
 Volume Deformation Based on Model-Fitting
Surface Extraction

Qian Xu, Duke Gledbill, Zhijie Xu
CGIV Research Group, University of Huddersfield

Huddersfield, West Yorkshire, United Kingdom
q.xu@hud.ac.uk, d.gledhill@hud.ac.uk, z.xu@hud.ac.uk

Abstract - Over the last decade, visualization techniques for
3-dimensional volumetric models, especially those that can
be performed on PC hardware platforms, have attracted
intensive attention in the research communities. The rapid
evolution on PC computers, specialist hardware, and even
gaming consoles have accelerated this trend and seen the
volume model-based applications being greatly extended
from industrial design, medical simulation, to entertainment
usage and beyond. As part of the effort, the interactive
manipulation of the appearance of volume models, often
referred as volume deformation, has become a research hot-
spot due to its potentials in revealing the models’ internal
structures and material characteristics. This paper reports
an innovative volume deformation method based on a self-
extracting mechanism for the so-called “control lattice”
from the “surface” of a volume model, which can then be
applied on the entire model or a specifically segmented part
of it based on user requirements. The detail level of the
extracted control lattice can be customized based on Active
Surface algorithms for ensuring the interactive rate and the
final resolution for a particular application.

Keywords- Volumetric Model; Volume Deformation;
Control Lattice; Adaptive Segmentation; Active Surface

I. INTRODUCTION

For showing the internal and implicit information of a
3-dimensional (3D) volumetric model, various PC-based
visualization techniques have been developed in the past
decade, such as Ray Casting and Splatting. However, for
applications such as medical operation planning and
design function simulations, volume models need to be
“operable” in a rigid manner like splitting or slicing, as
well as in a non-rigid form such as elastic deformation.

Volume data sets are often obtained from special
industrial cameras and medical scanners, or being
generated by mathematical models and algorithms. These
models do not come with a mesh/polygonal representation
of the compositing voxels, a synonym for volumetric-
pixels, nor containing any intrinsic topological
information of the models’ internal structures and
“material” properties - if applicable.

Most of the popular volume visualization techniques
performed on PC-grade hardware assemble 3D models
through accumulating the voxel contributions to the final
“pixel” colours on the 2D virtual image plane. Although
first proposed in the 1980s, volume visualization and its
applications had really started gathering momentum since
the late 1990s attributing to the ever more “powerful” PC
capabilities. Volume deformation, as a branch of the trend,

is stemmed from the visualization progression and had
been focusing on the manipulation of volume models in a
pre-defined or free-form manner and their corresponding
control mechanisms.

Generally speaking, volume deformation approaches
can be classified into two groups: rigid and non-rigid;
while the prior can be considered as an extension of the
Computational Solid Geometry (CSG) model with its
mathematical representations defined by works such as
Computational Volume Geometry (CVG) [1]. The latter
approach preserves the underlying volumetric assemblies
while enabling the description of the physical constraints
and relationships among those elements. In the actual
volume deformation applications, this approach can really
meet the requirements of FFD (Free Form Deformation)
which rigid ones cannot easily achieve [2, 3].

Unlike rigid deformation, the non-rigid approaches
mostly require a control lattice (analogy to a web of
“control” vertices) to be created for each operation before
any displacement computations can start. For example,
DOGME (Deformation of Geometric Models Editor)
method in physically-based simulations, which is a
constrained-based method, generally assumes a lattice
which is the finest choice and passes the computed
displacements to the underlying model or elements in the
form of polygonal topologies [4]. For achieving the
special visualization objectives, few non-rigid approaches
totally rely on the dedicated rendering methods with
corresponding calculation and interpolation works. For
example, ray-deflectors-based methods, which do not
move any voxels, manage to exhibit the deformed results
by changing the visualization properties [5]. Based on the
various requirements of the precision and usage in actual
applications, the non-rigid approaches can be further
classified into physically-based and empirical methods [6].

In the applications of physically-based volume
deformation, a control lattice can be of a 2D planner form,
or a 3D cubic or cylindrical form, or even being
parametrically defined, which can represent material
properties of the sampled voxels [7, 8]. However, due to
the complex process often involved in the construction of
a control lattice, and the shape and tessellation of it, the
overall quality of the deformation varies.

