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Abstract	

Surface texture plays an important role in the specification of a precision workpiece. 
However, the route of traceability for surface texture measurements is not well 
developed. One of the main technical obstacles is the lack of tools to check traceability 
of the software of surface measuring instruments and to estimate uncertainty 
contributed by the software. To this end, the concept of softgauges (i.e. software 
measurement standards) for surface texture has been introduced into the international 
standards.  

 

The presented thesis documents the realisation of softgauges for surface texture, which 
is a part of the National Measurement System in the UK. These standards, in the form 
of the reference dataset with reference results, have been developed by both simulation 
and experimental methods. The analysis of software uncertainty has been undertaken. 
These measurement standards have been used to verify both reference software 
(developed by the National Measurement Institutes) and commercial packages 
(developed by instrument manufacturers). In addition, the evaluation of the 
measurement uncertainty in workshop level has been carried on. 

 

These developed standards provided a novel route to demonstrate metrological 
traceability of most surface profile parameters. Currently, these standards are 
distributed via the internet by the National Measurement Laboratory (NPL) in the UK. 
These standards are also recognised by NIST in the USA and PTB in Germany, and 
these organisations would also provide a suitable vehicle to distribute of the results of 
this study. 
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1 Introduction	

1.1 Background	

Metrology is the science of measurement, which includes all theoretical and practical 

aspects of measurement (Howarth and Redgrave 2008). There is no doubt that 

metrology plays an essential role in the economic and industrial development of a 

country. As the British Victorian engineer Sir Joseph Whitworth (1803~1887) said, 

“you can only make as well as you can measure”. Thus, it is often said that the level of 

industrial development of a country can be judged by the status of its metrology (Silva 

2002). 

The success of a measurement is generally quantified by the terms of precision and 

accuracy. Precision of a measurement can be described by its comparability between 

different periods, locations, measurement procedures, instruments and operators. 

According to the degree of the difference of these conditions, measurement precision is 

described as repeatability2 and reproducibility3. Accuracy of a measurement is the 

closeness of the agreement between its measured value and its true value (VIM3 2007). 

The accuracy is ensured by using a method called traceability. Traceability is “the 

property of a measurement result whereby the result can be related to a reference 

                                                 
2 Repeatability is the measurement precision under repeatability condition, i.e. the same measurement 
procedure, same operators, same measuring system used under same operating condition and same 
location, and repetition on the same or similar objects over a short period time (VIM3, 2007). 
3  Reproducibility is the measurement precision under reproducibility condition, i.e. the different 
location, different operators, different measuring system, and repetition on the same or similar objects 
(VIM3, 2007). 
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through a documented unbroken chain of calibrations, each contributing to the 

measurement uncertainty (VIM3 2007)”. Traceability is often obtained by undertaking 

calibration, an operation to establish the relation between the indication of a 

measurement instrument and the value of a measurement standard (etalon)4(BIPM 

2011).  

Traditionally, a measurement standard (etalon) is in the form of artefact and physical 

gauge, called “hardgauge” in this thesis, which is intended to define, realise, conserve 

or reproduce one or more values of an attribute to serve as a reference (VIM2 1995). 

The design, development and maintenance of measurement standards are the most 

fundamental works in metrology, generally undertaken by a National Metrology 

Institute (NMI) within a country, such as the National Physical Laboratory (NPL) in 

the UK, the National Institute of Standards and Technology (NIST) in the United 

States, Physikalisch-Technische Bundesanstalt (PTB) in Germany and so on. 

It is recognised that software plays an increasingly important role in metrology. Richter 

(2006), for example, stated that “a new world of metrology has been opened up by 

software”. In this world, metrologists face both opportunities and challenges. On the 

one hand, software empowers measurement instruments significantly by introducing 

complex metrological properties. On the other hand, accuracy and precision of the 

software of instruments are a great issue. The cost due to software fault is significant. 

In 2002, NIST estimated that the American annual cost of an inadequate infrastructure 

for software testing is $59.5 billion (Tassey 2002). In the field of metrology, therefore, 

the idea of a software-based virtual gauging system has been emerged (Smith 2002). 

Surface texture is the topography of a surface composed of certain deviations that are 

typical of the real surface (ASME B46.1 2002)5. Surface texture measurements play an 

increasingly important role in controlling the quality of precision parts. Modern 

engineers in the field of automotive, aerospace and medical engineering are the 

examples that have been empowered with the knowledge of surface texture. Surface 

metrology, i.e. the science of surface measurement, has been developed rapidly in the 

                                                 
4 In science and technology, the English word “standard” is used with at least two different meanings: as 
a specification, technical recommendation, or similar normative document (in French “norme”) and as a 
measurement standard (in French “étalon”). In this thesis, “standard” refers to the second meaning. The 
term of “standard document” refers to the first meaning. 
5 The definition of “surface texture” will be discussed further in Chapter 2. 
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last several decades (Lonardo, Trumpold et al. 1996; Lonardo, Lucca et al. 2002). 

Various types of instruments, new characterisation methods have been put into practice. 

This prosperity enriches the selection of appropriate metrological solutions. However, 

the more solutions we have, the more references we need. Since very few references 

are available, the accuracy of these solutions is a critical issue. 

Repeatability of surface measurements has been enhanced. However, surface texture 

measurements only have an ill-defined traceability route (Leach 2004). In other words, 

the surface textures measurements are increasingly improved on their precision, but 

lack enough evidence on their accuracy. It indicates that there are needs to develop 

new type of measurement standards to ensure the accuracy of surface texture 

measurements. The rationales for this decision can be summarised as: 

1) Hardgauges, existed in the physical world, are costly to manufacture, 

maintain and difficult to implement. They regularly are stored in specialised 

laboratories and assessed in difficult and necessarily limited. Although 

many types of hardgauges have been standardised, only few types, therefore, 

are often used. 

2) There are 63 surface profile texture parameters defined in the ISO (The 

International Organization for Standardisation) documents. However, only 

few of them can be checked their traceability by using hardgauges6. 

3) Software engineers need tools to check metrological traceability of the 

software developed for surface measuring instruments. This requirement is 

unable addressed soundly by using hardgauges. Hardgauges check the 

software and the hardware of an instrument as a whole and not just the 

software in isolation. For software developers, thus, using hardgauges is not 

convenience and reliable (e.g. the certified values of hardgauges accompany 

with relatively large measurement uncertainties). 

4) Related metrological information, such as measurement conditions and the 

definition of surface texture parameters, currently spreads in various 

                                                 
6 According to ISO 5436-1 (2000), the certified value of a type D hardgauge is in the form of Ra and Rz 
parameter. This limitation will be discussed in detail in Chapter 2. 
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graphic/text-based documents. So it could lead different callouts (Scott 

1988; Song and Vorburger 1991; Leach and Harris 2002), and results in  

significant uncertainty due to the lack of information (ISO TC213 2004). 

Hardgauges do not manage this uncertainty soundly (Rubert 1995). 

The concept of software measurement standards (i.e. softgauges) for surface texture 

measurements was introduced into ISO documents (ISO 5436-2 2001). This thesis 

documents the design and the development of the realisation of this concept in the UK. 

The developed softgauges, as part of National Measurement System in the UK, are 

distributed by NPL over the Internet. They have also been recognised by the NMIs 

around the world, such as NIST in the United States and PTB in Germany. 

1.2 Objectives	and	approaches	

The aim of this work is to maintain metrological traceability of the software of surface 

measuring instruments, which is the basis upon which all output results of the software 

can be claimed to be accurate. The objectives of this project are classified as follows:  

1) Understanding of softgauges: It will develop a deep understanding of 

softgauges, conformed to the latest ISO documents and based on recently 

evolved philosophy in metrology. 

2) Methodology for software calibration: It will develop a methodology to 

calibrate the software by extending the metrology approaches into information 

science domain. 

3) Software uncertainty: An expression of the measured results is incomplete, 

unless it includes a statement of the associated uncertainty. Generalised 

uncertainty principle proposed in the GPS (i.e. Geometrical Product 

Specifications and Verifications, a metrological language) will be adapted to 

evaluate the software uncertainty. 

4) Computing errors: The computational error seems insignificant with respect to 

other components (e.g. surface inhomogeneity). However, without a formal 

validation, this consideration remains intuitive. This project will assess the 
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computing errors by designing and developing the simulated profiles with the 

reference results produced with algebraic calculations. 

5) Measurement information: In order to reduce the uncertainty in communication 

level, an information model will be developed to organise the measurement 

information, which needs to be exchanged between different parties. 

6) A set of softgauges: The softgauges in the form of the reference data and the 

reference results, as the transfer standards at a national level, will be designed, 

developed and distributed. 

7) Software calibration procedure, decision rule and user guide: It will develop a 

calibration procedure, together with a comparison rule from the software aspect. 

Case studies will be undertaken to guide the use of the softgauges. 

This main concern of this work is to check metrological traceability of the software of 

surface measuring instruments. Hence we concentrate on the related software quality 

characteristics such as accuracy, reliability, repeatability, reproducibility and so on. 

This project does not cover other characteristics, such as usability, efficiency, 

maintainability and portability 7 . Furthermore, this thesis only documents the 

development of softgauges for surface profile parameters defined within ISO 4287 

(1996), which is the fundamental part of this ongoing project. 

1.3 Thesis	layout	

This thesis is organised as follows. Chapter 2 presents a review of the current state of 

traceability in the field of surface metrology together with a detailed analysis of the 

requirements of softgauges. Chapter 3 presents the development of the framework for 

softgauges. Chapter 4 develops an information model to standardise the measurement 

information. Chapter 5 is concerned with identification of the software uncertainty of 

the ISO 4287 parameters. Chapter 6 is devoted to the development of the softgauges. 

The subjects of Chapter 7 include a proposed software calibration procedure, a 

decision rule, the verification of reference software, the calibration of commercial 

packages and two case studies on measurement uncertainty. Chapter 8 is a summary of 

                                                 
7 They should conform to software quality assure (SQA). 
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the main conclusions of the work presented in this thesis and the recommendations for 

the future work. 



  22 

 

2 From	hardgauges	to	softgauges	

This chapter reviews the current state and the trends in the field of surface metrology. 

The objectives of this literature review are to develop a better understanding of the 

issues surrounding traceability of surface texture measurements, to identify the 

potential research work and to clarify the scope of the work to be undertaken. 

2.1 Introduction	

The most fundamental reference in metrology is the “International Vocabulary of 

Metrology – basic and general concepts and associated terms”(VIM3 2007). The latest 

version (3rd) was released in December, 2007 and refers to as the VIM3. The previous 

version (2nd) refers to as the VIM2 (1995). The VIM3 represents the latest evolution 

of philosophy and description of measurement (Ehrlich, Dybkaer et al. 2007). Note that 

many references (published before the release of the VIM3) in this chapter follow the 

VIM2. 

The basic concepts and principles of metrology are to formulate the need to measure 

(definition), and compare a known value or quantity (a reference) to an unknown 

(measurand) in order to define the unknown relative to the known (measured 

values)(Bucher 2004). Their logical relationship is illustrated in Figure 2.1. So 

metrology covers three main activities: 1) the definition of internationally accepted 

units of measurement; 2) the realisation of units of measurement; 3) and the 

establishment of traceability chains (Howarth and Redgrave 2008). 
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Figure	2.1	Logical	relationship	among	the	key	concepts	in	metrology	[source:	NIST]	

These metrology ideas date back to ancient Egypt. The body of the ruling Pharaoh was 

used as the definition of the first royal cubit. Its realisation was transferred to and 

carved in black granite (i.e. primary standard). Its copies (i.e. secondary 

standard/working standard), in granite or wood, were further transferred to the workers 

at the building sites of the temples and pyramids (Howarth and Redgrave 2008). In 

modern times, the metre is defined as “the length of the path travelled by light in a 

vacuum during a time interval of 1/299 792 458 of a second”(BIPM 2006). At the 

primary standard level, it is often realised in terms of the wavelength from an iodine-

stabilised helium-neon laser (BIPM 2010). Secondary standards are these calibrated 

against the primary standard, such as the gauge block interferometer, helium neon laser 

interferometer, etc. On the sub-levels of the secondary standard, gauge blocks, line 

standards and standard tapes are used as working standards. The dissemination of the 

standards makes it possible that all length measurements link with the definition of the 

metre. Then, the metrological activities establish an unbroken chain of comparisons 

(all should have stated uncertainty), i.e. a traceability chain. Figure 2.2 shows part of 

the traceability chain of length measurements in the UK. 
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Figure	2.2	Part	of	the	traceability	chain	of	length	measurements	in	the	UK	[source:	NPL]	

Surface metrology is one of the subfields of length measurement in industrial and 

scientific metrology (Howarth and Redgrave 2008). Precision engineers have carried 

out quantitative surface texture measurement over a century. However, surface texture 

measurements only have an ill-defined traceability route (Leach 2004; Leach 2009). To 

find out the exact reason, the following sections review three main activities in surface 

metrology. The definition of surface texture is the subject of Section 2.2. The 

realisations in the form of material measures are discussed in Section 2.3. The current 

state of the traceability chain, together with the topics of uncertainty and calibration, 

are covered in Section 2.4. The emergence of softgauges provides a possible solution 

to address some issues. The concept, related work and the requirements of softgauges 

are the subjects of Section 2.5. 
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2.2 Surface	description	

2.2.1 Definition	of	surface	texture	

The real surfaces of a workpiece are a set of features which physically exist and 

separate the entire workpiece from the surrounding medium (ISO 14660-1 1999). The 

texture on a surface is one of its key features. As illustrated in Figure 2.1, the definition 

of the object is the start point in a standardised measurement. So the first question, 

inevitably, for surface texture measurements is: What is surface texture?  

All surfaces have some type of texture, and many of them are easily recognised. 

However, it is not easy to define the texture. Often the description of surface texture 

relies on the development of measurement methods, characterisation techniques and 

manufacturing processes. With the evaluation on these related technologies, the 

definition of surface texture, inevitability, is evolved. Many are orientated to define 

surface texture by the wavelength approach which shows a good link to the creation 

process of a surface. This idea dates back to the beginning of quantitative surface 

texture measurements in the early twentieth century. Reason, in “Report on the 

measurement of surface finish by stylus methods” which published in 1944, stated that: 

“1) General curvature of the whole surface, or irregularity of comparatively long 

wavelength, due perhaps to flexure of the work in the machine, or to lack of 

straightness in the ways. 2) Surface texture of medium wavelength due to bad 

condition or bad setting up of the machine … 3) Surface texture of comparatively 

short wavelength due to the cutting action proper of the machining process …, for 

instrumental convenience the texture may be roughly sub-divided into two classes: 

a) texture reasonably within the scope of a stylus of 0.0001inch radius, b) texture 

too fine for such a stylus.” (Reason, 1944) 

This classification decomposes the surface profile topography into three components, 

namely form error, waviness and roughness according to current terminology. Surface 

texture is comprised of waviness and roughness. Reason (1944) pointed out that “this 

classification is neither very precise, nor inclusive of every kind of texture, but it will 

serve as a basis for discussion.”  This classification, nevertheless, has been widely 

accepted. It has followed with many similar definitions. For example, Figure 2.3 shows 

the schematic diagram of surface topography defined in an American standard 
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document (ASME B46.1 2002). In a standard document namely the German DIN 4760 

(1982), this method was extended, which separates the roughness into four sub-classes. 

 

Figure	2.3	Schematic	diagram	of	surface	topography	(ASME	B46.1‐2002)	

A great problem with the conventional definition is how to define the points to separate 

these components. Often these points are given arbitrarily. For example, a given 

wavelength used to define the roughness on an automobile axle would fall into the 

wavelengths used to defined waviness or form error on a watch spindle (Blunt and 

Jiang 2001). To address this issue, a VDI8 guideline (VDI/VDE-2601 1991) used the 

ratio of the distance between irregularities to their depth to distinguish the form 

deviation, waviness, roughness and crack. However, the selection of the ratios is 

arbitrary too. 

In areal surface texture characterisation, the boundaries of different components are 

more ambiguous, so the terms of roughness and waviness were abolished (ISO/DIS 

25178-2 2009). The current bandwidth-based definition decomposes the surface 

topography into many sine waves with different bandwidth. In the last two decades, 

many new decomposition approaches (e.g. morphologic filters, wavelet filters etc.) has 

been put into practice. Thus “wavelength” is replaced by a term called “nesting index 

value” in ISO/DIS 25178-3 (2009). 

                                                 
8 Verein Deutscher Ingenieure(VDI): The Association of German Engineers. 
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Scott (1986) summarised that there are two philosophical approaches in surface 

metrology, namely: 1) defined in terms of the manufacture process (it monitors 

changes in the surface texture and indicates the changes in the manufacturing process 

such as machine tool vibration or tool wear); 2) defined in terms of function 

requirements (it describes the features of surface that are directly related the functional 

requirements of a surface). The conventional definition of surface texture is based on 

the first approach. With the emergence of new methods based on the second approach, 

the definition of surface texture becomes a problem. 

Thus current ISO documents do not provide the definition of surface texture, in spite of 

the fact that this term was widely used. Recently, Scott (2010) suggested that “surface 

texture is the scale limited feature of a surface”. This definition will be introduced into 

an ISO document, namely ISO 25178-2. The acceptance of this definition is subject to 

the vote results in the near future. 

2.2.2 Surface	texture	parameters	

Engineers face another issue when the surface texture is obtained - how to represent it. 

This issue arose one century ago, but there has not been satisfactory answered for all 

purposes until now. It could be represented by the chart directly, but too much data 

makes difficulty for its communication and comparison. It could be represented by a 

parameter as a single number. This method goes to another extreme – too little data, 

which means the number may not probably describe the requirements. Nevertheless, 

surface texture parameters are still the favourite for surface engineers (Jiang, Scott et al. 

2007). 

Surface texture does not have any “natural” parameter (for example, the diameter of a 

cylinder). Therefore, it has always been customary to define each surface parameter in 

terms of the instrument used to measure it, the algorithms and the setting up of this 

instrument (Nielsen 2006). Diversity of these components causes another problem – 

diversity and complexity of surface texture parameters. 

Scott (1988) divided the assessment of surface texture in the six stages: 1) choice of 

metrological solution; 2) data collection; 3) a controlled experiment; 4) data pre-

processing; 5) determination of a reference; 6) analysis. Muralikrishnan and Raja 

(2008) separated the topic of data processing into fitting, filtering parameterization, 
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and uncertainty. In this section, we separate surface texture assessments into four main 

stages: surface texture classification, data acquisition, pre-processing and 

characterisation. Figure 2.4 illustrates the operations within these stages (ISO 

standardised operations are listed in bold). 

 

Figure	2.4	Stages	of	surface	texture	assessments	

Surface	classification	

There are various types of surfaces, identified by different classification approaches. 

According to the surface creation processing, Stout and Blunt (2001) classified them 

into random surfaces, systematic surfaces, unstructured surfaces, structured surfaces 

and  engineered surfaces. Jiang et al (2007) categorised them into three groups, 

stochastic surfaces, structured surfaces and freeforms by the description approaches. 

According to the type and the functional requirements of a surface, a possible 

metrological solution is established, which includes a sampling method, a suitable 

instrument, analysis methods and parameters. 

Data	acquisition	

In this stage, a set of representative data points are collected from the surface. Many 

instruments, based on different principles, are available to pick up these data points. 

Stout et al (1993) listed most of them, such as stylus, optical interference, optical 

scatting, capacitance, ultrasound, Scanning Probe Microscope(SPM), etc. ASME 

B46.1 (2002) classifies surface measuring instruments into six types. Each type of 

instruments has advantages and limitations. According to its measurement principle, an 

instrument may bring some distortions into the measurement datasets, e.g. effect of 

stylus radius. Often a considerable disagreement occurs when a surface is assessed by 

different types of instruments (Whitehouse 1988; Poon and Bhushan 1995; Conroy and 

Armstrong 2005; Vorburger, Rhee et al. 2007).  
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Pre‐processing	

In the stage of pre-processing, a set of mathematical treatments is carried out to refine 

the useful information out of the raw measured datasets. Pre-processing includes 

levelling of surface data, form removal, data manipulation (truncation, rotation, 

inversion, sub-area extraction, etc.) and filtering. Levelling and form removal is often 

performed by the least squares line/plane or surface fitting with various mathematical 

methods (Muralikrishnan and Raja 2008). 

Filtration concerns the separation of different features by given scales. It extracts key 

information to provide process feedback and establish the functional correlations. 

Meanwhile, it is important to limit the unwanted distortions caused by using a filter. 

Various types of filters have been developed, such as the 2RC, Gaussian, spline, 

morphological, wavelet, regression filter, etc. Each type of filters has its advantages 

and limitations (Raja, Muralikrishnan et al. 2002). 

