold-miner-7x7-06 6.05 6.34 5.02 3.44 err 0.01 0.00 0.01 0.18 0.04 0.02 0.02
gold-miner-7x7-07 6.14 5.82 5.05 3.26 err 0.02 0.00 0.01 0.04 0.04 0.02 0.02
gold-miner-7x7-08 3.12 2.81 2.61 1.68 err 0.01 0.00 0.01 >600 0.03 0.02 0.02
gold-miner-7x7-09 4.26 4.26 3.63 2.45 err 0.01 0.00 0.00 0.14 0.04 0.03 0.02
gold-miner-7x7-10 5.93 6.05 4.92 3.39 err 0.01 0.01 0.01 0.29 0.04 0.05 0.01
rovers1425 0.42 0.84 0.37 0.28 0.08 0.01 0.00 0.00 0.02 0.02 0.02 0.01
rovers4135 1.18 3.38 0.95 0.53 0.87 0.02 0.01 0.01 0.03 0.03 0.04 0.03
rovers4621 2.29 >600 1.71 1.52 2.07 0.03 0.03 0.03 0.06 0.08 0.07 0.06
rovers5142 0.75 >600 0.57 0.25 0.09 0.01 0.01 0.01 0.04 0.02 0.04 0.02
rovers5146 0.08 0.52 0.06 0.03 0.02 0.00 0.00 0.00 0.01 0.01 0.01 0.01
rovers5624 4.24 >600 3.05 1.65 0.09 0.01 0.01 0.01 0.06 0.05 0.06 0.04
rovers6152 0.63 >600 0.50 0.45 0.03 0.01 0.02 0.01 0.04 0.03 0.03 0.02
rovers7126 0.40 1.06 0.31 0.24 0.02 0.01 0.00 0.00 0.02 0.02 0.02 0.02
rovers7182 48.07 >600 31.31 24.60 3.72 0.11 0.11 0.08 0.21 0.18 0.21 0.18
rovers8271 0.12 >600 0.11 0.05 0.06 0.00 0.00 0.00 0.02 0.00 0.02 0.02
rovers8327 15.71 >600 10.57 7.50 3.14 0.06 0.09 0.04 0.17 0.12 0.16 0.11
gripper11 >600 5.71 >600 2.90 0.03 0.22 0.00 0.02 0.02 0.75 0.02 0.40
gripper12 >600 7.91 >600 3.88 0.04 0.29 0.00 0.07 0.04 0.93 0.02 0.50
gripper13 >600 10.68 >600 5.36 0.04 0.34 0.00 0.05 0.02 1.14 0.02 0.62
gripper14 >600 14.98 >600 6.96 0.04 0.44 0.00 0.05 0.04 1.40 0.03 0.74
gripper15 >600 20.59 >600 9.38 0.05 0.54 0.01 0.05 0.04 1.65 0.03 0.88
gripper16 >600 26.03 >600 11.89 0.05 0.64 0.00 0.06 0.05 1.98 0.04 1.05
gripper17 >600 err >600 15.46 0.05 0.77 0.00 0.17 0.05 2.30 0.04 1.23
gripper18 >600 err >600 20.08 0.06 0.90 0.02 0.10 0.06 2.74 0.04 1.42
gripper19 >600 err >600 24.64 0.06 1.06 0.01 0.11 0.07 3.12 0.05 1.66
gripper20 >600 err >600 30.81 0.07 1.24 0.01 0.13 0.07 3.59 0.06 1.89

TABLE II
THE TABLE SHOWS COMPARISON OF RUNNING TIMES (IN SECONDS - TIMEOUT WAS SET TO 600 SECONDS) OF ORIGINAL PROBLEMS AND PROBLEMS

REFORMULATED BY MACRO-OPERATORS, ENTANGLEMENTS AND THE BOTH.

Solved Speedup Quality
Domain Planner Orig Mcr Ent Both Mcr Ent Both Mcr Ent Both
Depots SATPLAN 9 7 9 11 0.4 8.0 56.9 1.08 1.07 1.12
Depots SGPLAN 12 13 11 10 1.0 5.7 0.3 0.87 1.19 1.13
Depots LAMA 11 13 12 13 4.1 26.3 340.4 1.04 1.12 1.09
Zeno SATPLAN 6 6 6 6 1.0 1.4 1.2 1.02 1.00 0.94
Zeno SGPLAN 11 11 11 11 1.6 2.6 2.0 0.88 1.00 0.87
Zeno LAMA 11 11 11 11 1.6 1.2 2.2 0.92 0.99 0.89
Gold-Miner SATPLAN 10 10 10 10 1.0 1.2 1.8 1.01 1.01 1.06
Gold-Miner SGPLAN 0 10 10 10 N/A N/A N/A N/A N/A N/A
Gold-Miner LAMA 9 10 10 10 4.8 6.3 10.3 4.67 4.59 4.67
Rovers SATPLAN 11 4 11 11 0.3 1.3 2.0 0.96 1.04 1.05
Rovers SGPLAN 11 11 11 11 16.5 24.2 28.5 1.08 1.07 1.08
Rovers LAMA 11 11 11 11 1.5 1.0 1.3 0.99 1.00 1.00
Gripper SATPLAN 0 6 0 10 N/A N/A N/A N/A N/A N/A
Gripper SGPLAN 10 10 10 10 0.1 17.7 0.7 1.34 1.25 1.34
Gripper LAMA 10 10 10 10 0.0 1.3 0.0 1.00 1.00 1.00