In the surveyed volume deformation pilots, a small
difference in the lattice definition strategy can lead to
substantially varied voxel displacement results [9, 10].
Generally, a volume model is defined without any
intermediate boundary representation. Westerman and Ertl

Proceedings of the 17th International Conference on
Automation & Computing, University of Huddersfield,
Huddersfield, UK, 10 September 2011

have developed a method for texture-based rendering of
volume data based on a uniform regular grid as well as
over a tetrahedral grid, which partially resolved the
problem [11]. However, these techniques are focused on
rendering aspects rather than interactive manipulations
and precise simulations.

An alternative approach is to extract an intermediate
iso-surface (polygonal mesh) from the volume data set
that can be used for further manipulation and processing,
such as collision detection, shadow casting, and animation.
The most commonly used algorithms for iso-surface
extraction are mainly derivatives of the Marching Cubes
(MC) algorithm developed by Lorensen and Cline [12],
which construct the iso-surface generation mechanism
following the renowned “15 unique cube configurations”
[13].

In this project, an innovative volume deformation
approach is proposed based on an embedded MC process
for constructing the so-called “model-fitting” control
lattices. This paper will cover the Snake-based volume
data orientation and the assistant design for MC-based
lattice extraction in Section III and IV. The design and
implementation of GPU-based Octree data structure are
introduced in Section V with the deformed results.

II. SYSTEM DESIGN

In this research, a volume deformation pipeline based
on the latest programmable GPUs has been developed as
shown in Fig. 1. This paper mainly covers three sections:
Data Segmentation, Mesh Modification and Spatial
Relationships Determination.

Figure 1. The pipeline of improved construction of lattice for volume
deformation.

A. Data Segmentation Process

For reducing the workload of processing the entire
data set in each processing cycle, a segmentation process
has been designed to detect and track the “interested”
objects which are mixed with other useless parts, for
example, an organ in a MRI-scanned human body, or a
section of the generated “point clouds”. This step will
reduce the overall memory “footprint” for storing and
accessing the volume data set at runtime, and the
complexity of the iso-surface extracted for forming the
control lattice. Besides, implementing deformations on
respective classified data sets can really support a shape-
changed volume model containing different grades of

transformation in the physically-based deformation
applications.

B. Mesh Representation and Modification Process

However, the classified data set still leads to a time-
consuming iso-surface extraction on CPUs for MC
mechanism. The system developed in this project applied
a GPU-accelerated (Graphics Process Unit) iso-surface
extraction method for alleviating this problem. Both
CPU-based and GPU-based MC processes often make
extracted surfaces consist of far too many vertices to be
used as a control lattice, which is literally a large spring
network. The prototype system contained an adaptive
tessellation engine for adjusting the resolution of the
lattice via changing the number of vertices on the iso-
surface.

C. Spatial Relationships Determination Process

Similar to the DOGME method in traditional vertex-
based applications, this project is delivering the
displacement on a control point to underlying elements
which are “preformed” by many masses in a designed
mass-spring model. A dedicated Octree data structure
was constructed to manage the mass partition stage and
determine the internal relationships between voxels. By
implementing this data structure on GPU, the mass
accessing and the internal spring-like relationships can be
more efficiently implemented.

III. VOLUME MODEL SEGMENTATION

Separating objects from backgrounds or from each
other through segmentation, which is an important
process in computer vision and image processing, can
reduce the complexity of the subject studied with its
applications often found in measuring object size,
tracking vehicle movement and scientific visualization.
The volume data segmentation operation devised in this
project is mainly based on the Active Surface that is a 3D
extension of Active Contour Theory.