Characterisation	

A typical profile graph is shown in Figure 2.5. It is difficult to describe all features by 

one parameter. Many parameters, thus, have been developed. The peak parameters, 

such as Rp, Rv and Rz shown in Figure 2.5, are the earliest parameters as they can be 

measured by hand directly from a recording of the profile (Reason 1944). Abbott & 

Firestone (1933) recommended the use of the material ration curve to represent the 

surface. Average parameters, such as Ra and Rq, were  introduced when electronic 

processing became available (Reason 1944). Since the computer being used in surface 

metrology, an amount of parameters based on different characterisation techniques (e.g. 

statistical description, spectral analysis, time series analysis, functional characterisation 

etc.) has been realised. Jiang and Blunt (2001) estimated that more than 100 surface 

profile parameters had been proposed. 

 

Figure	2.5	A	typical	profile	graph	with	some	descriptors	
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Most of the characterisation techniques are scale-dependent, which means the results 

depend on the measurement scale. On the other hand, some topography characteristics 

are independent of the measurement scale, i.e. using of a fractal dimension (ISO/DIS 

25178-2 2009). 

The variety of the characterisation methods has brought about a significant explosion 

in the generation of parameters, aptly defined as the “parameter rash” by Whitehouse 

(1982). The rash results confusion and expense, thus, it needs ways to minimizing it 

(Whitehouse 1982). It will be discussed in the next section. 

2.2.3 Standardisation	

The complexity and variety of surface metrology gives engineers plenty of choice. At 

the same time, it causes a difficulty in communication between different parties. Thus 

many national standard documents have been issued (Whitehouse 2002a). The need for 

global standards has increased dramatically in the trend of globalisation. ISO plays an 

important role in the development of the common standards around the world. 

Standard documents for surface texture are developed by ISO TC/213 in the 

framework of the GPS (Geometrical product specifications and verification). It 

consists of profile characterisation and areal characterisation. 

Surface	profile	characterisation	

Table 2.1 lists current surface profile standard documents in the GPS matrix model.  
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Table	2.1	Position	of	surface	profile	standard	documents	in	the	GPS	matrix	model.	

Chain link 

number 
1 2 3 4 5 6 

Geometrical 

characteristic  

of feature 

Codification 

on a drawing 

Definition of 

tolerance 

Definition for 

actual feature 

Comparison 

with tolerance 

limits 

Measurement 

equipment 

requirements 

Calibration 

requirements 

14 
Roughness 

profile 

ISO1302 ISO 4287, 

12085, 

13565-1, 

13565-2, 

13565-3 

ISO 4288, 

12085, 

11562, 

13565-1 

ISO 4288, 

12085 

ISO 3274 ISO 5436, 

12179 

15 
Waviness 

profile 

ISO1302 ISO 4287, 

11562, 

12085 

ISO 11562, 

12085 

ISO 12085 ISO 3274 ISO 5436, 

12179 

16 
Primary 

profile 

ISO1302 ISO 4287, 

11562, 

13565-3 

ISO 4288 ISO 4288 ISO 3274 ISO 5436, 

12179 

Note that only limited academic outputs have been standardised in ISO documents; 

moreover, limited ISO parameters have been used in industry practices. Figure 2.6 

shows an overview of the knowledge transfers in the case of surface profile parameters. 

 

Figure	2.6	An	overview	of	knowledge	transfer	in	the	case	of	surface	profile	parameters	

The limitation of the knowledge transfer is due to many reasons; some of them are 

listed below. 
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1) Some parameters are not meaningful (or functionally significant). Some 

parameters are easy to define, but they are not very useful in industry practice 

(e.g. W-parameters (Whitehouse 2002b)). 

2) Some parameters are not mathematically stable. Some parameters are 

meaningful, but their definitions are unstable (e.g. the RSm parameter (Leach 

and Harris 2002)).  

3) Many parameters show poor repeatability/reproducibility in practise. It is 

mainly due to the inconsistencies on the surface (Thomas and Charlton 1981). 

Disagreements could also arise from the variation of the understanding and 

implementations of ISO standard documents (Scott 1988).  

Areal	surface	texture	parameters	and	filter	toolbox	 	

Many ISO documents for surface metrology are about to be published. Some of the 

most important are listed as follows. 

 The areal parameters of surface texture within ISO 25178 series: It includes 

three standard documents that define more than 40 areal parameters with their 

default callout.   

 The filter toolbox within ISO 16610 series: It contains more than 40 documents 

that attempt to standardise most of the available filters with the user guides. 

The areal parameters and filters toolbox are expected to be more meaningful, more 

mathematical stable, and able to reduce the variation contributed by the surface 

inconsistent. They are more complex and flexible. Thus, it should pay more attention 

to the possible disagreements caused by the different understanding and 

implementations of them. In metrology, this issue can be addressed by using 

measurement standards. It will be discussed in the following parts of this thesis. 

2.2.4 Definitional	uncertainty	&	specification	uncertainty	

The requirements of surface texture on a component are generally expressed in the 

drawings by standardised symbols. The most widely used are defined in ISO 1302 

(2002). Figure 2.7 illustrates an example and its interpretation. 
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Figure	2.7	An	example	of	the	specifications	of	roughness	in	drawing	(ISO1302:2002)	

In the GPS, specification uncertainty is used to quantify completion and perfection of 

the requirements given in technical drawings (ISO/TS 17450-2 2002). The evolution of 

the drawing symbols of surface texture reduces their specification uncertainty 

significantly (see Figure 2.8). However, current standard documents still contain some 

degree of the specification uncertainty. For example, Leach and Harris (2002) 

investigated the ambiguities in the definition of RSm parameter. It shows that an 

unspecified combination method for parameter RSm led to up to 12 % variation of 

results in given examples. 

 
Key:      a) In 1965 version , up to 300% specification uncertainty; 

b) In 1991 version, up to 30% specification uncertainty; 

c) In ISO 1302: 2002 version, low specification uncertainty. 

Figure	2.8	Evolution	of	drawing	symbols	(P	Bennich	and	H	Nielsen	2005)	

It has been recognised that a measurand is defined on a finite amount of information 

(GUM 1995). Therefore, the concept of definitional uncertainty was introduced into 

metrology which sets a minimum limit to any measurement uncertainty (VIM3 2007). 

The definitional uncertainty and specification uncertainty aim to address same problem 

– the lack of knowledge (Nielsen 2009). However, there is no common understanding 
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on definitional uncertainty (Mari 2009) and the relationship between specification 

uncertainty and definitional uncertainty is unclear (Nielsen 2009). 

2.2.5 Information	model	

There are two types of information for a surface texture measurement: 

1) The measured dataset: It records the dimensional information which is a digital 

representation of a measurand in certain condition produced at a certain phase 

of a measurement.  

2) The characteristic and the measurement conditions: As discussed above, a 

measurand is defined on an amount of information. The specified characteristic 

and measurement conditions state the key information of a measurand. 

To measure is to compare. In order to compare the measurements undertaken at a 

different time or location, it is of importance to store and exchange such information. 

There are various file formats used to store the measured dataset in a computer. 

However, the information of the characteristics and the measurement conditions is 

spread in many graphic/text-based documents, such as user-input, ISO documents, 

instrument guides, national measurement guides, etc. So an engineer faces another 

problem: how to organise/manage such information? The more the detailed 

information is, the less the definitional uncertainty. At the same time, too much 

information could make it difficult to exchange of information. In the pre-information 

age9, all our information was held on paper. Today most of it is held electronically 

either as digital documents, or as data in databases. The use of computers makes 

storing and exchanging more detailed information possible, thereby reduces the related 

uncertainty. This is especially important for surface measurement due to the 

complexity and variety of surface metrology as discussed above. 

In the specification of surface texture, the most often used model is through the 

technical drawings. This graphic-based method efficiently integrates various 

geometrical requirements in one technical document. With the developing in Compute-

Aid Design (CAD), the traditional paper-based drawings are normally undertaken with 

                                                 
9 For our purpose, we will assume that the information age started around 1970. 
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aid of computer and store in digital form. Models have developed to use text-based 

language to represent the graphic-based symbols. For example, most of the CAD/CAM 

systems support ISO 10303 -- STandard for the Exchange of Product model data 

(STEP) to represent and exchange product manufacturing information. Danner et al. 

(2003) proposed a STEP-Based information model for dimensional inspection was 

proposed. These models aim to integrate all produce information within its life-cycle. 

Thus they only provide limit information of the specification of surface texture.   

In the verification of surface texture, there are various data file formats available10. 

However, most of them focus on the storage of measured data with little information 

about the measurement condition 11 . Muralikrishnan and Raja (2002) proposed a 

common format for exchanging surface texture data across different platform, which is 

a XML-based container for the information of part, measurement, data file, analysis, 

process and function. Another file format with lot of detailed measurement information 

is the SMD file format. SMD is defined as the protocol for software calibration in ISO 

5436-2 (2001). The elements of SMD are listed in Table 2.2.  

Table	2.2	Elements	of	the	SMD	file	format	(ISO	5436‐2	2001)	

Section Element 

Record 1 – Header The revision number; File Identifier; Feature Type; Feature 

Number; Feature Name; Axis Name; Axis Type; Number of 

Points; Units; Scale factor; Axis Data Type; Incremental Value; 

Record 2 – Other 

information (optional) 

Date; time; created by; Instrument Id; Instrument Serial; Last 

Adjustment; Probing System (It includes Probing System Id; Tip 

radius value; Units; Tip Angle); Comment; Offset; Speed; Profile 

Filter (It includes filter type; Ls cutoff value; Lc cuttoff; Lf cutoff 

value; Motif A, Motif B); Parameter value (It includes Parameter 

Name; Parameter Value; Units; Uncertainty) 

Record 3 – Data Data value; 

Record 4 – Checksum Checksum value. 

There is a logical relationship between specification and verification, and models 

discussed above mainly focus on one part. The shape and size of such information are 

                                                 
10  For example, a commercial software package has listed more than 40 supported file formats. 
(Retrieved 30th January 2011, form http://www.truegage.com/tmformats.php#ts_upgrades) 
11 In this project website, an overview is given for the measurement information storage in several 
popular file formats. 
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changed from the designers to the metrologists. It could contribute the uncertainty in 

communication level. Thus, it is of importance to develop an information model to 

standardise the message from the specification to verification and vice versa.  

There is an ongoing project for developing the protocol of the softgauges for areal 

surface texture measurements, which includes a proposed data file format and an open 

resource application to read and write this file format. The data structure follows the 

structure using in ISO 5436-2.  

In addition, an information model needs to limit the amount of detailed information. 

Measurement standards, discussed in the next section, are useful tools to this end. 

2.3 Hardgauges	and	primary	instruments	

At the national level of a national measurement system, the current realisations of the 

definitions of surface texture are measurement standards, i.e. hardgauges, and a 

primary instrument. 

2.3.1 Hardgauges	

The design and the development of hardgauges to calibrate the surface measuring 

instruments begun in 1940’s, when Tomlinson (1946) at NPL developed one of the 

earliest hardgauges in the form of acid-etched lines. Thanks to the contributions made 

by Underwood (1953), Schobinger (1959), Reason (1951), Sharman (1967), Hasing 

(1965) and Song (1988),  many hardgauges have been developed with different shapes 

on various materials. Most of them are standardised in ISO 5436-1 (2000). This 

document advocated using these hardgauges to determine the operating characteristics 

of contact stylus instruments, and lists five different types of hardgauges. 

Type	A	hardgauges	

They are used to calibrate the vertical profile component of stylus instruments. They 

come with two sub-groups, type A1 – a wide groove with a flat bottom (see Figure 2.9), 

and type A2 – same as A1 but with a rounded valley (see Figure 2.10). Each 

geometrical feature of these hardgauges should be wide enough to be insensitive to the 

shape or condition of the stylus tip. 
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Figure	2.9	Examples	of	type	A1	hardgauges	(ISO	5436‐1	2000)	

 

Figure	2.10	Examples	of	type	A2	hardgauges	(ISO	5436‐1	2000)	
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Type	B	hardgauges	

They are used to calibrate the geometry of the stylus tip. They also come with three 

sub-groups: Type B1 – narrow grooves with rounded bottoms proportioned to be 

sensitive to the dimensions of the stylus; Type B2 – two grids of equal Ra, one 

sensitive to the tip dimension the other insensitive; Type B3 – a fine protruding edge to 

assess the stylus condition. Some of example shows in Figure 2.11. 

 

Figure	2.11	Examples	of	type	B	hardgauges	(ISO	5436‐1	2000)	

Type	C	hardgauges	

They are used to calibrate both the vertical and horizontal profile components. They 

consist of a grid of repetitive grooves of similar shape. They come with three sub-

groups: Type C1 – groves having a sine wave profile (see Figure 2.12-A); Type C2 – 

Grooves having an isosceles triangular profile(see Figure 2.12-B); Type C3 - simulated 

sine wave grooves (see Figure 2.12-C), and Type C4 – grooves having an arcuate 

profile (see Figure 2.12-D). Type C hardgauges have well documented surface 

parameters and can be used to calibrate the horizontal magnification. 



  39 

 

 

Figure	2.12	Examples	of	type	C	hardgauges	(ISO	5436‐1	2000)	

Type	D	hardgauges	

They are used for an overall calibration of instruments. They have an irregular profile 

in the direction of traverse, but they have the convenience approximately constant 

cross-section along their lengths (see Figure 2.13-A). Following their measuring plan 

(see Figure 2.13-B), they can be used to check the overall performance of an 

instrument while limit effect of the surface inhomogeneity. They also come with two 

sub-groups: Type D1 – unidirectional irregular profile; and type D2 – circular irregular 

profile.  



  40 

 

 

Figure	2.13	A	type	D1	hardgauge	and	its	measuring	plan	(ISO	5436‐1	2000)	

Type	E	hardgauges	

These are used for calibrating the profile coordinate of instruments. They come with 

two sub-groups, type E1 – precision sphere or hemisphere (see Figure 2.14-A), type E2 

– precision prism (see Figure 2.14-B). 

(A) The type E1 hardgauges

(B) The type E2 hardgauges  

Figure	2.14	Examples	of	type	E	hardgauges	(ISO	5436‐1	2000)	

The philosophy of using the type A, B, C, E hardgauges is to identify the influential 

components and check each of them separately. A hardgauge is normally developed to 

assess metrological traceability (towards SI units) of one component, while to limit the 
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effect of other components. However, it is still a problem of traceability of the results 

obtained from the engineered surfaces in the industry practices, due to their 

geometrical features are unlike the features on these hardgauges. Some suggested using 

the real engineering surfaces to check the performance of an instrument with the 

certified values obtained from a primary instrument. The great problem of this method 

is the inhomogeneity of the surfaces itself. Hasing (1965) and Song (1988) have 

developed random profile hardgauges (i.e. type D hardgauges) to overcome this 

drawback. 

Hardgauges can be calibrated easily, accurately and unambiguously. They provide the  

absolute interpretations of the definitions of the surface parameters without going into 

too much detail (Rubert 1995). Using of hardgauges can identify (and manage) the 

disagreements between different parties. For example, Song and Vorburger (1991) 

proposed a measuring procedure based on the calibration procedure of hardgauges at 

NIST. 

There are many typical problems of the calibrations undertaken by using hardgauges. 

Rubert (1995) listed some of them: 1) less accurate and more uncertain; 2) the 

disagreement due to non-standardised measurement conditions; 3) wear and damage on 

the hardgauges after a period of use. More issues will be discussed in Section 2.4. 

2.3.2 Primary	instruments	

A NMI often maintains a primary instrument to provide the certified values of the 

hardgauges within a country. This well-calibrated instrument establishes the 

traceability chain toward SI units. Most of NMIs use a commercial instrument; some 

use their own developed instruments. For example, NPL developed a surface 

measuring instrument, called NanoSruf IV, with ± 1 nm measurement uncertainty (at 

95 % confidence) for both vertical and horizontal measurements (Leach 2001). 

Self-evidence is provided on the accuracy and reliability of the primary instruments. 

To avoid a significant disagreement between different countries, NMIs carry out the 

comparisons among their instruments by using hardgauges. The inter-comparisons are 

not undertaken very often due to the cost both in time and labour12. Two recent inter-

                                                 
12 For example, the most recent comparison spent near 4 years (Euromet 600, 2004). 
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comparisons among NMIs in European have undertaken in 1989 (Hillmann) and in 

2004 (Koenders, Andreasen et al.). Significant disagreements have reported, and the 

later one highlighted the needs to improve both the instruments and the software, have 

a better understanding of uncertainty and have more precise definitions in standard 

documents. 

2.4 Traceability	chain	

2.4.1 Measurement	uncertainty	

2.4.1.1 General	concept	of	error	and	uncertainty	

The hierarchy of measurement standards forms a pyramid. It is obvious that the higher 

in the pyramid, the more accurate (or less inexactness, in other words) must be of the 

standard. The measurement error, the difference between the measured value and “true 

value”, was historically used to describe the inexactness. Errors are subdivided into 

random and systematic. As illustrated in Figure 2.15-a, Systematic errors are often 

defined by the difference between the true value and the mean of the measured values. 

Random errors 13 , caused by non-controlled random influence quantities, may be 

characterized by the standard deviation and the type of distribution.  

Due to it is impossible to know an exactly true value, the reference value, or certified 

value provided by the measurement standard, is used to assess the knowable errors (see 

Figure 2.15-b). Thus, a reliable reference value should be as close as possible to the 

true value by reducing the effect of unknown errors. 

As the “exact value” of an error is unknowable, measurement uncertainty is introduced 

to quantify the inexactness by estimating the distribution of measurement errors in the 

form of an interval with a specified level of confidence. The most commonly used 

procedure for calculating measurement uncertainty is described in the Guide to the 

Expression of Uncertainty in Measurement (GUM 1995). The GUM’s method is 

undertaken with several steps as listed in Table 2.3 and illustrated in Figure 2.15-c. 

                                                 
13 Note that all errors are by nature systematic. When we see errors as non-systematic it is due to 
insufficient resolution, unknown contributor, etc.(ISO/TS 14253 1999) 
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Figure	2.15	Relationship	between	system	errors	and	random	errors	[Adapted	from	
(Ehrlich,	Dybkaer	et	al.	2007)]	
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Table	2.3	The	GUM’s	method	(Howarth	and	Redgrave	2008)	

Step Procedures 

1 Identify all important components of measurement uncertainty: Many sources can 

contribute to the measurement uncertainty. Apply a model of the actual measurement 

process to identify those sources. Use measurement quantities in a mathematical 

model. 

2 Calculate the standard uncertainty of each component of measurement uncertainty: 

Expressing each component of measurement uncertainty in terms of the standard 

uncertainty determined from either a type A or type B evaluation. Type A components 

are estimated by statistical processing of repeated measurements. Type B components 

are estimated by other methods. The most commonly used method it to assume a 

probability distribution based on experience or other information.  

3 Calculate the combined uncertainty: In practice, for a sum or a difference of 

components, the combined uncertainty is calculated as the square root of a sum of the 

squared standard uncertainty of the components. 

4 Calculate the expanded uncertainty: Multiply the combined uncertainty with the 

coverage factor k. 

5 State the measurement result on the form: Y = y ± U 

Note that the term of “uncertainty” has two rather different meanings in a technical 

sense. The first meaning has its roots in probability and statistics, which is widely used 

in metrology and normally evaluate by the GUM’s method. The second meaning 

relates to the “lack of knowledge” (i.e. the absence of information in communication 

and cognise level), which is discussed in the GUM (1995) and is highlighted in the 

VIM3 (2007). The VIM3 (2007) revised the definition of measurement uncertainty to 

cover two meanings. However, there is no a guide provided to estimate of definitional 

uncertainty (the second meaning). Moreover, VIM3 does not define the concept of the 

measurand definition, the object which definitional uncertainty attempts to quality, 

which is still an open topic in the field of metrology (Phillips, Estler et al. 2001; Mari 

2006; Pavese 2007; Baratto 2008; Mari 2009). 

2.4.1.2 Error	and	uncertainty	in	surface	texture	measurements	

An uncertainty budget is started from the definition of uncertainty contributors. Many 

sources of uncertainty in surface metrology can be identified (Blunt and Jiang 2001; 

Smith 2002); nevertheless, uncertainties vary with the task being performed, the 
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environment, the operator, the chosen measurement methodologies, etc. A typical 

example of sources of errors shows in Figure 2.16. 

 

Figure	2.16	Sources	of	errors	in	surface	texture	measurements	(Li,	Blunt	et	al.	2009)	

To make it clearly, uncertainty contributors are grouped in five categories: hardware, 

measurand, measurement strategy, software and interpretation of the results by the 

approach proposed by Wilhelm et al (2001). This categorization gives a 

straightforward view of the relationship of different components of uncertainty as 

shown in Figure 2.17.  