TABLE IV
THE TABLE SHOWS THE RESULTS. PROBLEMS ARE MARKED AS SOLVED IF SUCCESSFULLY SOLVED WITHIN 10 MINUTES. SPEED-UPS ARE COMPUTED AS

A GEOMETRIC MEAN OF torig/t, PLANS QUALITY IS COMPUTED AS A GEOMETRIC MEAN OF |πorig |/|π|.

reducing makespan and making the Planning Graph less com-
plex. The experiments showed significant improvements in the
Depots and Gripper domains. Only in the Zeno travel domain
the results were slightly worse than in the entanglement ver-
sion. In the Rovers domain the results were better even though
in the macro-operators version they were significantly worse.
Additionally, taking into account the fact that entanglements
did not prune any unreachable (but unnecessary) actions, the
results are very surprising.

SGPLAN [21] is a planner that decomposes planning prob-
lems in such a way that it satisfies the goals consecutively
by a FF [4] based planner. Such a planner may experience
difficulties if a certain goal ordering is essential (for instance
in Blocksworld we have to build ‘tower‘ from the ground, not
from the middle) or a dead-end (a state from which the goal is
unsatisfiable) may be reached during the search. In the Gold
Miner domain, the SGPLAN’s behavior was weird, because in
all the tested original problems it unexpectedly terminated af-
ter about 3 minutes of running. Using macro-operators resulted
in increasing of SGPLAN’s performance, except The Gripper
domain, where the macro-operators were more complex and
the number of its instances was very high. On the other hand,
using macro-operators in the Gripper domain resulted in a
significant increase of plans quality. Entanglements brought
an improvement as we expected, however, in a few Depots
problems the performance rapidly decreased. It is caused by
the fact that pruning actions via entanglements in the Depots
domain makes dead-ends. As we mentioned dead-end together
with ceratin goal ordering makes trouble to SGPLAN. On
the other hand the quality of plans in the ‘entangled‘ Depots
domain significantly increased (i.e., the plans were shorter).
Combining macro-operators and entanglements, however, did
not bring too much improvement as we expected, for instance
in the Depots domain the results were significantly worse.

LAMA [22] is a planner that uses heuristic search ac-
commodated with Landmarks [23] and Causal Graph [24]
heuristics. The success of learning methods stands on reducing

the number of explored nodes or simplifying the heuristics
computation. Macro-operators helped LAMA to reduce the
number of explored nodes (states) which resulted in the
performance improvement, except the Gripper domain, where
slow-down was caused by the extreme number of macro-
operators’ instances which makes the heuristics computation
more difficult. Entanglements, on the other hand, helped
LAMA to simplify the heuristics computation which also
resulted in the performance improvement. Combining macro-
operators and entanglements brought additional improvement
of the planning process (except the Gripper domain, where
the extreme number of macro-operators’ instances was not
reduced much by the entanglements). It is the worth of a
mention that in the Depots domain all the problems were
solved within the hundredths of seconds (at most 0.12) !
Surprising results were obtained in the Gold Miner domain,
where the original problems were solved in more than four
times worse quality.

By summarizing the results we obviously found out that the
success of the learning methods rests in the sort of planner
we are using. On the other hand, in the most cases the
results were better in reformulated problems (macro-operators,
entanglements, the both) than in the original ones. It showed
us the reasonability of such approaches. We should raise a
question how the learning methods can be improved. We
believe that there is still a plenty of space for future investi-
gation of this, especially in terms, how the learned knowledge
can be efficiently evaluated. By this we mean to decide in a
reasonable time, for instance, whether a macro-operator should
be generated or not. Second question we should raise is about
theoretical aspects of the learning techniques. Obviously, when
we eliminating actions or primitive operators, then it can break
the completeness of the planning process. The IPC benchmarks
we used here for the evaluation differ only by the number of
objects. It resulted in the fact that knowledge learnt from the
several simple training plans is valid also for more complex
problems (in the particular domain). However, in the real world

applications it might cause trouble, because initial or goal
predicates might be very different there.

VIII. CONCLUSIONS

Learning for planning seems to be a good direction for
improving planning process. The presented results showed that
combining different learning techniques together, in this case
macro-operators and eliminating actions (via entanglements),
can bring a promising outcome.

Of course there is still a lot of space for improvements.
For instance, it is possible to adapt the algorithms for macro-
operator generation to be able to consider entanglements
during the process where the primitive operators are selected
for assemblage into macro-operators. Of course, we should
investigate more thoroughly how the learned knowledge can
be efficiently evaluated, because it is quite necessary to decide
whether a learned knowledge should be kept or thrown away.
The remaining question should discuss whether the evaluation
of learned knowledge should be planner dependent or indepen-
dent. The experiments we made in this paper pointed out that
the performance of the planners may be very different when
certain knowledge is used. It might bring doubts about planner
independent evaluation of learned knowledge. On the other
hand it should be studied more thoroughly to make brighter
conclusions.