Active Contour (or Snake) is a method that enables
delineating 2D outlines from an image. This technique
contains a “spline” which follows the energy
minimization rule and can be deformed by “forces”. The
forces are determined by an assembly of intrinsic and
extrinsic constraints. The intrinsic constraints are

Volume Dataset
Data

Segmentation

Mesh
Representation

and Modification

Spatial
Relationships
Determination

Voxel
Displacement

Mapping

Deformed Volume
Model

User Options
Feature Regions

Real-time
Operating State

Elements Classification

Resolution of Tessellation

Visual Feedbacks for Re-adjustment

determined by the material properties of the spline, such
as mass distribution parameter and viscosity of
neighbouring medium. The extrinsic constraints represent
the external forces which links splines (lines or surfaces)
to underlying elements (pixels or vertices). The Energy

)(VE can be calculated according to “forces”. Kass et al.
proposed the equation of Energy Minimization in 1988
[14]:

dVVEVEVE externalernal 
1

0 int))()(()((1)

where
ernalEint

 is the internal energy of the bended

spline and
externalE serves as external energy acting on the

spline.
externalE contains

imageE represents the image force

acting on the spline and
conE denotes external constraint

forces defined by the user.

Active Surface is a 3D variation of the Active
Contour technique. In this project, region-based Active
Surface algorithm is used to analyze 3D data sets. Its
mathematical model can be represented by a
parameterized surface  [15]:

)],(),,(),,([),(: 32 VUzVUyVUxVUSIR  (2)

Where),(VU determines the coming changes of
surface  . And the changed surface),(VUS can be
represented via an assembly of moved vertices. The
calculation of minimal energy in the sampling region 
is represented via equation:

regionsmooth EEE)1(][  (3)

where  is a pre-input parameter that weights the
significance of smoothness term. For processing 3D data,
Mille proposed the smoothness energy for calculating 3D
data sets:

dUdV
V

S

U

S
Esmooth

22

2
][ 







 (4)

Surface  separates the object into an internal
domain

in and an external domain
out . Based on the

Chan-Vese model [16], the energy of 3D domain can be
calculated in

 
outin

dUdVdUdVE outinregion 
][(5)

where in and out are intensity descriptors inside

and outside the surface respectively.

At the beginning of the Active Surface segmentation
process, there is a step for defining the “3D splines”. Fig.
2 A0 and B0 illustrate the definition of rectangle-based
splines in any two cross sections in the volume model.
Based on the collection of 2D splines (Fig. 2 A1-A5 and
B1-B5), the region-based Active Surface algorithm can be
implemented for direct and continuous analysis of 3D
data sets. Its results are point-based and processed in the
following MC stage.

Figure 2. Image (A0) and (B0) respectively represent the ways of

determining interesting-domains in axial and sagittal cross sections.
Image (A1-A5, B1-B5) are snapshots of the detected regions.

IV. CONTROL LATTICE GENERATION

A. Marching Cubes and Iso-surface Extraction

In this project, MC is used to create the so-called
“model-fitting” control lattice based on the iso-surface
extracted from the volume data set. It travels through the
volume model contained in an imaginary cube consisted
of numerous “cells” as shown in Fig. 3 (a) and (b). The
MC algorithm tests each voxel and produces vertices
within the corresponding cells. The density values at the
8 vertices of a cell are evaluated based on the “signs”
determined by their relative positions to the iso-surface.
The voxels that lie on the boundary between the model
and the “empty space” (voxels with null values) are then
processed for generating polygons according to the
standard “15 unique cube configurations” as shown in Fig.
3 (c).

Figure 3. (a) represents the “imaginary cube” and (b) shows different
conditions that happened in the sampling progress. (C) illustrates the

standard “15 unique cube configurations.”

Based on these fifteen basic configurations, there will
be a total of 241 derived forms. It is difficult to make a
definite description of these 256 cases without labelling
the eight vertices. As a result, the tri-linear interpolation
(checking the sign for inside of the cube) is used in this

project to avoid ambiguity. As stated by Engel [Engel et
al, 2004], one of the advantages of the Marching Cubes
algorithm is its locality - the voxels are processed one-by-
one based on local information only. The computational
processes for MC can be readily parallelized and
“mapped” on GPUs for harnessing its data parallelism.
Fig. 4 shows the output iso-surfaces from the segmented
data sets in the devised program in the form of a closed
polygonal mesh.

Figure 4. These isosurfaces are respectively extracted from the

segmented throat data and skull data in a MRI-scanned human head.