 

Figure	2.17	Error	components	that	lead	to	measurement	uncertainty	

Instrument	hardware	

It refers to the sources of uncertainty caused by errors inherent to the design of the 

instruments, its stylus, its dynamics, and the environment in which it is placed. 

Generally, the effects of temperature, air pressure and humidity are insignificant for 

surface roughness measurement. Mechanical vibrations can induce outliers in the 

measured surface and should be avoided. 
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The use of various measurement methods (e.g. stylus, optical, AFM, etc.) could 

produce different results on one surface. Many comparisons have undertaken (Church, 

Vorburger et al. 1985; Whitehouse 1988; Poon and Bhushan 1995). In a recent 

comparison, Vorburger et al (2007) reported that the discrepancy is up to 75% between 

optical method and stylus method in some cases. For a stylus instrument, the effects of 

stylus tip radius, tip worn and stylus flight can be significant (McCool 1984; Song and 

Vorburger 1996; Pawlus and Smieszek 2005).  

Measurand	

This uncertainty relates to properties of the measurand and measurement interaction 

with the workpiece. It is well known that significant variations can occur when small 

samples are taken from a large population of data. Generally, the measurand is defined 

within a sampling length to represent the whole surface. Thus, the inconsistent on the 

surface itself is the biggest contributor of the uncertainty. Thomas and Charlton (1981) 

investigated the variation of surface parameters on some typical surfaces. It found that 

the variations are up to 15% on the hardgauges and up to 50% on the typical machined 

surfaces. Stout and Davis (1986) investigated the variation of the Ra parameter when 

increasing the measuring times. These research works were based on the previous 

definition of surface parameters. Further study needs be undertaken on the variation of 

the latest ISO parameters on the typical surfaces. 

Measurement	strategy	

It includes the errors due to the inadequate in sampling, selection of sampling length, 

evolution length, etc. The default setting up of a stylus instrument is provided in ISO 

3274 (1996) and ISO 4288 (1996). This project only takes these standardised 

measurement conditions into consideration. 

Software	algorithm	

The uncertainty, contributed by the software algorithms, involves two topics: the 

propagation of the data uncertainty and the “quality” of the software itself. The 

complexity of the parameter calculations causes the difficulties in the estimate of the 

propagation of data uncertainty (PU). Haitjema et al. have calculated it (2000; 2000; 

2001) based on its experimental results. It has taken into account the following effects: 
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z axis calibration, x axis calibration, λc cut-off length, λs cut-off length, probe diameter, 

probe tip angle, probing force, straightness of reference and sampling density. Similar 

uncertainty models have widely used by NMIs (Koenders, Andreasen et al. 2004). 

With the drastically increased power of the calculation of computers, the Monte Carlo 

Simulation (MSC) has been implemented to calculate the uncertainty. Brennan et al 

(2005) investigated a robust method of PU in the discretely sampling surface profiles. 

Bui and Vorburger (2007) in the NIST used MSC to calculate the uncertainty by 

adding random noise to each data point. NIST method assumes the noise has a normal 

distribution with mean of zero and standard deviation in both x-direction and z-

direction, and each point is independent from other points. 

The “quality” of software in this context only refers to the accuracy and reliability of 

the software algorithms. It is a systematic error between the commercial software and 

the national reference. It reflects the metrological comparability of difference software 

packages.  

Results	and	uncertainty	

The measurement results with associated uncertainty are presented in the form of Y = y 

± U with the coverage factor k. It should pay attention on the possible uncertainty 

arisen from the presentation of results. 

Some	issues	of	uncertainty	in	surface	texture	measurements	

The GUM’s method is summarised in Section 2.4.1.1. However, it is very difficult to 

implement the GUM’s method to evaluate the uncertainty in surface measurements. 

The reasons are listed as follows. 

1) The GUM’s method is under the assumption that a measurand can be 

characterised by an essentially unique value. The definitional uncertainty is 

considered to be negligible with respect to other components of measurement 

uncertainty. As discussed in the previous section, the definitional uncertainty of 

surface texture measurements could be significant. 

2) The GUM provides the guidance in the case of a single reading of a calibrated 

instrument, a situation normally met in industry metrology. However, the 

measured values of a parameter are produced by a set of mathematical 
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treatments on thousands measuring points. Uncertainty models as discussed 

above assumed that the separated effects are uncorrelated, but they are 

significant correlated indeed. For example, Krystek (2001) investigated the 

uncertainty contributed by using the Gaussian profile filters, and highlighted 

the correlated property of the filtered data. 

Thus, Leach (2009) states that “there is not straightforward to calculate a rigorous 

uncertainty value for an instrument for all surfaces and for all parameters, and only a 

pragmatic approach can be applied for a given measurement scenario”. 

2.4.2 Calibration	

The traceability chain is established through the calibrations. Note that the term of 

“calibration” in many publications is confused with “adjustment of a measuring 

system”. Their definitions in metrology are listed as follows. 

 Adjustment is “set of operations carried out on a measuring system so that it 

provides prescribed indications corresponding to given values of a quantity to 

be measured. (VIM3 2007)” The adjustment process, therefore, comprises the 

modification of internal parameters, which characters the relation between the 

variations given by the probe and its real displacement. 

 Calibration is “operation that, under a specified conditions, in a first step, 

establishes a relation between the quantity values with measurement 

uncertainties provided by measurement standards and corresponding 

indications with associated measurement uncertainty and, in a second step, 

used this information to establish a relation for obtaining a measurement result 

from an indication (VIM3 2007).” 

The first step of calibration consists of the measurements on a certainty number of 

hardgauges, and the verifications of the measured values with the certified values. 

Importantly, no modification undertakes on the internal parameters of this instrument. 

The second step of calibration is to produce a calibration curve by a suitable 

interpolation. For example, one wants to calibrate the vertical displacement of the 

stylus of a surface instrument. She/he could use three type A1 hardgauges, certified by 

NPL, with nominal height at 30 nm, 300 nm and 3000 nm, and each of them comes 
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with associated uncertainty. As illustrated in Figure 2.18, the calibration process 

includes two steps. 

 This instrument measures three hardgauges; the corresponding readings are 

recorded; and the measurement uncertainties are evaluated;  

 A calibration curve is constructed by using these reading and a suitable 

interpolation algorithm, e.g. Least-Squared fitting of a straight line. A 

calibration strip is created in a similar way by using uncertainty interval (see 

Figure 2.18-a). This function is then inverted, so that each reading of this 

instrument can be associated with a measurand value (see Figure 2.18-b).  

 

Figure	2.18	Diagram	of	calibration	process	

2.4.3 Some	issues	of	traceability	of	surface	texture	
measurements	

There are some issues surrounding the traceability chain of surface texture 

measurements, which currently established by using hardgauges only. To make it 

clearly, Figure 2.19 shows a typical surface measurement progress, together with the 

position of hardgauges. The measurements link the empirical world and the 

information world (which is of the abstract concepts and knowledge). It includes two 

phases, data collection and data processing. Correspondingly, traceability of surface 

measurement can be split into two parts, traceability of the instruments (in the 
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empirical world), and traceability of the implementations of the algorithms (in the 

information world). Figure 2.19 illustrates the position of the hardgauges in two worlds.  

 

Figure	2.19	Position	of	hardgauges	

There are two routes to demonstrate traceability of measurement results in the form of 

the surface parameters, that of route 1 though sxy, and that of route 2 through sy 

directly. Type A, B, C and E hardgauges are used to check traceability of instruments 

in aspects of the tip condition, vertical and horizontal components, etc. It maintains a 

route of traceability of each measuring point obtained a surface (i.e. sx) toward SI 

unit. Obviously, this route is incomplete without the check traceability of data 

processing phase (i.e. xy). 

Type D hardgauges are able to check traceability of the whole measuring process 

(sy), but there are some issues on this route. Firstly, there are 63 ISO parameters, but 

a type D hardgauge normally only provide certified values of parameter Ra & Rz. 

Secondly, the certified values are obtained from a primary instrument in a country. 

Much evidence shows traceability of the data collection in this instrument, but limited 

evidence shows its software traceability. In this situation, other tools should be applied 

to assure at least comparability of the measurement results. Unfortunately, it has found 

that significant disagreement (up to 35%) in the phase of data processing(Koenders, 

Andreasen et al. 2004). 
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Finally, it is a problem to produce a reliable calibration curve by using type D 

hardgauges. It is well known than same Ra value can be obtained from significant 

various surfaces (Whitehouse 2002b). So the existing of the calibration curve of Ra 

parameter is an issue (Scott 2011). Type D hardgauges only provides few reference 

points, and the eyeballed fitting curves are often used (Song and Vorburger 1991). 

Figure 2.20 shows the calibration points (provided by some typical used type D 

hardgauges) and range of Ra value on typical surface produce by different processes. It 

can be found that the type D hardgauges only provide few calibration points, and the 

points do not fall into the range of Ra values on many typical engineered surfaces.  

 

Figure	2.20	Calibration	points	and	range	of	Ra	value	(source:	Rubert	&	Co	Ltd	and	
Taylor	Hobson	Ltd)	

Therefore, type D hardgauges, the standards close to the engineering surfaces, only 

deliver limited evidence on traceability of an instrument in the form of parameter Ra 

and Rz. It is unable to claim the metrological traceability of most of the surface 

measurement results through current route (via s→x or s→y). Fortunately, type F 
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measurement standards (i.e. softgauges) provide another route (via s→x and x→y) 

which is expected to address this issue. 

2.5 Softgauges	

2.5.1 Concept	of	softgauges	

The most important ISO standard document, for this thesis, is the ISO 5436-2 (2001), 

“Geometrical Produce Specifications (GPS) – Surface Texture: Profile method; 

Measurement standard – Part 2: Software measurement standards”. Software 

measurement standards are defined as “reference data or reference software intended 

to reproduce the value of a measurand with known uncertainty in order to verify the 

software (i.e. filter algorithms, parameter calculations, etc.) used to calculate the 

measurand in a measuring instrument.”(ISO 5436-2 2001). They come with two sub-

groups. 

Type F1 software measurement standards are reference data files, which are a digital 

representation of a profile with reference results attached. They are used to test 

software by inputting them into the software under test, and comparing the results with 

the certified reference results provided with the type F1 software measurement 

standard (ISO 5436-2 2001).  

Type F2 software measurement standards are reference software. The reference 

software consists of traceable computer software against which software of a 

measuring instrument can be compared. Type F2 software measurement standards are 

used to test software by inputting a common data set into both the software under test 

and the reference software and comparing the results from the software under test with 

the certified results from the reference software (ISO 5436-2 2001). 

2.5.2 Requirements	

Before the design and development of the softgauges for surface texture, it is necessary 

to understand the requirements from the standard documents, the end-users and the 

development of surface metrology. 
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Requirements	from	standard	documents	

Many originations have issued the requirements on metrological software 14 . For 

instance, ISO/IEC 17025 (2005) specifies the software requirements 15  within the 

general requirements for the competence of testing and calibration laboratories. “A 

guide to the estimation of uncertainty in GPS measurement, in calibration of 

measuring equipment and in the product verification”, states software contribution for 

the measurement uncertainties (ISO/TS 14253-2 1999). Its clause 7.6 lists the main 

possible contributors, such as rounding/quantification, filtering, algorithms, correction 

of an algorithm, certification of an algorithm, implementation of an algorithm, 

interpolation, extrapolation, number of signification digits in the computation, outlier 

handing, sampling, etc. In the field of surface measurement, ISO 5436-2 (2001) 

highlights the requirements for verifying the software by introducing the concept of 

software measurement standard. Thus, the software measurement standards are 

essential parts in a national measurement system. 

Note that the requirements and the validate objectives are often vague, such as “the 

software shall be of high quality”, or “the software shall be of function correctly”(Greif 

2006). 

Requirements	from	end‐users	

To understand the end-users’ requirements, an industrial consultation exercise has 

undertaken at the start of this project. The results are summarised as follows.  

 A total number of 30 responses was received, and they represented a good 

converge across a number of industrial sectors. The majority of the respondents 

were from the automotive sector (8), followed by metrology instrument 

manufacturers (5) and educational institutes (5). 

 Precision finishing of metal was highlighted as the main manufacturing process 

for the majority of the respondents, with grinding and lapping/polishing of 

steels appearing to be the most critical (see Figure 2.21). It is clear from the 

                                                 
14 Many standards are developed or under developing. Tasic and Grottker  (2006) undertake a survey of 
the guiding documents for software in metrology, with an emphasis on requirements defined. 
15 Such clauses are, e.g.: 5.4.7.2a, 5.5.2, 5.5.4, 5.5.10, 5.5.11 and 5.5.12 (ISO/IEC 17025:2005) 
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consultation that industries producing such surfaces have a fair knowledge of 

their metrology needs and tools. 

 For surface profile measurement, contacting stylus instruments remains the key 

tool with all but one of the respondents using them. The use of standards was 

strongly supported, particularly ISO 4287 (53%). However, a significant 

proportion of instruments’ users employs no standards at all and has no 

knowledge of the standards (40%). Most seemed aware of problems with the 

software.  

 The great majority of respondents (80%) use the Gaussian filter extensively. 

However, a significant number (20%) still uses the 2RC filter – this may be due 

to a lack of knowledge of standards development or, more probably, the fact 

that they possess older instrumentation.   

 A wide variety of surface texture parameters was reported as being used. 

Parameter Ra, Rsk, Rv, Rp, Rz, Rt and RSm seem to be the most widely used 

(see Figure 2.22). However, there were exceptions and, for example, the 

automotive respondents reported the use of the Rmr and Rk parameters. 

 

Figure	2.21	Manufacturing	processes	and	materials	used	by	respondents	
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Figure	2.22	Frequency	and	importance	of	R‐parameters	

The impact of the results of the consultation exercise on the development of software 

measurement standards within the current project is summarised as follows. 

 The parameters to be considered are (a subset of) these covered in ISO 

4287(1996), comprising: Ra, Rq, Rsk, Rku, Rp, Rv, Rz, Rc, Rt, and RSm. 

 Consideration will be given to guide the use of the software measurement 

standards. 

Requirements	from	the	future	development	of	surface	metrology	

The need for softgauges is also driven by the future development of surface metrology. 

Some of them are listed below. 

 The development of specification language and verification method for surface 

texture: The GPS language is going to be of richer and more complex. 

Softgauges are the essential metrological tools to make sure the reliability of 

the realisations of those standard documents. 
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 The development of the databases and the expert systems for surface texture: 

Those systems aim to help the designer to predict the performance of the design 

components and enhance the management of information for surface. 

Softgauges are key tools to check traceability of information in these systems. 

2.5.3 Related	work	

The use of digital methods in surface metrology was introduced in the late 1960s. The 

first commercial available digital surface instrument was released by Taylor-Hobson 

Ltd in 1972. In 1970s and 1980s, the software effect on the digital instruments was 

considered to be negligible with respect to other components of measurement 

uncertainty. For instance, an ASME standard document on measurement uncertainty 

states that “computations on raw data are done to produce output (data) in engineering 

units; Typical errors in this process stem from curve fits and computations resolution. 

These errors are often negligible” (ASME 1985).  

In the late of 1980s, however, much evidence was discovered that software could be a 

significant source of errors in the use of the coordinate measuring machine (Porta and 

Waldele 1986). Since the beginning of 1990s, there is considerable ongoing research 

work on the validation and verification of metrological software, and growing interest 

by NMIs in testing the performance of the software. Some of them provide services to 

test software (Hopp 1993).  

For surface measurement, Scott (1988) introduced a conceptual instrument, namely 

“the reference surface measuring instrument”, to address the disagreements arisen from 

the various interpretations of standard documents. The "reference algorithm” is one of 

its essential components. Song and Vorburger (1991) at NIST also stated that checking 

parameters algorithms are a necessary step (and first step) in a calibration procedure. 

A software verification method developed (Stout, Sullivan et al. 1993) in an EC funded 

project which aims to develop the draft 3D surface characterisation standards. It uses a 

simulated specimen (3D) with known characteristics to carry out software verification.  

Since the middle of 1990s, ISO has issued a series of standards for surface texture. And 

the concept of software measurement standard is introduced (ISO 5436-2 2001).  
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To analysis the software variability in the surface profile measurement, NIST has 

undertaken a round robin testing together with a further investigation (Bui, Vorburger 

et al. 2003; Bui, Renegar et al. 2004). These investigations pointed out that software is 

a primary contributor of the variation on the surface measurement results. In Europe, 

17 national metrology institutes (NMIs) undertook an inter-comparison on their surface 

measuring instruments (Koenders, Andreasen et al. 2004). For the first time, three 

reference data files were used for comparing the software of their instruments, and 

significant difference were found. In Asia, Chen et al (2005) reported inaccuracy of 

filter function in a commercial surface metrology software. 

Many NMIs have developed their own software packages. Some of them have been 

used as part of its national measurement system (Koenders, Andreasen et al. 2004). In 

addition, some open-resource and web-based software implementations have been 

developed (Bui, Gopalan et al. 2001; Sacerdotti, Porrino et al. 2002; Bui, 

Muralikrishnan et al. 2003; Bui, Muralikrishnan et al. 2005). Moreover, NMIs in 

European, American, and Asia have undertaken some parallel projects to develop the 

reference software, i.e. type F2 softgauge (Jung, Spranger et al. 2004; Nie, Liu et al. 

2006; Bui and Vorburger 2007; Li, Liu et al. 2007; Nemoto, Yanagi et al. 2008). 

These works underlines the requirements of the verification and validation of surface 

metrological software. However, there is a lack of a common understanding of the 

softgauges, from its concept to its implementations. Some of the questions listed as 

follows. 

 Is it a measurement standard, which can be used to maintain the 

metrological traceability? The type F standards, i.e. softgauges, are named 

as “measurement standards” in ISO 5436-2 (ISO 5436-2 2001). Obviously, 

they do have different “nature”. They exist wholly in the information world, 

while the traditional measurement standards exist in the physical world. 

Some of NMIs, such as PTB and NIST, do not recognise that the type F 

standards are “real” measurement standards.  

 Do the metrological concepts, such as traceability and uncertainty, suitable 

for software? According to ISO 5436-2, two key properties of the type F 
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standard, as same as hardgauges, are uncertainty 16  and traceability 17 . 

Uncertainty and traceability are the most fundamental concepts in 

metrology. However, these metrological concepts do not be well understood 

by software developers. Thus, currently, some of the reference software 

only provide the reference results without stated uncertainty and 

demonstrate their traceability.  

 How to model and evaluate the software uncertainty? Software uncertainty, 

as discussed in Section 2.4, has different meaning from traditional 

understanding of the measurement uncertainty. 

 How can we prove the accuracy of the softgauges? It is of importance due 

to the certified values should as close as possible to the “real” value. 

 How to establish the metrological traceability chain with the aid of the 

softgauges?  

 How to use the softgauges to calibrate product software?  

This thesis will attempt to address these questions that begin from next chapter. 

2.6 Summary	

This chapter has reviewed some of the key topics in surface metrology. It leads to the 

following summary: 

1) The definition of the surface texture is complex and flexible. The ambiguous 

definitions have already led disagreements between different parties. A method 

                                                 
16 In clause 3.1 (ISO 5436-2 2001), it states, “software measurement standard is reference data or 
reference software intended to reproduce the value of a measurand with known uncertainty in order to 
verify the software used to calculate the measurand in a measuring instrument.” And in clause 6 (ISO 
5436-2 2001), it states “..the calibrated value with its estimated uncertainty, U (see GUM) for each 
relevant metrological characteristic (for both F1 and F2 types) ;”  and “For reference software it may 
not be possible to give a closed form equation for the uncertainty of some values of metrological 
characteristics. In these cases all relevant information should be given to allow the user to calculate the 
uncertainty for themselves.” 
17  In clause 4.3 (ISO 5436-2 2001), it states, “reference software consists of traceable computer 
software...” & “Reference software values shall be traceable.” And in clause 6, it states, “the actual 
specification operator (see ISO/TS 17450-2) for each relevant metrological characteristic (for both F1 
and F2 types).” 
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is required to assess the degree of such ambiguity. This is especially important 

due to the coming standard documents are more complexity and flexibility. 

2) Current information model for the information of specification and verification 

of surface texture is not well structured, has a difficulty to exchange via the 

Internet. 

3) The hardgauges provide the absolute interpretations of the definition of surface 

parameters without going to much detail. The methodology in the design and 

development of hardgauges is to identify the influential conditions, assess each 

of them, interpreted them into the reference results with associated uncertainty. 

Lessons, summarised in Table 2.4, have been learnt from the design and use of 

hardgauges. 

4) The current traceability chain of surface measurements is ill-defined by using 

the hardgauges only. Most of the surface measurement results are unable to 

demonstrate traceability. The use of hardgauges is also costly.  

5) The evaluation of uncertainty for the surface measurements is relative 

immature. We need to pay attention to definitional uncertainty and specification 

uncertainty.  

6) There are requirements for softgauges from standard documents, end-users and 

the future development of surface metrology. 