Removing primitive operators or some actions from do-
mains might break the completeness of planning process (some
originally solvable problems might become unsolvable). It may
happen very occasionally for problems like IPC benchmarks
(in experiments we made here it never happened), because they
differ by the number of objects, not the kinds of initial states
or goals. Studying the theoretical aspects of this might help us
to identify, for instance, which problems become unsolvable
when some reformulation is applied etc. It will be necessary
for the real world applications. Additionally, for a real world
applications handling with time or resources is essential. It
will be necessary to extend the learning techniques also for
temporal planning and planning with consumable resources.

ACKNOWLEDGMENTS

The research is supported by the Czech Science Foundation
under the contract no. 201/08/0509.

REFERENCES

[1] M. Ghallab, D. Nau, and P. Traverso, Automated planning, theory and
practice. Morgan Kaufmann Publishers, 2004.

[2] C. Dawson and L. Siklóssy, “The role of preprocessing in problem
solving systems,” in IJCAI, 1977, pp. 465–471.

[3] A. Blum and M. Furst, “Fast planning through planning graph analysis,”
Artificial Intelligence, vol. 90, no. 1-2, pp. 281–300, 1997.

[4] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan genera-
tion through heuristic search,” Journal of Artificial Intelligence Research
(JAIR), vol. 14, pp. 253–302, 2001.

[5] M. Helmert, “The fast downward planning system,” Journal of Artificial
Intelligence Research (JAIR), vol. 26, pp. 191–246, 2006.

[6] B. Bonet and H. Geffner, “Planning as heuristic search: New results,”
in Proceedings of ECP, 1999, pp. 360–372.

[7] H. Kautz and B. Selman, “Planning as satisfiability,” in Proceedings of
ECAI, 1992, pp. 359–363.

[8] M. B. Do and S. Kambhampati, “Planning as constraint satisfaction:
Solving the planning graph by compiling it into csp,” Artificial Intelli-
gence, vol. 132, pp. 151–182, 2001.

[9] K. Erol, D. S. Nau, and V. S. Subrahmanian, “Complexity, decidability
and undecidability results for domain-independent planning,” Artificial
Intelligence, vol. 76, pp. 75–88, 1995.

[10] R. Korf, “Macro-operators: A weak method for learning,” Artificial
Intelligence, vol. 26, no. 1, pp. 35–77, 1985.

[11] M. Newton, J. Levine, M. Fox, and D. Long, “Learning macro-actions
for arbitrary planners and domains,” in Proceedings of the Seven-
teenth International Conference on Automated Planning and Scheduling,
ICAPS 2007, Providence, Rhode Island, USA, 2007, pp. 256–263.

[12] A. Coles, M. Fox, and A. Smith, “Online identification of useful macro-
actions for planning,” in Proceedings of ICAPS, 2007, pp. 97–104.

[13] A. Botea, M. Enzenberger, M. Müller, and J. Schaeffer, “Macro-ff:
Improving ai planning with automatically learned macro-operators,”
Journal of Artificial Intelligence Research (JAIR), vol. 24, pp. 581–621,
2005.

[14] L. Chrpa, “Generation of macro-operators via investigation of action
dependencies in plans,” Knowledge Engineering Review, 2010, to appear.

[15] L. Chrpa, “Learning for classical planning,” Ph.D. dissertation, Charles
University in Prague, 2009.

[16] L. Chrpa and R. Barták, “Reformulating planning problems by elimi-
nating unpromising actions,” in SARA 2009: The Eighth Symposium on
Abstraction, Reformulation and Approximation, Lake Arrowhead, CA,
USA. AAAI press, 2009, pp. 50–57.

[17] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso,
D. Weld, and D. Wilkins, “Pddl the planning domain definition
language,” Tech. Rep., 1998.

[18] A. Coles and K. A. Smith, “Marvin: A heuristic search planner with
online macro-action learning,” Journal of Artificial Intelligence Research
(JAIR), vol. 28, pp. 119–156, 2007.

[19] J. Slaney and S. Thiébaux, “Blocks world revisited,” Artificial Intelli-
gence, vol. 125, no. 1-2, pp. 119–153, 2001.

[20] H. Kautz, B. Selman, and J. Hoffmann, “Satplan: Planning as satisfia-
bility,” in Proceedings of IPC, 2006.

[21] C.-W. Hsu and B. W. Wah, “The sgplan planning system in ipc-6,” in
The 6th International Planning Competition (IPC-6), 2008.

[22] S. Richter and M. Westphal, “The lama planner using landmark counting
in heuristic search,” in Proceedings of IPC, 2008.

[23] J. Hoffmann, J. Porteous, and L. Sebastia, “Ordered landmarks in
planning,” Journal of Artificial Intelligence Research, vol. 22, pp. 215–
278, 2004.

[24] C. Knoblock, “Automatically generated abstractions for planning,” Ar-
tificial Intelligence, vol. 68, no. 2, pp. 243–302, 1994.