B. GPU-based Adaptive Control Lattice

The surface extracted from the MC process contains a
huge number of polygons, e.g. there are 2 million vertices
in the iso-surface-based skull model in Fig. 4. This
complicated mesh can be slow to interact with when used
for calculating deformation parameters such as vertex and
voxel displacement offsets and rotational angles. Through
controlling the tessellation of the extracted iso-surface, an
adaptive control lattice can be formed.

There are existing GPU models supporting hardware-
driven tessellation operations that can be adopted for this
purpose, e.g. GPU-based Catmull-Clark subdivision is
available in mesh-based deformation for adapting the
density of vertices in the deforming regions [17, 18]. It is
used to implement the real-time distribution of vertices
during the deformation, i.e. carry out LOD-based control
for managing the number of vertices. However, in this
research, the choice of data structure, derived operations
and the consideration of its’ familiar artefacts called T-
junction determine that Catmull-Clark subdivision needs
to be replaced by a triangle-based subdivision scheme –
Loop Subdivision [19]. Its reverse scheme is chosen to
achieve the More-to-Less operation for reducing the
vertex count and implementing vertex management in an
“on-the-fly” style.

The (reverse-) Catmull-Clark subdivision and (reverse-)
Loop subdivision schemes are both based on the
management of object vertices and their neighbouring
points. Accordingly, implementing reverse Loop
subdivision on GPU can be technically divided into three
main steps. Firstly, the object mesh is separated into a

series of sub-meshes according to the results of triangular
partition (represented by the blue triangles in Fig. 5 Step
1). This process does supply outstanding vertices for the
second step to find their surrounding points which share
the same lines with the objective vertices. After this
finding process, the second step carries on labelling all
participant vertices for GPU-based vertex storage in the
third step. For all vertices stored in texture memory in the
form of 2D arrays with the default index numbers (λ in
Fig. 5 Step3), the single-threading-management of
vertices in the CPU-based Loop subdivision can be
implemented more efficiently via the GPU-based
multithreading-operations that support synchronized
vertex-release processes and the real-time combination of
processed arrays. For conveniently understanding the
implementation of GPU-based Loop subdivision in this
project, the schematic meshes are all ideal and the valence
of each vertex is 6. The sketch maps of each reverse
subdivision process and simplified results are all
respectively illustrated in Fig. 6 and 7. The polygon
account is hugely reduced from millions to thousands, e.g.
from 2.4 million vertices to 12 thousands in the skull
model.

Figure 5. Illustrations for GPU-based reverse Loop subdivison.

Figure 6. Continous construcntion of a triangle primitive with

decreasing tessellation levels.

Figure 7. The illustrations of adaptive MC process in different

tessellation levels.

V. VOLUME DEFORMATION

After finishing the model-fitting lattice construction,
this research uses octree data structure to separate the
volume data set for implementing voxel-based masses and
parameterized elastic characteristics in the designed mass-
spring model. The implementation work mainly consists
of three processes. First one is “encoding” the volume
data set for GPU-based storing process. Similar to other
applications of GPU-based 3D octree data structure, the
whole volume model is equally divided into an assembly
of elements which generally contain 2N*2N*2N voxel(s) (N
is the depth of octree), and the partitioned results are
stored in an 8-bit RGBA 3D texture in the form of N3-tree.
The coordinates of each subset or element are stored in
RGB channels and the Alpha channels record the results
of identifying a pointer to the content of a leaf or a child
node. 0, 1 and 0.5 respectively indicate pointing to an end
of the current branch (voxels with null values), an
available child node and an indexable content.

After storing process, the second process is tracking
the object node’s related leaf contents or nodes on
different levels (3D representations are shown in Fig. 8).
In order to accomplish this goal, Tree-Lookup function,
which is a common module in various applications of
GPU-based Octree data structure, determines the resulting
contents or nodes based on the choice of Alpha value of
each element on the current level. The results are a unit
cube or a cubic region with mathematical expression [O0,
O1]

3.

Figure 8. Octree-based method for tracking the objective area or

element (represented by the yellow or red square).