Table	2.4	Lessons	to	learn	from	the	design	and	use	of	hardgauges	

no. lessons to learn examples 

1 It needs to check all influential conditions and traceability 

of each component. 

Type A, B, C, E 

2 A realisation, as the absolutely interpretations of the 

definition, can identify and reduce specification 

uncertainty. 

Type D 

3 The realisations should be closed to real engineering 

surface.  

Type D 

In the following chapters, a set of softgauges will be designed and developed to  

address above metrological issues. 
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3 A	framework	for	softgauges	

The previous chapter has highlighted some issues surrounding metrological traceability 

of surface texture measurements. To address them, the chapter presents a framework 

for softgauges for surface texture, which is developed based on the latest philosophy 

and description of measurement according to the VIM3 (2007) and the GPS. The role 

of softgauges in the traceability chain is the subject of Section 3.1. The GPS concepts 

in the field of surface metrology are discussed in Section 3.2. A terminology in the 

context of software calibration is the subject of Section 3.3. A framework for 

softgauges is covered in Section 3.4. 

3.1 Role	of	softgauges	in	the	traceability	chain	

Some questions on softgauges were listed in Chapter 2. Two of them should be 

addressed at the beginning of this project. 

1) Are they real measurement standards - which can be used to maintain the 

metrological traceability?  

2) Are the metrological concepts, traceability and uncertainty, suitable for the 

software of instruments? 

To address the questions, Table 3.1 compares some related concepts in the VIM2 and 

the VIM3.  
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Table	3.1	A	comparison	of	the	definitions	of	some	key	concepts	in	metrology	

Terms Definitions in the VIM2 (1993) Definitions in the VIM3 (2007)  

Definitional 

uncertainty 

- component of measurement uncertainty 

resulting from the finite amount of detail 

in the definition of a measurand 

Measurand particular quantity subject to 

measurement 

quantity intended to be measured 

Measurement set of operations having the object of 

determining a value of a quantity 

process of experimentally obtaining one 

or more quantity values that can be 

reasonably be attributed to a quantity  

Measurement 

result 

value attributed to a measurand, obtained 

by measurement 

set of quantity values being attributed to 

a measurand together with any other 

available relevant information 

Measurement 

standard 

a measuring instrument, reference 

material or measuring system intended to 

define, realize, conserve or reproduce one 

or more values of an attribute to serve as 

a reference 

realisation of the definition of a given 

quantity, with stated quantity value and 

associated measurement uncertainty, used 

as a reference 

Measurement 

uncertainty 

parameter, associated with the result of a 

measurement, that characterizes the 

dispersion of the values that could 

reasonably be attributed to the measurand 

non-negative parameter characterizing 

the dispersion of the quantity values 

being attributed to a measurand, based on 

the information used 

Traceability property of the result of a measurement 

or the value of a standard whereby it can 

be related to stated references, usually 

national or international standards, 

through an unbroken chain of 

comparisons all having stated 

uncertainties 

the property of a measurement result 

whereby the result can be related to a 

reference through a documented 

unbroken chain of calibrations, each 

contributing to the measurement 

uncertainty 

The noticeable evolutions are underlined in Table 3.1, and discussed as follows. 

 The metrological traceability chain is established by using “reference” (e.g. 

reference data, reference material, reference procedure), and a measurement 

standard is a “realisation”. A software measurand standard, a realisation in the 

form of reference data and reference procedure (ISO 5436-2 2001), should be 

capable as a measurement standard to establish the traceability chain. 

 Definitional uncertainty is related to the description of a measurand. Much 

information is detailed within the software of instruments. Software, therefore, 

is a contributor to measurement uncertainty. 
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 In addition, the VIM3 revised the definition of calibration, measurand and 

measurement. These changes underline the importance of related information 

of measurand and metrological algorithms. Note that a measurand is defined by 

specification ("intended to be measured" according to the VIM3), not 

verification ("subject to measurement" according to the VIM2). 

According to the VIM3, a software measurement standard, therefore, should be 

qualified as a measurement standard; and uncertainty and traceability of software needs 

be taken into consideration. The VIM3 is a milestone which marks a new world of 

metrology opened up by information science. It is believed that softgauges will play an 

increasingly important role in this world. 

3.2 Surface	texture	in	the	GPS	language	

Software effect on measurement uncertainty is highlighted in ISO 14253-2 (1999), 

“Guide to the estimation of uncertainty in the GPS measurement, in calibration of 

measuring equipment and in product verification”. However, ISO 14253 (1999) does 

not provide an approach of the evaluation of software uncertainty. Even there is no a 

common understanding on software uncertainty. 

Fortunately, the GPS provides a generalised uncertainty principle to assess the “quality” 

of communication between designers, industrial engineers and metrologists via the 

technical drawings. Software uncertainty is an uncertainty in communication level as 

well. Thus, this GPS principle will be adapted to define and estimate software 

uncertainty. This section presents the GPS uncertainty principles, and develops a better 

understanding in the context of surface metrology. 

3.2.1 Geometrical	features	in	three	worlds	

The GPS is an internationally accepted common language for expressing the 

geometrical requirements on the engineered components between designers, 

production engineers and metrologists. It covers all requirements (such as size, location, 

orientation, form, surface texture, etc.) indicated on a technical drawing to the 

geometry of industrial workpiece, all related verification principles, measuring 

instruments and their calibration (ISO/TR 14638 1995). In GPS philosophy, a 
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geometrical feature is a point, a line or a surface, which exists differently in three 

“worlds” (see Table 3.2). 

1) The world of specification, in which the designers have in mind several 

representations of the future workpiece: 1) A perfect workpiece, called the 

nominal model, is defined by perfect form, shape and dimensions to fulfil the 

functional requirements. 2) A non-ideal surface model, called skin model, is 

used to simulate the variations of the surfaces at a conceptual level (because 

some variations are expected on the real surface of the workpiece) and deliver 

the designers’ requirements. 

2) The world of workpiece, i.e. the physical world, in which a real workpiece is 

manufactured, as the result of a set of manufacture processing. 

3) The world of inspection, in which a representation of the given workpiece is 

produced by sampling this workpiece via measuring instruments. Metrologists 

need to undertake a comparison between measurand (designers’ requirements 

in a skin model) and the measured results (obtained from a real workpiece). It is 

impossible (and also unnecessary in many case) to obtain the variations over 

whole surface of the workpiece. Only finite points, therefore, are collected on 

the workpiece to represent the features of the real surface. A verification model 

is built based on limited measured information. 
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Table	3.2	Examples	of	geometrical	features	in	three	worlds	

Features Nominal 
feature 

Non-ideal 
feature 

Real feature Extracted 
feature 

Associated 
feature 

Sample 

     

    

Nominal 
model 

Skin model Real 
workpiece 

Verification model 

Process Design Manufacture Verification 

People Designers 
Product 

Engineers 
Metrologists 

3.2.2 Operators	and	duality	principle	

GPS uses operators to define the feature requirements in three worlds, such as the 

specification operator, the verification operator, etc. Each of operators comprises an 

ordered set of operations (Figure 3.1). And each of the operations has its own set of 

selectable parameters. To express the connection between specification and 

verification, GPS introduces the duality principle:  

“A specification is defined independently of any measurement procedure or equipment. 

The measurement and equipment are fully controlled by the specification. All the 

results are defined for specification only – and metrology shall apply to the rules – 

deviations/difference will be part of the uncertainty of measurement (ISO/TS 17450-2 

2002).”  

As illustrated in Figure 3.1, the design intent is expressed in specification 

characteristics within the specification operator. According to the requirements, the 

metrologists create the evaluation of characteristics within the actual verification 

operator. These operators can be compared with each other for conformity. 
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Figure	3.1	Duality	principle	(ISO/TS	17450‐2	2002)	

The GPS reflects a significant change of the definition of the measurand: from the 

“particular quantity subject to measurement” in the VIM2 (1995) to “quantity intended 

to be measured” in the VIM3 (2007). As shown in Figure 3.1, the measurand is 

specified by the specification operator, while the measured value is obtained from the 

verification operator. Note that both have associated uncertainties. 

Moreover, the GPS introduces many terms to describe the operators according to their 

states, such as complete specification operator, incomplete specification operator, 

default specification operator, special specification operator, actual specification 

operator, etc (ISO/TS 17450-2 2002). Figure 3.2 shows an example to illustrate these 

GPS concepts in the context of surface metrology. The intent of designer is expressed 

via “-2,5/Ra 1,6” in the technical drawing. The default specification operator is a set of 

the default operations in a default order, which consists of a series of callouts of the 

default setting up of the instruments according to ISO documents (e.g. the value of the 

evaluation length, λc, λs, Max. sampling spacing, etc.). 
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Figure	3.2	Operators	and	operations	of	‐2,5/Ra	1,5	

Firstly, a metrologist needs to develop a perfect verification operator, which is based 

on a full set of operations. Operations of the specification operator (in the world of 

specification) are mapped into operations of the perfect verification operator (in the 
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world of inspection). The major difference between them is the objectives (skin model 

and workpiece separately) and the creators (designer and metrologist individually). 

Secondly, the perfect verification operator is realised by an actual verification operator, 

which is an ordered set of actual verification operations (such as the measuring 

instruments, software, measurement condition, etc.) selected by a metrologist. 

Attention should be paid on the deviations between each actual operation and perfect 

operation. An extra process can be introduced to minimise such deviation if necessary 

(e.g. the levelling process to reduce the tilt effect arisen from an imperfect placing of 

the workpiece on an instrument, see Figure 3.2).  

Finally, the measured results compare with the measurand for conformity by the 

simplified “16%-rule” (ISO 4288 1996). A workpiece is accepted or rejected by the 

metrologist according to its requirements. The requirements are specified by the 

designer, transferred via the technical drawings, and interpreted and realised by the 

metrologist. 

This example illustrates how to transfer the information of a measurand from a 

designer to a metrologist within the GPS framework. For product engineers, the GPS 

framework is of importance in the information era, when the information technology 

plays a significant role in the life cycle of a production.  

The GPS also provides a key vehicle for transferring the standardised information 

between instrument manufacturers. To enhance reproducibility of the measurement 

results, instrument manufacturers need to develop the perfect verification operations 

based on the available ISO documents, and realising them on the actual verification 

operations.  

It is impossible (and also not necessary) to transfer all information of a measurand 

without any loss/distortion. However, it is important to estimate the effect of the 

loss/distortion, which is discussed in the next section. 

3.2.3 Generalised	uncertainty	principle	

In GPS, uncertainty is used as “an economic tool” to quantify: 1) how well the 

specification expresses the functional requirements; 2) what ambiguities exist in the 
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specification itself; 3) the uncertainty of measurement (ISO TC213 2004). According 

to ISO/TS I7450-2 (2002), the uncertainty is divided into: correlation uncertainty, 

specification uncertainty and measurement uncertainty18. Their relationship is shown in 

Figure 3.3. 

 

Figure	3.3	Relationship	of	various	uncertainties	in	GPS	(Wang,	Ma	et	al.	2004) 

According to ISO/TS I7450-2 (2002), correlation uncertainty describes how well a 

controlled geometric feature (e.g. -2,5/Ra 1,5) matches the intended functionality (e.g. 

2000 h without leaking, see Figure 3.4).  

 

Figure	3.4	An	example	of	correlation	uncertainty	

Specification uncertainty quantifies the ambiguity in the requirements set out by the 

specification (Nielsen 2003). Ambiguity is often arisen from an incomplete/improper 

use of a specification language, or an imperfection of the language itself. For example, 

                                                 
18 Note that measurement uncertainty in ISO 17450-2 (2002) follows the VIM2 (1995). 
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the specification uncertainty of “RSm 60” is significant due to the ambiguity of its 

definition (Leach and Harris 2002). 

Measurement uncertainty is a statistical parameter associated with the result of a 

measurement, and it characterises the dispersion of the values that could be attributed 

to what is being measured (VIM2 1995). Measurement uncertainty contains two 

components, method uncertainty and implementation uncertainty.  

Method uncertainty quantifies the difference between an actual specification operator 

and a verification operator, disregarding the metrological characteristic deviations of 

the actual verification operator (ISO/TS 17450-2 2002). For example, if the 

specification for a surface indicates “-2.5/Ra 1,5”, and an optical instrument is used to 

verify this specification, then method uncertainty is derived from the difference in 

values obtained by a perfect optical instrument and the values obtained by a perfect 

stylus one.  

Implementation uncertainty arises from the actual verification operator and perfect 

verification operator. For example, a skid is used in the extraction of surface profiles in 

a measurement, while the specification is provided without using it. Then the distortion, 

caused by using of a skid, is a contributor for implementation uncertainty (see Figure 

3.5). 

 

Figure	3.5	An	example	of	implementation	uncertainty	contributed	by	the	use	of	a	skid	
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The GPS generalised uncertainty principle provides an approach to evaluate the 

“quality” of information of a measurand in the life cycle of a production. We adopt this 

approach to evaluation the software uncertainty by comparing the verification 

operators produced by different software. It is discussed in the next section. 

3.3 Development	of	terminology	

There is a wide variety of different terminology used by metrologists and software 

developers. Many effects have been undertaken to develop a consistent terminology for 

software measurement (Jacquet and Abran 1997; Abran and Sellami 2002; Garcia, 

Bertoa et al. 2006). However, we expect there will be long-term ambiguity and 

confusion resulting from the terminology differences in the verification and validation 

of metrological software. Therefore, before presenting the activities involved in the 

software calibrations, it is necessary to provide the definitions of related concepts in 

order to avoid ambiguity. The design and the development of softgauges are strictly 

adhered to the VIM3 and the GPS (the related documents are listed in the ISO/TC 

213’s website19). This terminology has attempted to remain as close as possible to these 

that appear to be the most widely accepted, including the both software engineers and 

metrologists. 

3.3.1 Metrological	traceability	of	software	

The (metrological) traceability of software refers to the property of a measurement 

result obtained from a metrological software package whereby the output result can be 

related to a reference through a documented unbroken chain of calibration, each 

contributing to the measurement uncertainty (Adapted from the VIM3 2007). 

Note that for a software engineer, the term “traceability” normally means 

“requirements traceability”, which refers to the ability to describe and follow the life of 

a requirement, in both forwards and backwards direction (i.e. from its origins, through 

its development and specification, to its subsequent deployment and use, and through 

all periods of on-going refinement and iteration in any of these phases) (Gotel and 

                                                 
19 http://www.iso.org/iso/iso_technical_committee?commid=54924. 
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Finkelstein 2002)20. In this thesis, traceability refers to the metrological traceability, 

which is the major concern of metrologists. 

3.3.2 Software	calibration,	verification	and	validation	

The terms of verification and validation are widely used in both metrologists and 

software engineers. Adhered to their definitions in the VIM321, we interpret them as: 

Software Verification is the provision of objective evidence that the output of a 

particular phase in the software development meets the requirements specified 

in this phase; 

Software Validation is the provision of objective evidence where the specified 

requirements are adequate for an intended use.  

Software verification provides evidence that a conceptual model is realised correctly 

by a computer code. It does not address the question of whether this model has any 

relationship to the empirical world. On the other hand, software validation addresses 

the question of the fidelity of a metrological software package on the applications in 

the empirical world. Verification is the first step of the validation process. 

Another widely used term is calibration. Software Calibration refers to the operation to 

establish a relationship between the output results of test software with a reference, 

which is clearly related to a national measurement system (adapted from the VIM3 

2007). In another word, software calibration is the verification of test software by the 

national or international software measurement standards, i.e. softgauges. The process 

of software calibration does not involve any activities for adjusting code or internal 

parameter setting of the software. For example, the use of ball standards to “calibrate” 

acruate movement is not a software calibration (according to the VIM3, it is an 

adjustment). 

                                                 
20 This is a much cited definition according to the Wikipedia.com (Retrieved 2011-1-30 from 
http://en.wikipedia.org/wiki/Requirements_Traceability#cite_note-5) 
21 In VIM3, it states “validation is verification, where the specified requirements are adequate for an 
intended use,” and “verification is provision of objective evidence that a given item fulfils specified 
requirements.” 
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3.3.3 Model	and	code	

Detailed software process models are still the subject of research, but it is now clear 

that a number of general models or paradigms of software development can be 

identified. We simply separate software development into two phases, modelling and 

coding. The corresponding outputs are models and codes. The terms of model and code 

are defined based on the ASME definitions (ASME V&V Guide 10 2006). 

 In general, a model is anything used in any way to represent anything else. In 

this context, model refers as the conceptual, mathematical representation of a 

measurand.  

 A code refers to the computer implementation of an algorithm developed to 

facilitate the metrological solution. The development of a code includes two 

phases, that of the mapping of a mathematical model into a discrete model, and 

that of the translation of a discrete model into a software code. 

This terminology distinguishes the responsibilities of metrologists and software 

engineers. Metrologists take charge of modelling; and the responsibility for coding lies 

with software engineers. This is of importance in a quantity management system. 

3.3.4 Software	uncertainty/error	

According to the GPS (ISO TC213 2004), the concept of uncertainty is extended to 

assess the quality of communication between designer, product engineer and 

metrologists 22 . A similar communication exists in the phases of the design and 

development of metrological software packages that deliver results in the form of ISO 

parameters. 

Software uncertainty refers to the measurement uncertainty contributed by 

metrological software. As illustrated in Figure 3.6, we segregate the sources of errors 

and uncertainties related to software into data uncertainty, model uncertainty and code 

uncertainty. 

                                                 
22 Previously, it only used to evaluate the quality of communication between different metrologists. 
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Figure	3.6	Error	and	uncertainty	in	metrological	software	

Correlation	uncertainty	

The correlation uncertainty is defined within ISO/TS 17450-2 (2002) as the difference 

between a functional requirement and an actual geometric specification. Correlation 

uncertainty varies from application to application and should be evaluated by 

experiments. Thus, the calibration of software does not take correlation uncertainty 

into consideration. 

Model	uncertainty	

Following traditional presentation of vocabularies, the ISO documents describe terms 

individually in textual information and with a single level of classification. Thus, an 

interpretation is required to build a complete mathematical model from the ISO 

documents. Due to the misunderstanding of these documents, different parties may 

create various models. Model uncertainty quantifies the variation of arisen from the 

modelling process. 

Code	uncertainty	

Code uncertainty quantifies the variation arisen from coding process. It can be 

separated into two parts: method uncertainty and implementation uncertainty. Method 

uncertainty quantifies the divergence of discrete models developed from a perfect and 

complete mathematical (continuous) model. Implementation uncertainty quantifies the 

variations of results contributed by the limitation of computer hardware, such as the 

rounding error, truncation error, etc.  
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Data	uncertainty	

There are errors within the input data (the measurement data) due to noise, variation of 

the measuring environment, etc. These errors are referred as data uncertainty in this 

thesis. Investigating and quantifying such data uncertainty is the subject of uncertainty 

evaluation based on a statistical model. 

Error	

It is recognised that it is impossible to gain a unique “true value” of measurand on 

which is the term of error based. Thus, the VIM3 (2007) defines measurement error as 

the difference between a measured value with a reference value. Therefore, software 

error, in this context, refers to the difference between the results obtained from a test 

software package and reference value provided by a softgauge. 

Note that the model uncertainty has same nature as specification uncertainty, while 

code uncertainty has same nature as method uncertainty and implementation 

uncertainty. 

3.4 The	proposed	framework	

3.4.1 Objectives	of	software	calibration	

The aim of software calibration is to check metrological traceability of the software of 

surface measuring instruments. GPS defines the measured results of a geometrical 

property as output of an ordered set of operations. Therefore, the objectives of software 

calibration of surface texture measurements are 1) the order of operations and 2) each 

operation realised by using the software. 

3.4.2 Methodology	

The fundamental strategy of software calibration is to identify, quantify, and reduce 

uncertainty arisen from the software of surface measuring instruments by the aid of the 

softgauges. Figure 3.7 shows the routes toward absolute standards of surface texture 

measurements by using the type A-F standards. Two components of a surface 

measuring system are required to calibrate, the hardware (which collects data), and the 

software (which analysis data). The software is comprised of two sub components, 
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model and code. Correspondingly, software uncertainty is separated into model 

uncertainty and code uncertainty.  

 

Figure	3.7	Routes	toward	absolute	standards	of	surface	texture	measurements	

From a definition to a realisation, the size of related information is increased 

significantly. For example, the definition of the metre is given in one sentence with 

less than 20 English words (BIPM 2006). The recommended measurement conditions 

for its realisations contain hundreds of pages (BIPM 2010). For a realisation, the size 

of information is increasing to infinite, so only significant information is stated (VIM3 

2007). This example shows one major approach to control the model uncertainty: 

detailing and distributing the interpretations of an abstract concept. Another approach, 

as discussed in Chapter 2, is provided an absolutely interpretation by using 

measurement standards. 

