Computing and Library Services - delivering an inspiring information environment

Modification of alginate degradation properties using orthosilicic acid

Birdi, Gupreet, Bridson, Rachel H., Smith, Alan M., Bohari, Siti Pauliena Mohd and Grover, Liam M. (2012) Modification of alginate degradation properties using orthosilicic acid. Journal of the Mechanical Behavior of Biomedical Materials, 6. pp. 181-187. ISSN 1751-6161

[img] Image (PDF) - Accepted Version
Restricted to Repository staff only

Download (18kB)


Biopolymers such as alginates have been widely researched for clinical use. Their clinical application, however, have been limited due to their unpredictable and often rapid degradation rates. Here we show that the degradation of an alginate hydrogel can be tailored through the addition of orthosilicic acid (OSA). On immersion in aqueous media a negligible quantity of orthosilicic acid was released from the gel matrix. The presence of the OSA within the gel was shown to significantly slow degradation of the alginate hydrogel when immersed in a potent calcium chelator (EDTA) when compared with the control group. Sample degradation was associated with a significant calcium release from the non modified gel; however, the orthosilicic acid modified gel did not release detectable levels of calcium over the same period. This suggests that the orthosilicic acid inhibits degradation of the gel by forming an interaction with the calcium cross-links. A rapid reduction in the storage modulus G’, was observed in alginate made without OSA, however, the G’ exhibited by the orthosilicic acid modified alginate did not reduce significantly (p<0.05) Furthermore, although both the OSA and alginate exhibit negative charges in solution, it is likely that they form weak interactions, this hypothesis was proven by demonstrating the efficacy of OSA for binding the alginate hydrocolloid. The findings of this study are likely to have utility in applications where controlling gel degradation is desirable, such as in cell delivery or in the controlled release of molecules in the body.

Item Type: Article
Subjects: Q Science > Q Science (General)
Q Science > QD Chemistry
R Medicine > RS Pharmacy and materia medica
Schools: School of Applied Sciences
Related URLs:
Depositing User: Alan Smith
Date Deposited: 15 Nov 2011 15:06
Last Modified: 28 Aug 2021 11:11


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©