The 3rd process uses these detected contents or nodes
to represent different grades of transformation in the
physically-based deformation of segmented parts. In this
project, the mechanism is proportionally assigned
different scales of original displacement (contains distance

and direction) to corresponding contents or nodes. The
related outcomes are an assembly of spatial coordinates.
In Fig. 9, the different grades of deformation are carried
out via decreasing the displacement along the track
(dashed) of the moved control point (solid point).
Meanwhile, a simple indicator is added to survey the
points value to testify that the fixed number of points
ensure no manmade or interpolated artefacts.

Figure 9. A point-based representation of a volume model (A); the

control point (solid point in (A)) obtains a displacement and the
deformed result is shown in (B).

The current system is designed and constructed using
MATLAB, OpenGL, and CUDA APIs under the Visual
Studio/VC++ programming environment. A desktop PC
with an Intel Core2 2.40GHz processor and an NVIDIA
GeForce GTX260 GPU with 2GB memory have been
used for experiments. Because no new voxels are created,
the following work is directly following the initial spatial
arrangement rule to “filling” original voxels to the new
assembly of coordinates extracted from the Octree data
structure. Fig. 10 has shown the corresponding result of
Fig. 9 in (a) and other derived deformation outputs
(reversed and multiple) are shown in (b) and (c).

Figure 10. The appearance of various skull deformations.

In Fig. 11, these vertical-sections illustrate the
deformed internal/external regions in a human skull model.
The effects of physically-based deformation in my project,
which need to represent the details of volume
deformations with different distributions of displacement
in different materials, had been highlighted by the white
rectangles.

Figure 11. Lower line illustrates the corresponding vertical-sections.

And the frame-rates are totally distributed between 49
and 67 (higher than 30 fps required in actual applications).
Therefore, these records can demonstrate the feasibilities
of interactive manipulations and multiple deformations in
my physically-based volume deformation.

Figure 12. Texture-operation-based volume deformation.

VI. CONCLUSIONS

In Fig. 12, B and C show two deformed teddy-bears
which are generated via stretching the initial model (A) in
two directions. This deformation method belongs to the
texture operation-based volume deformation which is one
branch of the non-physically-simulated applications. Its
mechanism is moving the carriers to influence the
corresponding elements, i.e. modifying textures to transfer
voxels. In current volume deformation applications, non-
physically-based methods are barely used for simple
displaying, colourful rendering or conceptual expiations.
In order to achieve imprecise simulations, they must
require helps from the complicated segmentation
algorithms to carry out certain texture pre-processing for
fixing its lack of element-level-operation. Consequently,
these designs always suffer from the time-consuming
processes, resulting artefacts in texture pre-processing and
low interactive rates.

The novel physically-based volume deformation
pipeline developed in my project can manage the basic
elements (voxels) for achieving complicated simulations
and related requirements. It has replaced the conventional
methods for constructing control lattices using an
improved model-fitting MC-extracted surface mesh. The
latest GPU tessellation capacity adopted in this research
has further enabled hardware-driven complexity control
that optimized the frame of the extracted mesh.
Experiments carried out in the research have shown
improvements on the accuracy and flexibility of
deformation types that can be performed using this design.
It is anticipated that applications such as medical
operations, simulations, indusial designs, and even
computer games can benefit from this innovative volume
deformation approach. Future work will focus on further
improvements for system integration and real-time
performance.

ACKNOWLEDGMENT

I would firstly like to thank my first supervisor Dr
Zhijie Xu for his great supervision and guidance during
this research. I am deeply impressed by his erudition, and
knowledge and attitude to science which inspired me to

keep on going. I would also like to show my grateful
appreciation to Dr Duke Gledhill for his great help to me.

REFERENCES

[1] M. Chen and J. V. Tucker, “Constructive Volume Geometry,” In

Computer Graphics Forum. Vol. 19, No. 4, pp. 281-293, 2000.

[2] N. Chen, R. Alterovitz, D. Ritchie, L. Cho, K. K. Hauser, K.
Goldberg, J. R. Shewchuk and J. F. O’Brien, “Interactive
Simulation of Surgical Needle Insertion and Steering,” In ACM
Transactions on Graphics. Vol. 28, No. 3, pp. 1-10, 2009.