To implement two approaches, therefore, the proposed framework for software 

calibration consists of three key components: NPL’s interpretation, type F1 softgauges 

and type F2 softgauges. NPL’s interpretation documents the detailed interpretations of 

the ISO conceptions, while type F1 and F2 softgauges provides the absolutely 

interpretations. In addition, this framework includes two tools, that of an information 

model to connect different components, that of uncertainty to evaluate the reliability of 

each component. Their relationship is shown in Figure 3.8.  
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Figure	3.8	Framework	for	the	softgauges	for	surface	texture	in	the	UK	

3.4.3 Key	components	

3.4.3.1 NPL’s	interpretation	

The design of softgauges requires the definition of the measurement results. It is vitally 

important that the measurement results are mathematically well defined and 

unambiguous; otherwise specification uncertainty will be automatically built into the 

definition. The parameter definition and measurement condition are standardised in the 

ISO documents. NPL’s interpretation provides detailed documents of the 

interpretations of ISO documents in the national level. NPL’s interpretation will be 

developed to adhere to ISO documents with the following considerations. 

Model	of	the	interpretation	

The measurement results (profile parameters in this case) contained in ISO 4287 (1997) 

are all defined on Gaussian band limited continuous profile data rather than discrete 

profile data that can be handled directly by a digital computer. It is possible, with a 

suitable sampling and reconstruction theory, to map a Gaussian band limited 

continuous profile to discrete profile data, and conversely, without loss of information. 

It believes this aspect is too advanced for potential users and would add greatly to the 

cost of the project. Consequently, it is proposed to start with discrete profile data and 

definitions of each profile parameter expressed in terms of such discrete data. For each 

profile parameter considered in the project a mathematically well-defined and 
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unambiguous definition in terms of discrete data will be provided. The definition will 

take the form of a formula or an algorithm. The definitions will constitute the starting 

point for the design of the software measurement standards. The work to develop 

definitions in terms of discrete data rather than continuous profile data is critical to the 

project. 

Ambiguity	existed	in	current	ISO	standards	

As discussed in Chapter 2, some of the ISO definitions are ambiguous, and they often 

cause disagreement between different parties. A full specification operator and a full 

verification operator, based on the current ISO document, will be developed by the 

following stagey. 

 Current ISO standard document described terms individually in a single level 

of classification. To reduce the possible ambiguity, NPL’s interpretation will 

provide clearly the relationship of key terms in a structured data model.  

 The incomplete information from ISO standard document could lead many 

different interpretations. Some of them should be complete by end-users if they 

are highly depended on a particular application. Other will be completed by 

softgauges. 

 There are some imperfect definitions provided in ISO standard document. 

NPL’s interpretation will develop/introduce a more stable and reliable 

definition to replace them if possible.  

Dissemination	

The NPL’s interpretation will be distributed via two ways: in the form of a textual 

document, and in the form of its realisations, i.e. type F1 softgauges and type F2 

softgauges. 

3.4.3.2 Type	F2	softgauges	

It is a primary software or master software, as a realisation of the ISO concepts at the 

national level, which provides as a reference for production software. Type F2 

softgauges are used to test software by inputting a common data set into both the 
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software under test and the reference software and comparing the results from the 

software under test with the certified results from the reference software (see Figure 

3.9). The NPL’s type F2 softgauge will be developed with the following considerations. 

 

Figure	3.9	Procedure	for	the	testing	software	using	the	reference	software	

Accuracy	and	reliability	

The most important considerations in the design and implementation of type F2 

softgauge are its accuracy and reliability. This contrasts with the considerations for 

production software, for which the requirements on numerical correctness are generally 

more modest, but the issues of efficiency (computing time and memory) as well as 

usability are of concern. 

To maintain its quality, the development of type F2 softgauge is adhered to SSfM23 

Best Practice Guide “Validation of Software in Measurement Systems” (BPG1) [16]. 

The BPG1 provides recommended techniques to ensure the software is fit-for-purpose 

and to meet the requirements of ISO 9000. 

Model cannot be demonstrated for all possible conditions and applications. Indeed, one 

cannot prove that complex computer codes have no errors; they can only be disproved 

(Oberkampf and Trucano 2002). In this project, selected type F1 softgauges will be 

used to probe the errors in this type F2 softgauge. Some mathematically defined 

profiles with the nominal value will be used to check the accuracy of type F2 softgauge. 

And some modified profile pair will be used to check its stability.  

                                                 
23 Software Support for Metrology, a project undertaken by NPL since 1997. 
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Traceability	

It is important to note again that type F2 softgauge should be traceable. Traceability of 

software means that its output result is related to a reference. For production software, 

this reference can be type F1 and F2 softgauges. For a type F2 softgauge, this reference 

can be the ISO standard document directly or type F1 softgauges. 

Dissemination	

The principal mechanism for dissemination of this type F2 softgauge is via the internet. 

So the end-users can assess this type F2 softgauge easily, and establish a link from 

their measurements to national standard.  

3.4.3.3 Type	F1	softgauges	

Type F1 softgauges are akin to a primary standard in measurement, such as a kilogram 

mass to which secondary standards are compared for calibration purposes. The type F1 

softgauge, in the form of the reference data sets with reference results, provides the 

basic testing specimens for both type F2 softgauges and production software packages. 

Same as the hardgauges, type F1 softgauges provide the absolute realisations for ISO 

standard definitions without going into too much detail. It can be calibrated easily, 

accurately and unambiguously. The NPL’s type F1 softgauges have developed with the 

following considerations. 

Scope	of	reference	dataset	

A measurand is defined as the result of a pre-ordered set of operations on a skin model 

(see Figure 3.1). Therefore, it is important to verify the order and each of operation. 

The type F2 softgauge can only verify the software (model + code) as a whole. The 

type F1 software can verify the order and each of operation by special design. For 

example, a sine wave can be used to verify a filtration operation. In addition, the 

reference dataset should also include the typical engineering surface to address the 

industrial requirements. 

Reference	result	

The nominal value of some type F1 softgauges (most of the simulated profiles) can be 

obtained analytically in the specification chain. Type F1 softgauges can be used to 
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verify type F2 softgauges. In the other way around, the verified type F2 softgauges can 

be used to product the reference results for the type F1 softgauges (most of measure 

profiles). 

Dissemination	

The principal mechanism for dissemination of type F1 softgauges is also via the 

internet.  

3.4.4 Key	tools	

3.4.4.1 A	information	model	for	exchanging	information	

In general, a message is an object of communication. It is a vessel which provides 

information. In this context, the term of message refers to the object which is used to 

exchange information between different parities. A message provides the detailed 

information of surface texture. The shape and size of the message are changed from the 

designer to metrologists, and it could contribute the specification uncertainty. An 

information model will be developed to standardise the messages in order to 

reduce/manage the uncertainty in communication and cognise level. This model will be 

used by softgauges to deliver its default callout based on NPL’s interpretation. It will 

be developed with the following considerations. 

Data	structure	

According to the GPS, a function of a workpiece is related to a set of features; each 

feature is defined by a set of characteristics; each characteristic is defined by an 

operator; an operator is consisted of an ordered set of operations; each operation comes 

with its own set of selectable parameters (Nielsen 2006). So a tree structure will be 

used to contain these elements, and the order of some elements should be specified. 

Extendibility	and	exchangeability	

The size of information is increased when develop a full verification operator from a 

specification operator. In other ways around, the size is reduced when produce a 

measurement report based on a full verification operator. The mapping work (i.e. 

specifying the requirement, producing measurement reports etc.) often undertaken by 
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different engineers at various locations (see section 3.2). Thus, the data model should 

be extendable and exchangeable. In the age of the internet, it should be able to 

exchange via the World Wide Web. So the data file based on this model should be 

independent on software and operation systems. 

Computer	and	human	understandable	

The conventional file formats for surface texture measurement are normally unable to 

read by an engineer directly without other help documents to interpret its terms. And 

the traditional measuring reports are no friendly for a computer – the key measuring 

information cannot be automatically recognised by a computer. For example, a string 

of “0.8 mm” needs to be separate to “0.8” (number format) and “mm” (text format). It 

is understood by a computer only the format is clearly stated. Thus, the developed data 

model will be able to self-interpreted, and friendly to both human and computer.  

Traceability	

Currently, to complete an operator needs to call out many documents that may come 

from various resources. In other words, it may trace to different references. NPL’s 

interpretation (maintaining a complete default callout) will be stored in a permanently 

existed website, and all files developed in this model will provide the link this website. 

So it will only trace to one resource to reduce the uncertainty. 

Balance	of	information	

It needs to pay attention to the balance of information to avoid two extremes: 1) too 

little information could lead significant specification uncertainty; 2) too much 

information could make difficult on its realisation (e.g. a specified process may not be 

available), transfer and so on. 

3.4.4.2 Associated	uncertainty	

According to the terminology developed in Section 3.3, the software uncertainty 

consists of model uncertainty and code uncertainty. In addition, the input data contains 

data uncertainty arisen from the data collection process.  
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Data	uncertainty	

Type F2 softgauges, as well as most of the production software, does not provide the 

(measurement) uncertainties associated with the calculated reference values for surface 

texture parameters. This is due to data uncertainty is the traditional meaning of 

measurement uncertainty, which is contributed by measuring instruments, environment, 

measurand, etc. The influences of these contributors vary from application to 

application. It also depends on the user’s instrument performance, measurement 

condition and surface under measured.  

Due to the same reason, the type F1 softgauges do not provide the associated 

measurement uncertainty. It assumes throughout that the variations associated with the 

measurement conditions and operating errors are minimal in their effect on the 

software calculation.  

Model	uncertainty	and	code	uncertainty	

Model uncertainty is used to evaluate the ambiguity of ISO standard documents. It 

reduced by NPL’s interpretation and realisations, i.e. softgauges. Code uncertainty is 

used to evaluate the variation of implementation from a perfect specification. The 

combined effect of two uncertainties on the measured value can be assessed as 

systematic errors between test software and national reference, i.e. softgauges (see 

Figure 3.10). 

 

Figure	3.10	Assessment	of	model	uncertainty	and	code	uncertainty	
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3.4.5 Others	

3.4.5.1 Management	issues	

Metrology is largely organised based on division of labour and cooperation. In the field 

of surface metrology, organisations include ISO/TC 213, NMIs, instrument 

manufacturers and end-users. 

To maintain software traceability, it requires clarifying the responsibility of these 

organisations. It proposes the following structure in applying ISO standards.  

 ISO/TC 213: Developing and maintaining the conceptual model and 

mathematical model. The output is the GPS languages in the form of 

International standard documents. 

 National Metrology Institutes: Developing and maintaining the realisations of 

concepts defined in ISO standard documents. The realisations are in the form of 

guide documents (e.g. NPL’s interpretation), type F1 softgauges and type F2 

softgauges. 

 Instrument manufacturers: Developing the commercial software packages 

which should meet all requirements from metrology to software quality 

assurance (SQA), such as traceability, user-friendly, speed and so on. These 

implementations should be traceable to the national standards via the aid of 

softgauges. 

3.4.5.2 Calibration	procedure	

Software Calibration is the operation to establish a relationship between the output 

results of production software, and a reference which is clearly related to a national 

measurement system. Software calibration verifies the test software by using of 

softgauges. As shown in Figure 3.7, three routes can be used to demonstrate the 

traceability of surface texture measurements, they are:  

1) Route via the type D hardgauges: Type D hardgauges calibrate three 

components as a whole. 
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2) Route via the type A, B, C, E and type F2 standards: Hardgauges calibrate the 

data collection and type F2 standards calibrate the software as a whole.  

3) Route via the type A, B, C, E and type F1 standards. Hardgauges calibrate the 

data collection and type F1 standards calibrate the software model and code 

separately or as whole.  

The use of hardgauges (type A-E) and the first route have already been reviewed in 

chapter 2. The softgauges will be developed to replace most of the function of the type 

D hardgauges. For the end-user, it recommends through second route, which can 

quickly link any of standardised measurements with national standards. For the 

instrument manufacturer, it recommends that all three routes should be checked in 

order to produce reliable and traceable software. 

A calibration curve is of importance, and its reliability depends on reference points and 

the interpolation algorithm (see Chapter 2). In the stage of data processing, more 

calibration points can be provided with type F1 softgauges, unlimited calibration points 

can be provided by using a type F2 softgauge. Therefore, the calibration curve is more 

reliable than the curve produce by using type D hardgauges only. In addition, 

calibration curves of all ISO parameters can be established by using of softgauges. 

A key question concerns the comparison of the results delivered by the type F2 

standards and commercial packages. The comparison should be objective and address 

the requirements of the application. The result of the comparison is the means by 

which a decision is made about the fitness-for-purpose of the F2 software standards 

and commercial packages. The “weakness chain” principle, a chain is as strong as its 

weakness part, will be use to manage the components of uncertainty. Therefore, fitness 

for the purpose means software uncertainty are quantitatively small compared to the 

effects arising from the data, the latter being described by data uncertainty.  

3.5 Conclusions	

This chapter has developed a terminology and a framework for softgauges. The 

developed terminology adheres to the GPS and the VIM3, which reflect the latest 

philosophy in metrology. The framework has clearly interpreted the role of softgauges 
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in the metrological traceability chain of surface texture measurements. The 

methodology of software calibration has been developed, and the structure of 

softgauges has been outlined. The function and relationship of the key components 

have been outlined. The remaining part of this thesis will present the development of 

these components. 
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4 An	information	model	of	surface	metrology	

The objective of this chapter is to develop an information model to standardise the 

message, which is the vessel for containing specification and verification information 

for surface texture, between measurement institutes and industry. Its output is a XML-

based markup language, called Surface Texture Markup Language (STML), used to 

describe the message, together with a validation tool for this message. This model is 

used by softgauges for storing and exchanging specification and verification 

information for reducing the specification uncertainty. 

4.1 Methodology	

4.1.1 The	information	modelling	process	

An information model is a representation of concepts, relationships, constraint, rules, 

and operations to specify a data semantics for a chosen domain of discourse (Lee 1999). 

An information model described here centres on providing the sharable, stable, and 

organised structure of information requirements in the field of surface metrology. This 

model provides a container to the description of the measurand and measured value of 

surface texture measurement. 

There are various practices to develop an information model. The underlying 

methodologies for the recent modelling practices are based on three approaches: 

1. The entity-relationship approach: An entity-relationship model is an abstract 

and conceptual representation of structure data, which depicts data in terms of 
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the entities and relationships described in the data. Its building blocks are 

entities, relationships, and attributes. 

2. The functional modelling approach: It is a structured representation of the 

functions, behaviours, activities or processes within a modelled system. It uses 

objects and functions over objects as the basis, and it often uses data-flow 

diagrams. 

3. The objected-oriented approach: The fundamental construct of this approach is 

the object, which incorporates both data structures and functions. Its building 

blocks are object classes, attributes, operations, and associations. 

These approaches view the data with different emphasises. The entity-relationship 

approach lacks the preciseness in supporting the detailed level. The functional 

modelling approach is often used in the development of a certain software application. 

The objected-oriented approach considers both the data and the function, which has the 

advantage to describe the measurand and measured of surface texture measurements. 

Wang (2008) pointed out the disadvantages of these approaches to present GPS 

information in a database, and introduced the category approach in the design and 

development of knowledge-based GPS systems. Currently, it is still under development 

in the academic domain. This project, therefore, will use an objected-oriented approach 

to model the message due to it more widely used in industry. 

Many information modelling languages, in graphical form or texture form, have been 

developed. They provide various ways to formally represent an information model. 

This project has used XML schemas to express the constraints on the structures and 

contents of the message. 

An information modelling process has been developed by NIST (Lee, 1999), which 

includes three phases: 1) to develop the definitions of the scope of the model’s 

applicability; 2) to collect information requirements; and 3) to develop the model. This 

modelling process has implemented in this project. 
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4.1.2 XML	and	XML	Schema	

Extensible Markup Language (XML) is a set of rules for encoding documents in a 

computer-readable form. It is defined in the XML 1.0 specification (Bray, Paoli et al. 

2000) recommended by the W3C24. This open standard produced standardises the 

format of an XML document and specifies the behaviour of XML processing software. 

A XML document is made up a tree of elements with a short specification. To develop 

an XML processing software implementation, thus, is relative easy. And many free 

implementations exist. These implementations can be employed in the creation of 

STML processing software, making it simple to read and write STML documents. 

A XML Schema is a description of a type of XML document. It is expressed in terms 

of constraints on the structure and content of that type of XML documents. The reasons 

to choose XML Schema over others (e.g. DTD25) are as follows: 

 Syntax: A XML Schema itself uses XML syntax. 

 Datatypes: 1) it supports a rich set of built-in datatypes; 2) It allows users to 

define their own datatypes; 3) It allows datatypes inheritance, which is suitable 

for object-oriented modelling. 

 Constraints: It provides some data constraints, which make it easy to validate 

the data. 

 Namespace: It supports namespace hooks. So various schema files can be put 

into different namespaces. 

4.2 The	development	of	SMTL		

4.2.1 Scope	of	SMTL	

In this context, a message is the vessel for containing specification and verification 

information of surface texture, which provides the description of the object intended to 

                                                 
24 The World Wide Web Consortium (W3C) is the main international standards organization for the 
World Wide Web (abbreviated WWW or W3). 
25 i.e. Document Type Definition 
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produce and verify. The messages are built based on the following ISO standard 

documents: 

 Fundamental ISO standard document in metrology: the VIM3 (2007) and the 

GUM (2008). 

 GPS Language developed by ISO TC/213: Key standard documents are ISO/TS 

17450-1(2005), ISO/TS 17450-2 (2002), ISO 14253-1 (1998), ISO/TS 14253-3 

(2002). 

 ISO standard documents for surface texture measurement: At current stage, this 

project focuses on the ISO 4287 (1996) parameters. The related standard 

documents are ISO 3274(1996), ISO 4288(1996), ISO 11562(1996). 

This project focuses on the consistentce of the message from the metrology point of 

view. It does not cover how the description is mapped to an actual software 

implementation. Some parallel projects (Wang 2008; Xu 2009) have developed the 

data model for storing the messages in a database, and an expert system to produce 

them. 

4.2.2 Collecting	the	information	requirements	

To collect the information requirements, this project used two methods: 1) literature 

survey and standards survey; 2) industrial data reviews.  

4.2.3 Developing	the	information	model	

4.2.3.1 Indication	and	its	sub‐elements	

Currently, an often used mechanism to express the requirements of surface texture is 

through the drawing indication in the technical documents. The indication defined in 

ISO 1302 (2002) is widely accepted. SMTL uses it as the key reference to produce and 

interpret a message. As the example shown in Figure 2.7, an indication of the surface 

texture requirements specifies the following information: manufacturing method, 

filtering bandwidth, tolerance, parameter and the surface lay. 
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The keyword <Indication> is the XML element or tag representing the drawing 

indication of surface texture with its hierarchical composition of lower levels of 

information (see Figure 4.1). The sub-elements of the <Indication> are the 

<MaterialRemoval>, <ManufacturingMethod>, <SurfaceLayAndOrientation>, 

<MachiningAllowance> and <SurfaceTextureRequirement> tags. The first four 

elements are of importance to develop its manufacturing operator. A certain pattern is 

produced by a certain process. So it is also useful in the prediction of the future 

performance of this component. Their descriptions and some valid contents of these 

tags are listed in Table 4.1. Although the abbreviations are accepted, it is 

recommended avoiding them. For example, using “Any process allowed” is more 

easily understood than “APA”. 

 

Figure	4.1	Diagram	of	schema	for	surface	texture	indications			
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Table	4.1	Description	and	contents	of	tags	for	specifying	manufacturing	requirements	

Tags Valid Options/Examples Description 

<MaterialRemoval> ‘Any process allowed’;  

‘Material removal required’; 

‘No material removed’  

Or ‘APA’; ‘MRR’; ‘NMR’. 

Specifying the requirements 

of material removal.  

<ManufacturingMethod> ‘turned’; ‘ground’; ‘plated’; 

‘milled’; ‘Fe/Cr50’ 

Specifying the 

manufacturing process such 

as or coating requirements. 

<SurfaceLayAndOrientation> ‘=’; ‘X’; ‘M’; ‘C’; ‘R’; ‘T’; 

‘P’; or used the text such as: 

‘Parallel’; ‘Perpendicular’; 

‘Crossed’; ‘Multi-directional’; 

‘Circular’; ‘Radial’. 

Indicating the required 

surface lay and the 

orientation,  

<MachiningAllowance> 3 Specifying the requirements 

for machining allowance in 

millimetre. 

The <SurfaceTextureRequirement> tag encapsulates all related information of the 

surface texture requirements. Its sub-elements consist of a <ForAllOutlineSurface> 

element and one/several <Parameter> elements. The <ForAllOutlineSurface> tag 

specifies whether the surface texture requirements are for all surfaces represented by 

the outline of a workpiece. The surface texture requirements on an engineered surface 

are expressed by one or several parameters. Each parameter is a quantity intended to be 

measured (i.e. each parameter defined a measurand). An indication, therefore, defines 

one or several measurand(s). For example, the drawing indication, given in Figure 2.7, 

specifies three measurands. 

According to ISO 1302 (2002), each of the <Parameter> elements should specify the 

following information: specification limit type, filter type, transmission band, 

parameter name, evaluation length, specification limit interpretation and parameter 

value. They are defined as new datatype, namely “ParameterType”, marked up with 

corresponding tags as shown in Figure 4.2. 
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Figure	4.2	Diagram	of	a	surface	texture	parameter	according	to	its	drawing	indication	

So, a graphic-based drawing indicating is mapped into a text-based XML document. 

Then, for example, an XML document for the drawing indication given in Figure 2.7 

can be generated as IndicaitonSample.xml in Appendix 1. 

The indication specifies both the manufacturing requirements and the surface texture 

requirements on an engineering surface. They are the basis on where the manufacturing 

operator and the specification operators are produced. We do not discuss the 

manufacturing operator here due to it beyond the scope of this thesis. The next section 

will use the indicated information to form the specification operator. 

4.2.3.2 Measurand	and	its	sub‐elements	

As discussed in Chapter 3, the measurand is defined as the result of the specification 

operator, which is an ordered set of operations. So, the keyword <Measurand> is the 

XML element representing the measurand. Its sub-elements are the <Partition>, 

<Extraction>, <Filtration> and <Evaluation> tags. The contents of the indication are 

mapped into this structure with some rename labels26 as shown is Figure 4.3.  

                                                 
26 This is due to different terms used by different ISO standard documents. 
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Figure	4.3	Diagram	of	a	measurand	according	to	the	drawing	indication	

Obviously, this specification operator is incomplete and a further callout is required. 

ISO 1302 (2002) listed 17 related ISO standard documents. They have been used to 

develop the sub-elements of each operation. 

The <Partition> tag specifies the operation used to identify bounded feature(s). In the 

case of surface profile texture parameters, it includes two sub-operations: 1) partition 

of a non-ideal surface from the skin model, and 2) partition of non-ideal lines from the 

non-ideal surface. The key reference of this operation is ISO 4288 (1996), which 

provides the rule for selecting the areas to be inspected for homogenous surface and 

inhomogeneous surface. For a default callout, the content of <Partition> tag could be: 

 For a homogenous surface, the partition is undertaken over the whole surface. 

The direction of this operation is perpendicular to the surface lay. 

 For an inhomogeneous surface and requirements specified by the upper limit of 

the parameter, those separate areas of the surface shall be used, which appear to 

have the maximum parameter value. 

 For an inhomogeneous surface and requirements specified by the lower limit of 

the parameter, those separate areas of the surface shall be used, which appear to 

have the maximum parameter value. 
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 For a type D hardgauge, the partition follows the pre-set measurement plan. 

The <Extraction> tag specifies the operation for extracting the feature. Only one 

nominal stylus instrument is specified in ISO document, namely ISO 3274 (1996). So 

the default values given in ISO 3274 (1996) are called out if they are not specified. The 

sub-elements of the <Extraction> tag include maximum sampling spacing, maximum 

tip radius, measuring force, and max measuring speed. Their corresponding tags are 

shown in Figure 4.4. 

 

Figure	4.4	Extension	of	the	extraction	operation	of	a	specification	operator	

The tag of <FOperator> specifies the F-Operator, which is the process to remove the 

nominal form in the measuring data. In technical drawings, F-Operator does not need 

to be indicated due to form (error) is not a component of surface texture. However, F-

Operator is often undertaken in surface measurement practice. So F-Operator should be 

stated if necessary. F-Operator utilise same or similar techniques in the filtration 

operation (F-Operator is named as the form filter in some publications). Moreover, the 

output of extraction operation is surface texture and form. Thus, the F-operator is 

grouped into the extraction operation. 
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To balance the information, some of the information does not detail in this model, due 

to the following considerations: 

 Extraction operation does not need to specify the measuring environment 

because a measurand model is free from environment effects according to the 

VIM3.  

 Filtration operation and evaluation operation does not need to detail the 

algorithms. Compared with the variation in extraction operation, their 

variations are relatively insignificant. (However, this variation needs to be 

assessed by the calibration with the aid of softgauges.) 

Then, the specification operator is formed in STML based on the current GPS language. 

A XML document for the measurand “L Ra 0.4” given in Figure 2.7 can be generated 

as MeasurandLRa0.4.xml (see Appendix 1). 

4.2.3.3 Measured	value	and	its	sub‐elements	

Developing	the	perfect	verification	operator	

A perfect verification operator is built based on a perfect instrument within a perfect 

environment (ISO/TS 17450-2 2002). A metrologist often faces two situations: 1) a 

measurand with specification; 2) a measurand without a specification. In the first 

situation, a perfect verification operator will be formed by mapping the element from 

the complete specification operator (see Figure 4.5). In the second situation, she/he will 

develop a metrology solution based on her/his knowledge of surface metrology and 

results obtained from measurement. A perfect verification operator can be produced 

based on the metrology solution. 
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Figure	4.5	Diagram	of	a	perfect	verification	operator	

According to the duality principle (ISO/TS 17450-2 2002), a specification operator and 

its corresponding verification operators consist of duplicated operations in the same 

order. The differences of two operators are input and output of them. The input of the 

specification operator is the skin model, while that of the perfect verification operator 

is an actual workpiece. Their outputs are “measurand” and “measured values” 

separately. As the result of a perfect operator, the “measured value” described here 

should be the “true value” of the measurement. The true value is unknown, so 

“reference value” and “nominal value” could be used as the true value (VIM3 2007). 

 According to the VIM3 (2007), the “reference value” is used as the “true value” 

of a measurement. This situation is often met when a metrologist calibrates an 

instrument by measurement standards. He/she interprets the measurement 

conditions according to the requirements of the standards. 

 In a certain application, the reference value may not be available. The “nominal 

value” can be used as the “reference value”. This situation often occurs when 
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an engineer assesses a workpiece. He/she interprets the measurement 

conditions according to a technical drawing or a previous measurement report. 

Developing	actual	verification	operator	

Based on the perfect verification operator, an actual verification operator is developed. 

The actual verification operator describes the measurement condition within in a 

certain laboratory or workshop. The sub-elements of <Partition> may include the 

<Replica> to specify the using of replica of the assessed surface. There are more sub-

elements of the <Extraction> tag as showed in Figure 4.6.  

 

Figure	4.6	Diagram	of	the	extraction	operation	of	an	actual	verification	operator	
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Note that the <SamplingSpacing>, <TipRadius> and <MeasurementSpeed> tags record 

actual value of the measurements, while their corresponding tags in the perfect 

verification operator only specify their maximum values.  

An implementation of a default filter (ISO 11562 1996) has an end effect (ISO/TS 

16610-28 2010). So the <EndEffect> and <MeasurementLength> tags are introduced 

to record the handling method, and the corresponding changing on the actual 

measurement length. 

In addition, more tags can be developed to address various application requirements. 

For example: more detailed information for the actual instrument such as tip angle, 

skid, instrument id and so on; data file information such as location of file, file name, 

axis information, etc. (Note that the measuring data point information does not 

recommend storing in this file). 

Then, an actual verification operator is formed in STML. An example is given in 

MeasuredValueRa0.5.xml (see Appendix 1), which produce according to the message 

from MeasurandLRa0.4.xml.  

4.2.4 Validation	of	message	

The validation of a message should take consideration on the following parts: 

 Constriction and rule: Many constrictions and rules have been stated in ISO 

standard documents. It sets the relationship between some contents, for 

example, the ratio of the filter s and the filter c. It can be validated by an 

expert system. 

 Syntax: The message should follow the SMTL’s syntax. It can be validated by 

the XML Schemas developed as follows. 

XML Schema is another standard that allows the definition of a full specification for a 

XML document. The messages in SMTL states the location of the Schema (in the form 

of a URL address of this project web site), which is used to validate this file. This web 

site is also provided detailed interpretation of each tag to avoid the ambiguity and to 

make the document traceable. 
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4.3 A	case	study:	Euromet	Project	600	

Euromet Project 600 - comparison of surface roughness standards, is the most recently 

inter-comparison between 17 NMIs in Europe. The travelling of standards and 

measurements took two years (May 2001 to May 2003), and a 578 page final report 

was released via BIPM website in May 2004. Parts of this report (from 

www.bipm.org/utils/common/pdf/final_reports/L/S11/EUROMET.L-S11.pdf) will be 

use as a case study of SMTL. This comparison used one type A2 hardgauge, one type 

C3 hardgauges, three type D1 hardgauges, one type D2 hardgauges and three type F1 

softgauges. The type D1 hardgauge 663g are used in this case study.  

4.3.1 Defined	measurand	

The measurand is defined in the Appendix A3 of the report (Koenders, Andreasen et al. 

2004). Eight parameters are required to be measure for the hardgauge 633g. Thus, it is 

defined eight measurands, and one of them (parameter Ra), expressed in STML form, 

is listed below. 

Measurand	‐	633gRa.xml	

<Measurand xmlns="http://www.surfacetext.info/Schemas/SpecificationOperator" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://www.surfacetext.info/Schemas/SpecificationOperator 
L:\Projects\STML\FullSpecificationOperator.xsd"> 
 <Partition>According to the measuring plan of Type D defined in ISO 
12179</Partition> 
 <Extraction> 
  <NumCutoff>5</NumCutoff> 
  <SamplingLength Unit="mm">0.8</SamplingLength> 
  <EvaluationLength Unit="mm">4</EvaluationLength> 
  <Instrument> 
   <Type>Stylus</Type> 
   <MaxTipRadius Unit="um">2</MaxTipRadius> 
   <MaxSpeed Unit="mm/s">0.5</MaxSpeed> 
   <MeasuringForce Unit="mN">1</MeasuringForce> 
   <MaxSamplingSpacing Unit="um">0.5</MaxSamplingSpacing> 
  </Instrument> 
 </Extraction> 
 <Filtration> 
  <Filter> 
   <FilterName>Gauss</FilterName> 
   <UpLimt Unit="mm">0.8</UpLimt> 
   <LowLimit Unit="um">2.5</LowLimit> 
  </Filter> 
 </Filtration> 
 <Evaluation> 
  <ParameterName>Ra</ParameterName> 
  <ParameterValue Unit="um">1.5</ParameterValue> 
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 </Evaluation> 
</Measurand> 
 

4.3.2 Measured	values	

The measured values is reported in Appendix B1 of the report (Koenders, Andreasen et 

al. 2004). Two of them, expressed in SMTL, are listed as follows.  

Measured	Value	‐	PTB633gRa.xml	

<?xml version="1.0" encoding="UTF-8"?> 
<MeasuredValue xmlns="http://www.surfacetext.info/Schemas/SpecificationOperator" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://www.surfacetext.info/Schemas/SpecificationOperator 
L:\Projects\STML\AcutualVerificationOperator.xsd"> 
 <Partition>According to the measuring plan of Type D defined in ISO 
12179</Partition> 
 <Extraction> 
  <NumCutoff>5</NumCutoff> 
  <SamplingLength Unit="mm">0.8</SamplingLength> 
  <EvaluationLength Unit="mm">4</EvaluationLength> 
  <Instrument> 
   <SamplingSpacing Unit="um">0.2</SamplingSpacing> 
   <TipRadius Unit="um">2</TipRadius> 
   <MeasuringForce Unit="mN">1</MeasuringForce> 
   <MeasurementSpeed Unit="mm/s">0.1</MeasurementSpeed> 
   <InstrumentID>Taylor Hobson Nanostep1</InstrumentID> 
   <InstrumentType>Stylus</InstrumentType> 
  </Instrument> 
  <MeasurementInfo/> 
 </Extraction> 
 <Filtration> 
  <Filter> 
   <FilterName>Gauss</FilterName> 
   <UpLimt>0.8</UpLimt> 
   <LowLimit>2.5</LowLimit> 
   <EndEffect/> 
   <SoftwareID>PTB</SoftwareID> 
  </Filter> 
 </Filtration> 
 <Evaluation> 
  <ParameterName>Ra</ParameterName> 
  <ParameterValue Unit="um">1.520</ParameterValue> 
  <Uncertainty> 
   <Value Unit="nm">46</Value> 
   <CoverageFactor>2</CoverageFactor> 
   <DegreesofFreedom/> 
  </Uncertainty> 
 </Evaluation> 

</MeasuredValue> 

Measured	Value	‐	SMU633gRa.xml	

<?xml version="1.0" encoding="UTF-8"?> 
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<MeasuredValue xmlns="http://www.surfacetext.info/Schemas/SpecificationOperator" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://www.surfacetext.info/Schemas/SpecificationOperator 
L:\Projects\STML\AcutualVerificationOperator.xsd"> 
 <Partition>According to the measuring plan of Type D defined in ISO 
12179</Partition> 
 <Extraction> 
  <NumCutoff>5</NumCutoff> 
  <SamplingLength Unit="mm">0.8</SamplingLength> 
  <EvaluationLength Unit="mm">4</EvaluationLength> 
  <Instrument> 
   <SamplingSpacing/> 
   <TipRadius Unit="um">2</TipRadius> 
   <InstrumentType>Stylus</InstrumentType> 
   <InstrumentID>Talysurf 6</InstrumentID> 
   <MeasuringForce Unit="mN">1</MeasuringForce> 
   <MeasurementSpeed Unit="mm/s">1</MeasurementSpeed> 
  </Instrument> 
  <MeasurementInfo/> 
 </Extraction> 
 <Filtration> 
  <Filter> 
   <FilterName>Gauss</FilterName> 
   <UpLimt Unit="mm">0.8</UpLimt> 
   <LowLimit Unit="um">2.5</LowLimit> 
   <EndEffect/> 
   <SoftwareID>TalyProfile 3.0.8</SoftwareID> 
  </Filter> 
 </Filtration> 
 <Evaluation> 
  <ParameterName>Ra</ParameterName> 
  <ParameterValue Unit="nm">1525</ParameterValue> 
  <Uncertainty> 
   <Value Unit="nm">24</Value> 
   <CoverageFactor>2</CoverageFactor> 
   <DegreesofFreedom/> 
  </Uncertainty> 
 </Evaluation> 

</MeasuredValue> 

4.3.3 Discussions	

Thus, a traditional report is transformed into SMTL. The unstructured data, therefore, 

map into structure data which are arranged by operators and operations according to 

GPS. Each XML file specifies its XML Schema file name (e.g. 

FullSpecificationOperator.xsd) and location (e.g. 

"http://www.surfacetext.info/Schemas/SpecificationOperator") which used to validate 

it. The Schema file is stored in this project website, which also provides the detailed 

definition for each tag. It makes this document traceable and reduces the possible 

misunderstanding.  
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In addition, many XML related techniques make the use of SMTL easily. Many 

available XML editors27 can be used to create the SMTL file. Using XSLT (Extensible 

Stylesheet Language Transformations)28, SMTL can be easily mapped into another 

XML data file or a report (in PDF or Word format and so on). 

4.4 Conclusions	

This chapter has presented the development of a XML-based information model for 

specification and verification of surface texture. Traditional paper-based documents 

with unstructured data are integrated into one structured data format for surface 

metrology. The structure of this model is adhered to the latest GPS. Examples have 

given. This model will be used by softgauges to state the measurement information. 

                                                 
27 For example, a list of XML editors is given in http://en.wikipedia.org/wiki/List_of_XML_editors.  

28 XSLT is a declarative, XML-based language used for the transformation of XML documents. 
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5 Uncertainty	analysis	

The objective of this chapter is to identify model uncertainty and code uncertainty of 

the software of the surface measuring instruments. These uncertainties are the major 

concern in the design and development of softgauges, because they often cause 

disagreements between different parties. 

5.1 Methodology	

Many references are available in the modelling of a surface measuring system. The 

softgauges only verify the ISO standardised model built based on the ISO documents. 

The modelling processing is subject to the error and uncertainty. Main sources of 

model uncertainty are listed below. 

1) Incomplete definitions in the ISO standard documents: For the ISO documents, 

it is impossible and unnecessary to detail every measurement procedure and 

condition because standards need to achieve a balance between over-

specification and lack of focus. However, incompleteness of the definition can 

lead to ambiguity. The ambiguity establishes a one-to-many relationship 

between one ISO document and its implementations (i.e. one incomplete ISO 

definition has many interpretations). In this situation, each of interpretations is 

valid, but accuracy of each is different. The interpretation given by a NMI (as 

national interpretation) is the reference of others to assess the accuracy. Often 

this interpretation does not clearly stated in a published document, but presents 
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within its realisation in the form of measurement standard or a primary 

instrument (see Chapter 2). 

2) Imperfect definitions in the ISO standard documents: We may never claim 

perfection in standards because the process of standards’ development is in a 

continuous improvement mode29. Instrument manufacturers may adhere to the 

definitions or make an improvement, and an improvement may become ISO 

standard in the future (e.g. the Gaussian filter has replaced the 2RC filter in 

current ISO documents). Using a non-standardised definition should be clearly 

specified, otherwise, it can be recognised as a mistake when it causes a 

disagreement. 

3) Mistakes: There are human errors due to the misunderstandings of the ISO 

standards. A mistake should be corrected when found. 

Table 5.1 lists the procedure to handle these sources of model uncertainty in the 

development and maintenance of the softgauges. 

Table	5.1	The	procedure	to	handle	model	uncertainty	

Sources of 

uncertainty 

Handling method 

Incomplete 

definitions in the 

ISO standard 

documents 

1. Completing them based on the best understanding of ISO document; 

2. Documenting their interpretations if necessary; 

3. Realising them in softgauges; 

4. Distributing their interpretations by the documents and the softgauges. 

Imperfect definitions 

in the ISO standard 

documents: 

If there are appropriate replacements, 

1. Improving them with better interpretations; 

2. Documenting their interpretations; 

3. Realising them in softgauges; 

4. Distribute their interpretations by the document and the softgauges. 

Otherwise, following them. 

Mistakes Correcting the known mistakes by updating the documents and the softgauges.  

Two methods are used to identify the source of model uncertainty and code uncertainty. 

                                                 
29 However, we could say that the standards are based on the best knowledge for surface texture at the 
time of writing. 
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1) Top-down method: This approach identifies these uncertainties by analysing 

the definitions given in ISO standard documents and the related interpretations. 

ISO 4287 (1997) and its related documents, namely ISO 4288 (1996), ISO 

1302 (2002) and ISO 11562 (1996), are key documents of this project. In 

addition, the interpretations of these ISO documents are investigated by 

reviewing the publications of NMIs (Leach 2001; ASME B46.1 2002; 

Koenders, Andreasen et al. 2004) and major instrument suppliers (Zego Corp. 

2002; Taylor Hobson Ltd. 2003). 

2) Reversing method: This approach identifies these uncertainties by 

investigating the unexpected variation of the output results obtained from test 

software. In this project, we have investigated three type F2 softgauges 

developed by NPL, NIST and PTB, and four commercial software packages 

developed in the UK, France, Germany and the USA. Commercial packages are 

named as CA, CB, CC and CD for commercial protection. In this thesis, the 

square brackets refer to the associated software packages (see Table 5.2). 

Table	5.2	Type	F2	softgauges	and	commercial	packages	

 Institute Software packages 

[PTB] PTB, Germany Ref_soft_PTBIDL and Ref_soft_PTBweb30 

www.ptb.de/en/org/5/51/517/rptb_web/wizard/greeting.php

[NIST] NIST, USA Internet Based Surface Metrology Algorithm Testing 

System 

syseng.nist.gov/VSC/jsp/index.jsp 

[NPL] NPL, UK nplsmd1.01 

www.npl.co.uk/server.php?show=ConWebDoc.160 

[CA] Company A Commercial software package A 

[CB] Company B Commercial software package B 

[CC] Company C Commercial software package C 

[CD] Company D Commercial software package D 

Section 5.2 highlights the significant model and code uncertainty of ISO 4287 

parameters. The full detailed analysis is available on this project website31  and this 

                                                 
30 PTB provides reference software in the form of a desktop version and web version. 



  106 

 

author’s publication (Li, Leach et al. 2009). The effects of these uncertainties are 

estimated (see Section 5.3) and are also assessed (see Chapter 7). 

5.2 	Identifying	the	uncertainty	of	the	ISO	4287	
parameters	

There are literally hundreds of numerical roughness parameters and a few filters 

available to characterise aspects of the surface roughness. In this project, we only focus 

upon ISO 4287(1997) parameters and Gaussian filter (ISO 11562 1996). According to 

the consultation in Chapter 2, it covers most of industry requirements.  