[3] C. Corea, D. Silver and M. Chen, “Feature Aligned Volume
Manipulation for Illustration and Visualization,” In IEEE
Transactions on Visualization and Computer Graphics. Vol. 12,
No. 5, pp. 1069-1076, 2006.

[4] B. Sarvage, S. Hahmann, G. P. Bonneau and G. Elber, “Detail
Preserving Deformation of B-spline Surface with Volume
Constraint,” In Computer Aided Geometric Design. Vol. 25, No. 8,
pp. 678-696, 2008.

[5] Y. Kurzion and R. Yagel, “Interactive Space Deformation with
Hardware-assisted Rendering,” IEEE Computer Graphics and
Applications. Vol. 14, No. 5, pp. 66-77, 1997.

[6] C. D. Corea, D. Silver and M. Chen, “Constrained Illustrative
Volume Deformation,” In Computers & Graphics. Vol. 34, No. 4,
pp. 370-377, 2010.

[7] M. Hong, S. Jung, M. Choi and S. W. J. Welch, “Fast Volume
Preservation for a Mass-Spring System,” In IEEE Computer
Graphics and applications. Vol. 26, No. 5, pp. 83-91, 2006.

[8] G. Yin, Y. Li, J. Zhang and J. Ni, “Soft Tissue Modeling Using
Tetrahedron Finite Element Method in Surgery Simulation,”
Proceedings of the 2009 First IEEE International Conference on
Information Science and Engineering. Nanjing, China, pp. 3705-
3708, 2009

[9] R. Westermann and C. Rezk-Salama, “Real-time Volume
Deformations,” In Computer Graphics Forum. Vol. 20, No. 3, pp.
443-451, 2001,

[10] S. Walton and M. Jones, “Volume Wires: A framework for
Empirical Non-linear deformation of Volumetric Data Sets”. In
Journal of WSCG. Vol. 14, No. 3, pp. 81-88, 2006.

[11] R. Westermann and T. Ertl, “Efficiently Using Graphics Hardware
in Volume Rendering Applications,” Proceedings of the 25th
Annual Conference on Computer Graphics and Interactive
Techniques. Orlando, USA, pp. 169-177, 1998.

[12] W. Lorensen and H. Cline, “Marching Cubes: A High Resolution
3D Surface Construction Algorithm,” In ACM SIGGRAPH
Computer Graphics. Vol. 21, No. 4, pp. 163-169, 1987.

[13] K. Engel, M. Hadwiger, J. M. Kniss, A. E. Lefohn, C. R. Salama
and D. Weiskopf, “Course Notes 28 II: Real-Time Volume
Graphics,” ACM SIGGRAPH 2004 Course Notes, pp. 1-282,
2004.

[14] M. Kassm, A. Witkin and D. Terzopoulos, “Snakes: Active
Contour Models,” In International Journal of Computer Vision.
Vol. 1, No. 4, pp. 321-331, 1988.

[15] J. Mille, “Narrow Band Region-based Active Contours and
Surfaces for 2D and 3D Segmentation,” In Computer Vision and
Image Understanding. Vol. 113, No. 9, pp. 946-965, 2009.

[16] T. Chan and L. Vese, “Active Contours without Edges,” In IEEE
Transactions on Image Processing. Vol. 10, No. 2, pp. 266-277,
2001.

[17] E. Catmull and J. Clark, “Recursively Generated B-Spline
Surfaces on Arbitrary Topology Meshes,” In Computer Aided
Design. Vol. 10, No. 6, pp. 350-355, 1978.

[18] M. Pharr and R. Fernando, “GPU Gems 2: Chapter 7. Adaptive
Tessellation of Subdivision Surfaces with Displacement
Mapping,” In GPU Gems2: Programming Techniques for High-
Performance Graphics and General-Purpose Computation. Printed
in USA, 2004.

[19] C. Loop, “Smooth Subdivision Surfaces Based on Triangles,”
Thesis for the degree of Master of Science, 1987.