The most common philosophy in surface metrology is to separate roughness, waviness, 

and form by the bandwidth of that information. An example of a possible flowchart of 

mathematical treatment for surface assessment, defined in the ISO document, is 

illustrated in Figure 5.1. 

 

Figure	5.1	A	flowchart	for	surface	assessments	according	to	ISO	3274	(1996)	and	4287	
(1997)	

5.2.1 NPL’s	interpretation	

This project has developed the absolute interpretations of ISO standard documents. 

This work was carried out by a partnership led by the University of Huddersfield in 

collaboration with Taylor Hobson Ltd and the National Physical Laboratory (NPL). It 

is distributed via this project website maintained by NPL and University of 

Huddersfield. It refers to as NPL’s interpretation in this thesis. Its basic framework is 

                                                                                                                                              
31 www.npl.co.uk/server.php?show=ConWebDoc.160 
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illustrated in Figure 5.2. To the author’s knowledge, this interpretation presents our 

best understanding of the ISO standard documents. Some of the key features of this 

interpretation are: 1) applying the cubic spline interpolation method on the discrete 

profiles to reconstruct the continuous profiles; and 2) implementing a mathematical 

stable approach to assess the spacing parameters, i.e. RSm/PSm/WSm parameter. 

 

Figure	5.2	Basic	framework	for	NPL’s	interpretation	of	surface	profile	texture	

5.2.2 Start	point	

According to ISO 5436-2 (2001), the start point of softgauges is the primary profile 

which means no form and λs filtered. However, there are disagreements on this start 

point, and they are discussed as follows. 

ISO 4287-1997 (ISO 4288-1996) 
 

SOFTGAUGE POINTS 
ASSUME:  s Filtered 

                          Equally spaced 
                No Form 

 
 
 

FILTRATION 
Gaussian Filter  (ISO 11562) 

R W P 
c High pass c Low pass No Filter

 
 

 
 FIELD PARAMETERS FEATURE PARAMETERS 
 Amplitude Other Peak/Valley Spacing 
 Ra, Rq, Rsk,Rku, 

Rp, Rv, Rz 
Rt Rc RSm 

Feature Type1 Points Points Local Peak/Valley Crossovers 
Segmentation2 Cut-off Evaluation Based on feature Based on feature
Combination3 None None Remove insignificant 

features 
Remove insignificant 

features 
Attributes Cut-off Evaluation Significant features Significant features
Statistics Mean/Max Value Mean/Max Mean/Max 

Notes  
1. Feature type is the basic element from which subsequent calculations are determined.  
2. Segmentation is used to determine the initial portions of the profile.  
3.Combination removes “insignificant” segments to leave significant segments. This removes 

artificially small segments due to noise, etc. making the measurand stable. 
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5.2.2.1 Form	removal	

Description	

Form removal is an operation to separate the form error from a surface profile. Raw 

profile data may possess some kind of form (e.g. residual tilt). Normally, least squares 

best-fit line (LSQ) is implemented to remove this tilt prior to filtering during data 

processing. More complex form error may be removed by using polynomial fitting or 

nominal form minimum zone fitting. There are many other types of association 

methods as well (Muralikrishnan and Raja 2008). 

Model	uncertainty	

The selection of form removal methods relies on the type of the nominal/existed form. 

As the form is varied from case to case, ISO 3274 (1996) does not state a default 

method to remove the forms. However, the LSQ is an indispensable operation in some 

software packages (e.g. PTB’s type F2 Softgauges) because it is widely used in 

industrial practice.  

NPL’s interpretation defines the LSQ as an optional operation because: 1) LSQ line is 

not physically realistic in some case, e.g. a sine wave (Whitehouse 2002b); and 2) total 

least square method is more accurate than the linear least square method, especially in 

the case when the slope is significant (Murthy, Reddy et al. 1982).  

5.2.2.2 λs	filtering	

Description	

The λs profile filter is the filter that defines where the intersection occurs between the 

roughness and shorter wavelength (noise) components (ISO 4287 1997). 

Model	uncertainty	

According to ISO 5436-2 (2001), Gaussian λs filtering is an optional operation in 

NPL’s interpretation. However, a ratio between λs and λc is provided in ISO 3274 

(1996). Some software packages (e.g. [CC]) interpret the λs filtering as an essential 

part of the λc filtering. 
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Code	uncertainty	

The uncertainty contributors for the λs filtering operation are the length definition (see 

Section 5.2.4.1), end effects (see Section 5.2.3), etc. 

5.2.2.3 Other	operations	

Description	

There are some non-standardised operations in production software. 

Code	uncertainty	

In a commercial software package, namely [CC], the last point of the data set is deleted 

when inputting a data file. 

In [CB], an extra point is added when opening a data file. This operation includes the 

several steps: 1) adding an extra point in the middle of the inputted profile, 2) changing 

the height value of the last point to be equal to the penultimate point, and 3) adjusting 

the value of the spacing to make the sampling length consistent. 

The behaviour of these software packages suggests that they implement a conversion 

between a point-based length definition and an interval-based length definition (see 

Section 5.2.4.1).  

5.2.3 Filtration	

Filtering is the procedure to separate certain spatial frequency components of the 

surface profiles. A filter is an electronic, mechanical, optical or mathematical 

transformation of a profile to attenuate wavelength components of the surface outside 

the range of interest of the user. The Gaussian filter is currently the only standardised 

surface texture filter (ISO 11562 1996). 

5.2.3.1 The	Gaussian	filter	

Description	

ISO 11562 (1996) defines the long wave (low pass) Gaussian filter as a continuous 

weighted convolution for an open profile, with the weights taking the classic Gaussian 
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bell shape and a cut-off wavelength value of 50%. The short wave (high pass) 

Gaussian filter is defined as the difference between the surface profile and the long 

wave profile component resulting from the long wave Gaussian filter with the same 50% 

cut-off wavelength.  

Code	uncertainty	

ISO 11562 (1996) does not give any information on implementation (algorithms, 

implementation problems, etc.) of the Gaussian filter. There are no tolerance values 

given within this standard document. Instead of tolerances, a graphical representation 

of the deviations of the realised Gaussian filter from the defined Gaussian filter shall 

be given as a percentage value over the wavelength range 0.01 to 100 cut-offs. 

The weighting function of this filter (see Figure 5.3) has the shape of a Gaussian 

density function and is given by the equation 

21
( ) exp ( )

c c

x
s x 

 
 

  
 

	 	 	 	 	 (5.1)	

where 
ln 2

0, 4697


  , x is the position from the origin of the weighting function 

and λc is the long-wavelength cutoff. 

 

Figure	5.3	Weighing	function	of	the	profile	filter	according	to	ISO	11562	(1996)	

There are many approaches to implement a discrete approximation of the long wave 

Gaussian filter, and two of them (which are principally typical) are listed as follows. 

1) One approach is via a discrete weighted convolution in the spatial domain; 
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2) Another approach is via a transformation to the Fourier domain, applying a 

transmission weighting to the individual wavelengths and transforming back to 

the spatial domain.  

In theory, the outputs of both approaches are same. NPL’s interpretations use the first 

approach since it is less complicated to implement with differing numbers of points in 

the profile. 

End	effect		

When implement the Gaussian filter, there is a distortion on the filtered profile at its 

beginning (run-up) and end (run-down). Methods are available to reduce the end effect 

(ISO/TS 16610-28 2010). However, no default one is provided in ISO documents.  

NPL’s interpretation recommends that one cut-off at each end of the profile are 

removed, while some of the production software (e.g. [CC]) only removes half cut-off. 

5.2.4 Basic	elements	

5.2.4.1 Points	

A set of measuring points, which contains the dimensional information with associated 

errors, is the basic element that all digital processing based on. 

Code	uncertainty	

Discretization	error	

Brennan et al (2005) found that it can lead to unacceptable errors when changing a 

continuous definition directly to a discrete form (replacing integrals to summations, 

etc.). Figure 5.4 shows the discretization error by comparing the values of P 

parameters obtained from continuous form and discrete form separately. To reduce this 

error, NPL’s interpretation utilises a cubic spline interpolation method to reconstruct 

the continuous profiles. 
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Parameter Result 

(Discrete 

Model) 

Nominal 

Value 

(Continuous 

Model) 

Relative 

Difference 

Pa 0.60341 0.63662 5.22% 

Pq 0.6892 0.7071 2.53% 

Psk 3.8152e-017 0 - 

Pku 1.5789 1.5 5.26% 

Figure	5.4	An	example	of	the	discretization	errors	

Length	definition	

The meaning of a measuring point is not well understood. Some states that it represents 

the height information of the measured point, which some argue that it represents the 

height information of the measured interval. Therefore, different length algorithms are 

implemented to calculate the length in X-axis direction (see Table 5.3). The length 

algorithm affects the definition of sampling length, evaluation length, parameters, λc, 

λs, form removing operation and so on (an example given in Table A2.1). NPL’s 

interpretation uses the point-based definition due to it is more mathematically reliable. 

Table	5.3	Length	algorithms	

 Point-based 
definition 

Interval-based 
definition 

Where n is the number of points between 

its ends, and i is the sampling interval. 

The length l 

calculated as 

 ( 1)l n i   , 

The length l 

calculated as 

 l n i  , 
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Interpolated	points	

Some key points, used to define the features and calculate the parameter values, are 

often not directly available. These points are produced by an interpolation method. 

NPL’s interpretation uses a cubic spline interpolation. The variation due to different 

interpolation algorithms should be considered.  

5.2.4.2 Peak/valley	

Description	

Profile peak (valley) is the outwardly (inwardly) directed portion of the assessed 

profile connecting two adjacent points of the profile with the X-axis (ISO 4287 1997).  

Model	uncertainty	

Incomplete	feature	

The incomplete portion is the feature at the beginning or end of a sample length (e.g. 

the gray areas in Figure 5.5), and a handling method is provided in ISO 4287 (1997).  

“The positive or negative portion of the assessed profile at the beginning or 

end of the sampling length should always be considered as a profile peak or as 

a profile valley. When determining a number of profile elements over several 

successive sampling lengths, the peaks and valleys of the assessed profile at the 

beginning or end of each sampling length are taken into account once only at 

the beginning of each sampling length.” (ISO 4287:1997 Clause 3.2.7) 

The imperfection of this definition is significant. This ambiguity could cause 

significant distortion on feature parameters. In the example given in Figure 5.5, RSm 

values is varied from 0.325mm to 0.4 mm while the true value is the 0.4mm. NPL, 

PTB and NIST do not follow this definition and propose the revised methods 

separately. 



  114 

 

 

  

Sampling 

Length 

Measuring 

Direction 

RSm 

(mm) 

l1  0.4 

l1  0.4 

l2  0.375 

l2  0.325 

Figure	5.5	Ambiguity	of	definition	of	the	incomplete	portion	

NPL’s interpretation is: 1) discarding the incomplete features at each end of evaluation 

length; 2) calculating feature parameter (e.g. RSm) over evaluation length.  

Identifications	of	the	insignificant	features		

Discrimination for the profile elements is used to identify the insignificant features. 

The definition of profile elements is ambiguous (see Section 5.3.4.2), so most software 

implementations identify the insignificant peaks/valleys (i.e. profile features) directly. 

2H method is often used to interpret the discrimination of a profile element to the 

discrimination of a profile feature. An example is given in Figure 5.6. In NPL’s 

interpretation, the default discrimination for a profile feature is 5% of parameter Rz 

and 0.5% of sampling length. Many software packages also use 2H method. In some 

packages, the default discrimination for a profile feature is 10% of parameter Rz and 1% 

of sampling length. Figure 5.7 illustrates the ambiguity of this ISO definition by listing 

some possible interpretations.  
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Figure	5.6	NPL’s	implementation	of	the	2H	method	

 

(a)	Height	Discrimination	

 

(b)	Spacing	Discrimination	

Figure	5.7	Ambiguity	of	the	discrimination	for	a	profile	element	

Spacing discrimination Wd for profile 
elements: 1% of the sampling length  

2W Method Other Method 

0.5% 1%

w < wd 

…. …. 

w = wd w > wd 

Value Reference 

Sampling Length 

…. …. 

Insignificant 
feature

? 
h > hd

wd for profile feature 

…. …. 

2H Method Other Method 

± 5% ± 10% 

hd for profile feature 

h < hd 

…. …. 

h = hd h > hd 

Significant feature 

Value Reference

Rz 

? 
w > wd 

Height discrimination Hd for Profile elements: 

10% of the value of an amplitudes parameter  

Insignificant 
feature 

Significant feature 
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5.2.4.3 Profile	element	

Description	

A profile element is defined as a peak with its followed valley (ISO 4287:1997 - figure 

3), or a valley with its followed peak (ISO 4287:1997 - figure 10). 

Model	uncertainty	

The ambiguity of this definition is shown in Figure 5.8. In this case, there are two valid 

profile elements with different height and width values. Thus, the height and width of 

this profile element could be 1) Zp2 and Xs2; 2) Zp1 and Xs1; 3) (Zp2 +Zp1)/2 and 

(Xs2+ Xs1)/2. 

 

Figure	5.8	Ambiguity	of	the	definition	of	a	profile	element		

In NPL’s interpretation, the profile elements are used as a concept only, and the 

calculations of their related parameters (e.g. RSm/Rc) are based on features (a peak or a 

valley) directly. 

5.2.4.4 Crossovers	

Description	

Crossovers refer to as the mean line crossing-points. Crossovers are of importances 

which are used to define the profile feature.  

Code	uncertainty	

Unfortunately, most crossovers are excluded in the measuring data point set. Thus the 

crossovers are generally estimated by their neighbour points. The disagreements 

caused by different interpretation algorithms should be considered. 
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NPL’s interpretation recommends including implied mean line crossing points by 

interpolating the data where these occur and provide each profile peak or valley 

element with calculated boundary values. 

5.2.5 Sampling	length	and	evaluation	length	

5.2.5.1 Cut‐off	

Description	

Most parameters are calculated over a sampling length, so the sampling length has 

been recognised as the basic “unit” length of most surface parameters (Whitehouse 

2002b). This length should be long enough to include a statistically reliable amount of 

data. The sampling length has the same numeric value as the cut-off of filter. So the 

sampling length is also known as the cut-off length. 

Model	Uncertainty	

Sample	length	of	R‐parameter	‐	lp	

The primary profile is the basis for evaluation of the primary profile parameters. The 

sampling length lp is numerically equal to the evaluation length. ISO document defines 

that lp is equal to the length of the feature being measured. However, no current ISO 

standard defines the profile filter λf. There are two interpretations of the (default) 

sample length for P-parameter: 

1)  lp (default): The remaining profile after removing one λc cut-off at each end of 

a profile 

2) lp (default): All the measured points in a data file. 

NPL’s interpretation uses the second interpretation. For the first interpretation 1, it 

should be noticed that: 1) there is no standardised method to reduce the end effect of a 

filtration operator; 2) P-parameter is relied on the selection of the λc value if follows 

this interpretation. Thus, to avoid ambiguity, the first interpretation requires specifying 

the λc value when using the P-parameters in drawing. So this interpretation does not 

consistent with ISO 1302 (2002).  
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Sample	length	of	R‐parameter	‐	lr	

To obtain the roughness profile, NPL’s interpretation recommends the following 

procedure: 

1) The primary profile is first filtered using the short wave Gaussian profile filter 

with a cut-off wavelength value λc.  

2) To reduce the end-effect, one cut-off at the beginning and the end of this profile 

are removed. 

3) The remaining profile is then partitioned into adjacent portions. Apart from 

possible the last portion at the end of the profile, each portion is equal in length 

of the sampling length. If the last portion is not equal in length to the sampling 

length then it is removed. The resulting profile is called the roughness profile. 

In step 2, some production software packages (e.g. [CC]) remove half cut-off at each 

end of the profile. 

Sample	length	of	W‐parameter	‐	lw	

There is no common understanding of the meaning and use of waviness parameters 

(Whitehouse 2002b). ISO 4287 defines the sampling length of W-parameters based on 

the cut-off of the profile filter λf. Some industrial practice ignores this filter step and 

uses the sampling length lw equal to the cut-off wavelength λc. 

Code	uncertainty	

The number of points of a cut-off varies as the results of different length definitions 

(see Table 5.3). An example is given in Table A2.1. 

5.2.5.2 Evaluation	Length	

Description	

Evaluation Length is the length of the data used for analysis, which contains several 

(usually five) consecutive sampling lengths (see Figure 5.9). Some parameters are 

defined within the evaluation length directly, e.g. parameter Rt. 
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Model	uncertainty	

Evaluation length and sampling length are specified in ISO 4288(1996). However, 

some of the terms (such as measurement length, traverse length in Figure 5.9), used 

widely in practice, are not standardised.  

 

Figure	5.9	Sample	length	l,	evaluation	length,	measurement	length	and	instrument	
traverse	length.	

Code	uncertainty	

Different length definitions (see Table 5.3) affect the number of points used to define 

the evaluation length.  

5.2.6 Segmentation	of	portions	

Description	

Segmentation is the operation to remove the “insignificant” portions due to noise, etc.  

Model	uncertainty	

A segmentation method for motif parameters is provided in ISO 12085 (1996). For 

ISO 4287 parameters, however, there is no specified segmentation method. Many 

algorithms exist. 

The insignificant portions can be classified into five types by their position in the 

sampling length and the evaluation length (Li, Leach et al. 2009). According to its type, 

an insignificant portion can be discarded or merged into its neighbour portions. Table 

5.4 summarises five methods for removing the insignificant portions in the middle of a 

sampling length. Figure 5.10 illustrates the different results produced by those methods. 
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Table	5.4	Five	segmentation	methods	

NO Search strategy Segmentation method 

1 From left to right Merging with next portion 

2 From left to right Merging with half of next portion 

3 From right to left Merging with next portion 

4 From right to left Merging with half of next portion 

5 From the smallest to biggest Merging with the smaller one of its neighbouring 

portions 

 

Figure	5.10	Significant	results	produce	by	different	segmentation	methods	(the	black	
points	represent	the	crossing	points	of	a	profile)	

The variation of parameter RSm, arisen from the difference of the method 1,2,3,4, are 

significant (Leach and Harris 2002). Scott (2006) proposed the method 5 and proved 

its stability by the representation theory of measurement. NPL’s interpretation 

implements the method 5. 

5.2.7 Parameters	

According to the bandwidth of the profiles, there are three types of the surface 

parameters currently defined in ISO 4287, namely P-parameters, R-parameters and W-

parameters. Same parameter algorithms are given for three profiles (ISO 4287 1997). 

Thus, this section only discusses the algorithms of R-parameters.  

5.2.7.1 Field	parameters	(mean)	

Description	

Those parameters calculate the mean value of ordinate values z(x) within a sampling 

length. 

(1)

(2) (5)

(3)

(4)
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Parameter	Ra	

Ra is the arithmetic mean of the absolute ordinate values z(x) within a sampling length. 

It is simply defined as the average height of the surface deviations in the z direction. 

0

1
( )

l

Ra z x dx
l

  	 	 	 	 	 (5.2)	

Parameter	Rq	

Rq is the root mean square roughness of the surface.  

2

0

1
( )

l

Rq z x dx
l

  	 	 	 	 	 (5.3)	

Parameter	Rsk	

Rsk is the skewness of the assessed profile.  

3
3

0

1 1
( )

l

Rsk z x dx
Rq l

 
  

 
 	 	 	 	 (5.4)	

Parameter	Rku	

Rku is the kurtosis of the assessed profile.  

4
4

0

1 1
( )

l

Rku z x dx
Rq l

 
  

 
 	 	 	 	 (5.5)	

Model	uncertainty	

There are two methods to take the mean value of the profile parameters over the 

evaluation length, they are listed below. 

1) One method calculates the profile parameters over each sampling length, and 

takes the means of those results. 

2) Another method calculates of the profile parameters over evaluation length 

directly. 
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The first method is used in ISO 4288, while the second method is implemented in 

American standard document ASME B46. Two methods deliver same results on 

parameter Ra, while produce different results on parameter Rp, Rdq, Rsk, and Rku (Bui, 

Vorburger et al. 2003). 

Code	uncertainty	

These parameter algorithms involve the addition of thousands of point, so the 

truncation errors should consider. In NPL’s implementation, Kahan’s method (Kahan 

1965) is used for computer addition. Kahan’s method increases computation by a 

factor of 4 but yields more accurate results, especially when adding a very small 

number on a quite large number. 

Note the total number of points, used to calculate those parameters, is slightly different 

according to the length definitions of the software packages (see Section 5.2.4.1). 

5.2.7.2 Field	parameters	(max)	

Description	

These parameters deliver the max value of ordinate values z(x) within a sampling 

length.  

Parameter	Rp	

Rq is the maximum profile peak height of the assessed profile.  

Parameter	Rv	

Rq is the maximum profile valley depth of the assessed profile. 

Parameter	Rz	

Rz is the maximum height of the assessed profile. 

Parameter	Rt	

Rt is the difference between the highest peak and the lowest valley within the 

evaluation length (see Figure 5.11). 
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Figure	5.11	Rt	is	the	total	height	of	a	profile	over	the	evaluation	length	

Model	uncertainty	

Currently, these parameters are evaluated over a sampling length and pay no attention 

on the location of features. Thus, a significant feature, at the end of a sampling length, 

has more weight than a feature at the middle. For example, the peak A in Figure 5.12 is 

the highest profile peak in both sampling length l1 and l2. One peak (e.g. the peak A) 

can be counted two peaks (e.g. part of peak A in l1 and reaming part of the peak A in l2). 

A slightly shift of the start point of the sampling length could lead significant change 

of parameter value (e.g. the value of Rp2 in Figure 5.12 depends on the start point of 

sampling length l2). 

 

Figure	5.12	A	significant	feature	at	the	end	of	the	sampling	length	

	Code	uncertainty	

The parameter value is slightly greater if these parameters calculate over the 

reconstructed profile. 
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5.2.7.3 Feature	parameters	

Description	

These parameters deliver the mean value of height and width of the profile elements 

after removing insignificant features. 

Parameter	RSm	

RSm is the average spacing of profile elements (A profile element is a valley and its 

adjacent peak). The peaks and valleys are found by using both height and width 

discrimination criteria. The minimum height and minimum spacing of profile peaks 

and profile valleys is set as a percentage of an amplitude parameter (the red line 

indicated in Figure 5.13)  

1

1 m

i
i

RSm Xs
m 

  	 	 	 	 	 (5.6)	

 

Figure	5.13	Width	of	profile	elements	

Parameter	Rc	

Rc is the average height of profile elements.  

Model	uncertainty	

The elements of parameter RSm and Rc have significant model uncertainty (see the 

previous part of this chapter). Parameter RSm and Rc are defined over the sample 

length (ISO 4287: 1997). However, NPL, PTB, and NIST recommend that RSm and Rc 

should be assessed over the evaluation length directly to reduce the effect of 

incomplete features. 
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5.3 Estimating	the	effect	of	software	uncertainty	

The previous section identified the model and code uncertainty of ISO 4287 

parameters.  For different profiles, their contributions are varied. Their effects on three 

F2 softgauges and four commercial software packages (listed in Table 5.2) are 

estimated in Table 5.3 – Table 5.5.  

Table	5.5	Estimating	the	effect	of	the	software	uncertainty	of	parameter	Ra32	

Reference Operation Estimating Effect  

(Weight in the final result) 

5.2.2.3 Other operations [CB] *** 

[CC] 

5.2.2.1 Form removal [PTB] * 

5.2.3.1 End effect of λc filtering [CC] * 

5.2.2.2 λs filtering [CC] * 

5.2.4.1 Length Definition  

5.2.4.4 Crossover  

Table	5.6	Estimating	the	effect	of	the	software	uncertainty	of	parameter	Rz32	

Reference Operation Estimating the Effect  

(Weight in the final result) 

5.2.2.3 Other operations [CB] *** 

[CC] 

5.2.2.1 Form removal [PTB] * 

5.2.3.1 End effect of λc filtering [CC] * 

5.2.2.2 λs filtering [CC] * 

5.2.4.1 Length Definition  

5.2.4.4 Crossover  

                                                 
32 Note:  ***** More than 100 % variation; 

**** More than 10 % variation; 

   *** More than 1 % variation; 

   ** More than 0.1 % variation; 

   * More than 0.01 % variation 
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Table	5.7	Estimating	the	effect	of	the	software	uncertainty	of	parameter	RSm32	

Reference Operation Estimating the Effect  

(Weight in the final result) 

5.2.2.3 Other operations [CB] *** 

[CC] 

5.2.2.1 Form removal [PTB] * 

5.2.3.1 End effect of λc filtering [CC] * 

5.2.2.2 λs filtering [CC] * 

5.2.4.1 Length Definition  

5.2.4.4 Crossover  

5.2.4.3 & 

5.2.4.2 

Profile element  

5.2.4.3 Joint Direction [NIST] *** 

5.2.4.2 Incomplete portion [ALL] *** 

5.2.6 Segmentaion [ALL] ***** 

5.4 Conclusions	

This chapter has analysed the errors and uncertainties in the software modelling and 

coding procedure by studying the case of ISO 4287 parameters. This is the first 

detailed analysis of model and code uncertainty of surface metrological software. It 

showed that software uncertainties can be significant. Software uncertainty will be 

evaluated in Chapter 7 by using type F1 softgauges developed in Chapter 6.  
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6 Development	of	type	F1	softgauges	

The objective of this chapter is to develop type F1 softgauges for surface texture, as the 

realisations of ISO definitions at the national level in the UK. Type F1 softgauges have 

two components, the reference dataset and the reference results. Section 6.1 presents 

the scope of the reference dataset in good coverage. Section 6.2 addresses the 

development of the reference dataset. Section 6.3 focuses on the production of the 

reference results, and uncertainty is covered in Section 6.4. 

6.1 Scope	of	type	F1	softgauges	

Type F1 softgauges are developed for calibrating both F2 softgauges and production 

software packages. The scope of the type F1 softgauges is of critical importance. It is 

influenced by prior knowledge and experience in the use of relevant standard 

documents, and targeted applications based on the user consultation exercise as 

discussed in Chapter 2. Type F1 softgauges are focused on three areas. 

1)	General	manufacturing	engineering	

In general manufacturing engineering, the surface texture features are closely related to 

the manufacturing process. So the type F1 softgauges need to cover the surfaces 

created by those processes. The broad categories of manufacturing processes used are 

as follows: 

 Casting and primary forming. 
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 Forming and shaping: rolling, forging and sheet forming, etc. 

 Machining: turning, milling drilling, planning, grinding, EDM, etc. 

 Finishing: honing, lapping, polishing, coating, etc. 

The surface texture produced directly from casting in particular, and to a lesser extent 

forming, are precursor surfaces for further processing. Additional operations such as 

machining and fine finishing are normally employed. Consequently, relevant surfaces 

can be narrowed down to two broad classifications as shown in Figure 6.1. 

 

Figure	6.1	Processing	routes	for	manufacturing	surfaces	

2)	Relevant	standard	documents	

In addition, type F1 softgauges should cover specific surfaces referred to in relevant 

standard documents. Hardgauges are listed in ISO 5436-1 and include types A to E for 

calibration surface profile measurement. A number of these profiles are also very 

useful for software calibration. This is especially true for type C hardgauges and type 

D hardgauges. Type C hardgauges are sine and triangular waves, and type D 

hardgauges represent measurement of the practical ground profile.  

3)	Industrial	consultation	exercise	

Finally, and also most importantly, type F1 softgauges should centre on surfaces which 

industry considers widely used and of particular importance. From the industry point of 

view, some manufacturing processes are used much more frequently than others. As 

discussed in Chapter 2, precision finishing of metal are highlighted as the main 
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manufacturing process where metrology is of primary importance. These processes 

focus on grinding and lapping/polishing of steels as being of high importance. 

Many standard manufacturing workpiece surfaces can be obtained commercially - the 

measurements undertaking on these surfaces are considered ideal as reference data. In 

addition, the simulation of the manufacturing processes (e.g. turning, grinding and 

milling, etc.) is quite mature in the research field. Simulated surface profiles are very 

close to the real processed surfaces. 

Some of the profiles, used in the previous comparison or testing, are good examples as 

well (Thomas and Charlton 1981; Haitjema 1998; Leach and Harris 2002; Bui, 

Vorburger et al. 2003; Koenders, Andreasen et al. 2004; Chen, Hsieh et al. 2005; Bui 

and Vorburger 2007). These profiles are in the scope of reference data presented above. 

Overall, type F1 softgauges, as shown in Figure 6.2, is proposed and includes two parts, 

that of functional reference profiles for practical and simulated manufacturing surface, 

and that of evaluation reference profiles.  

 

Figure	6.2	Scope	of	the	type	F1	softgauges	

6.2 Reference	datasets	

Overview of the existing techniques, there are four ways to produce a reference 

datasets. They are: 1) measuring an engineered surface; 2) generating the simple 

profiles by a known function; 4) simulating the manufacturing profiles; and 4) 

modifying the measured profiles or simulated profiles. Figure 6.3 illustrates these 
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methods together with their links to manufacturing surface, type C and type D 

hardgauges. Their advantages and disadvantages are compared in Table 6.1.  

 

Figure	6.3	The	methods	for	producing	the	reference	datasets	
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Table	6.1	Comparison	of	the	methods	for	producing	a	reference	dataset	

No Method Advantage Disadvantage 

1 Measuring standard 

workpieces 

Easily obtained; 

A real surface profile 

Measurement 

uncertainty and different 

instruments; 

No theoretical support 

for the reference results 

2 Generating simple wave 

profiles 

Easy to generate profiles 

and the reference results  

Not close to real profiles 

3 Simulating 

manufacturing profiles 

Close to real profiles and 

the reference results cross 

check 

Complicated algorithms  

4 Modifying measured and 

simulated profile 

Predict the future 

performance, simulate the 

special measurement 

condition 

Only partly close to real 

profiles. 

Following the developed methodology and using existing techniques, a minimum set 

of 14 reference datasets have been proposed for this set of type F1 softgauges (see 

Table 6.2). 
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Table	6.2	Scope	of	type	F1	softgauges	

Reference Data Sets 

  Tool cutting 
Abrasive 

cutting 

Non-

traditional 
Feature 

Measured 

profile 

Milling, 

turning 

Grinding, 

lapping, 

honing 

EDM  

Simulated 

profile 
Turning 

Grinding, 

honing (pits 

and noise) 

EDM  

Mathematical 

model 

Harmonic 

wave 
  

Grooves and 

steps 

Min number of 

profiles for 

ISO 4287 

4 5 2 3 

Except for the measured profiles, the simulated manufacturing profiles and the 

mathematical defined profiles will be generated in Matlab. For all profiles, the 

measurement condition will be consistent in order to minimum of effect of sampling 

(see Table 6.3).  

Table	6.3	Profile	“measuring”	conditions	

Condition Setup 

Sampling interval 0.25 um 

Sampling length 0.8 mm 

Evaluation length 0.8mm*7 = 5.6 mm 

Total number of points  22401 

6.2.1 Mathematical	defined	reference	dataset	

The basic waveforms (such as sine waves, saw waves, pulses and square waves) will 

be used for generating reference datasets. Combination of different frequencies and 

modification of those waveforms are applied to address special feature and fault focus. 

This subset of reference dataset consists of the following datasets: 
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1) Synthetic sine & saw wave profiles 

a. Single frequency 

b. Multiple frequencies (inc. phase shifts) 

2) Advanced synthetic sine & saw wave profiles 

a. Truncated wave form (sine & saw) 

b. Padded wave form (sine & saw) 

3) Pulsed & spiked profiles 

a. Single pulsed 

b. Multiple pulsed with different widths 

4) Square wave profile  

a. Advanced square wave 

b. Single and multiple steps 

5) Gaussian white noise 

Synthetic	sine	&	saw	wave	profiles	

Based on the lessons learnt from the use of hardgauges (See Chapter 2), simple sine 

and saw wave profiles are the first choice for evaluating both roughness parameters 

and filtering. The combination of the simple and synthetic wave profiles provides full 

cover of the reference dataset for the characteristic transmission curve of the Gaussian 

filter. The functional testing is further enhanced by the addition of two phases shifted 

synthetic profiles. Table 6.4 shows the mathematical functions used to generate sine 

and saw wave profiles and Figure 6.4 gives some examples of the profile generated. 
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Table	6.4“Mathematical”	surface	profiles	

Filename Function 

Sin1.smd 
2

( ) sin( )
x

f x



 , 0.16mm   

Saw1.smd 
2

( ) saw( )
2

x
f x

 


  , 0.16mm    

Sin1_2.smd 
2

( ) sin( )
0.5*

x
f x




 , 0.16mm    

Saw1_2.smd 
2

( ) s ( )
0.5* 2

x
f x aw

 


  , 0.16mm    

Sin123.smd 
2 2 2

( ) sin( ) sin( ) sin( )
0.5* 2*

x x x
f x

  
  

   , 0.16mm    

Saw123.smd 

2 2 2
( ) saw( ) saw( ) saw( )

0.5* 2 2 2* 2

x x x
f x

     
  

      , 

0.16mm    

Sin12phs.smd 
2 2

( ) sin( ) sin( )
0.5* 4

x x
f x

  
 

   , 0.16mm    

Saw12phs.smd  
2 2

( ) saw( ) saw( )
0.5* 2 4 2

x x
f x

    
 

     , 0.16mm    

 

Figure	6.4	Example	of	synthetic	sine	&	saw	profiles	
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μm
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μm
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Advanced	synthetic	sine	&	saw	wave	profiles	

The modified synthetic profiles are designed to address the deficiency in hybrid and 

spacing parameters, as the truncation and padding introduce uncertainty into the 

calculation (see Table 6.5 and Figure 6.5). 

Table	6.5	“Mathematical”	profiles	for	testing	spacing	and	hybrid	parameters	

Filename Function 

Sin1tru.smd 

2
sin( ), ( 0.5) ( 1) ,

( )
0

x
k x k k I

f x
  


      


, 0.16mm    

Saw1tru.smd 

2
saw( ), ( 0.5) ( 1) ,

( ) 2
0

x
k x k k I

f x
   


       


, 0.16mm    

Sin1pad.smd 

2
sin( ),2 (2 1) ,

( )
0

x
k x k k I

f x
  


     


, 0.16mm    

Saw1pad.smd 

2
saw( ), 2 (2 1) ,

( ) 2
0

x
k x k k I

f x
   


      


, 0.16mm    
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Figure	6.5	Example	of	advanced	synthetic	sine	&	saw	wave	profiles	

Pulsed	&	spike	profiles	

Pulse and spike profiles are extreme wave profiles. They are an effective sample to test 

the response of the Gaussian filtering (see Table 6.6 and Figure 6.6). 
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Table	6.6	“Mathematical”	spiked	profiles	for	testing	Gaussian	filtering	

Filename Function 

Pulse.smd 1, / 2
( )

0, / 2

x l
f x

x l


  

, 5.6l mm   

Spike.smd 1, / 2

( ) 1, / 4,3 / 4

0, / 4, / 2,3 / 4

x l

f x x l l

x l l l


  
 

, 5.6l mm   

	

 

Figure	6.6	Example	of	spike	profiles	

Square	wave	and	white	noise	profile		

Square wave and step profiles are effective in the calibration of the Gaussian filter. The 

white noise profile is used for testing parameter calculations (see Table 6.7 and Figure 

6.7). 
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Table	6.7	Square	wave	and	white	noise	profiles	

Filename Function 

Squ1.smd 1, ( 0.5) ,
( )

1, ( 0.5) ( 1) ,

k x k k I
f x

k x k k I

 
 

   
      

, 0.16mm    

Steprf.smd 0, / 2
( )

1, / 2

x l
f x

x l


  

, 5.6l mm   

Stepsrf.smd 1, / 5 / 5 500

1, 2 / 5 2 / 5 500

( ) 1, 3 / 5 3 / 5 500

1, 4 / 5 4 / 5 500

0,

l x l pts

l x l pts

f x l x l pts

l x l pts

other

  
       
   


, 5.6l mm ,

0.25x m    

Normrand.smd ( ) (0,1, )f x normrand l , 5.6l mm   

 

 

Figure	6.7	Examples	of	square	wave	and	white	noise	profiles	

6.2.2 Simulated	manufacturing	reference	dataset	

Surface profile parameters are often used to validate the simulation of manufacturing 

process. It is of importance to limit the software error for the validation of simulation. 

Thus, some simulated manufacturing reference dataset are developed.  
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Simulated manufacturing reference datasets are generated from numerical models of 

manufacturing processes. Profiles cannot be described in a simple mathematical form. 

In accordance with the classification of the manufacturing processes, three processes 

have been simulated. These were: 

1) Grinding, a typical example of abrasive cutting. 

2) Milling, a typical example of tool cutting. 

3) EDM, random surface processing. 

Another reason to choose these three processes is because the techniques for their 

simulation are quite mature and the simulated surface profiles are very close to real 

surfaces. A method to simulate dressing and grinding was described by Chen et al 

(1996; 1996). The method developed here provides a way to simulate the wheel 

surface for further simulation of the grinding process. The results from the simulation 

demonstrate the features of a dressed grinding wheel surface, which qualitatively 

agrees with practical measurement. In the simulation model used in this project, the 

following machining conditions of the grinding process have been taken into account: 

 Dressing condition, i.e. length and width of the grinding wheel, dressing depth, 

dressing feed rate, density of grains, etc. 

 Cutting condition, i.e. grinding wheel spindle speed, workpiece feed-in rate, 

depth of cut, contact length of the wheel, etc. 

A comparison of measured and simulated ground surface profiles is shown in Figure 

6.8. 
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Figure	6.8	Comparison	of	measured	and	simulated	ground	surface	profiles	

Simulating a milled surface profile is based on a model developed by Liu et al (2002; 

2004). The simulation and experimental results demonstrate the effect of the machine 

stiffness, axis forces and vibrations on the final finished surface. The simulation and 

experimental results show a reasonably good agreement between the measured and 

simulated surface profiles. In the simulation, the following machining conditions for 

the milling process have been taken into account: radius of workpiece; tool nose radius; 

cutting speed rpm; cutting angular velocity; feed rate; end cutting edge angle; and side 

cutting edge angle. 

A numerical procedure for the simulation of a range of surface profiles has been 

developed by Wu (2000; 2004). The method is based on the Fast Fourier Transform 

(FFT), and can effectively simulate surfaces with given spectral density or auto-

correlation function (ACF). Furthermore, for simulating non-Gaussian distributed 

surfaces, the Rsk and Rku parameters can be specified. Profiles with both Gaussian and 

non-Gaussian distribution spectral densities have been simulated. The Gaussian 

distribution and spectral density profile have a strong relationship to an EDM 

processed surface profile whilst a non-Gaussian distribution spectral density profile is 

similar to polishing or honing processes as shown in Figure 6.3. The test results prove 

that the Rsk and Rku parameters of simulated profiles are very close to the nominal 

values (see Table 6.8). 
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Table	6.8	Specifications	used	for	simulated	surfaces	(EDM	and	honed)	surfaces	

Filename Function 

Cor2gau.smd / 2( ) xACF x e , Rsk = 0, Rku = 3; (EDM)  

Cor5gau.smd /5( ) xACF x e , Rsk = 0, Rku = 3; (EDM)  

Cor5ngau.smd /5( ) xACF x e , Rsk = -1, Rku = 4; (Honed)  

Cor10gau.smd /10( ) xACF x e , Rsk = 0, Rku = 3; (EDM)  

Cor10ngau.smd /10( ) xACF x e , Rsk = -1, Rku = 4; (Honed)  

	

 

Figure	6.9	Examples	of	the	simulated	profiles	with	specified	Rsk	and	Rku	

6.2.3 Measured	profile	for	reference	dataset	

Measurements of master workpieces are based on a good coverage of processes and 

emphasis is given to the consultation document (see Chapter 2). Therefore, the 

following manufacturing processes are given prominence as reference datasets:  

grinding; turning; milling; lapping; honing; EDM. For each process, three different 

rough surface profiles have been measured and uploaded into the reference dataset 

bank (see Figure 6.10 for examples). 
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Figure	6.10	Example	of	the	master	workpiece	measurements	for	reference	datasets	

6.2.4 Advanced	measured	profiles	for	reference	dataset	

Undertaking special modification on a measured profile is an effective method to 

predict the performance of an engineered surface. It can also be used to check the 

robust and stability of a software algorithm by comparing the results obtained from a 

measured profile with its modified counterpart. The data modifications include the 

following. 

Inversion	

Inversion provides a detailed view of the surface valleys in the inverted form. The 

feature is of particular use in revealing features in lubrication and wear analysis where 

the extent of the surface structure is of importance. It also reveals the effect of using of 

replica on engineered surfaces. 

Truncation	

The truncation is often used both to predict controlled wear behaviour of surfaces in a 

tribological environment and to examine sub-surface textures. A measured surface 

profile can be truncated to any pre-determined level and then analysed in any of the 

previously mentioned modes. Stout et al (1990) revealed the effects of 30% and 70% 

truncation on most of the machined surfaces. The pre-determined level, 30% and 70%, 

are used to produce the truncation counterpart of the measured profiles in this project. 
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Revision	

This reveals the stability of a parameter algorithm by changing the order of measured 

data point to simulate different measurement direction. 

One	point	shifting	

This provides evidence on the robust of the algorithm by applying a tiny change on a 

measured profile, removing the first measurement point and adding an extra point at 

the end of file. 

A modification tool is developed and provided in this project website. A user can 

upload their measured data file and download the modified counterparts.  

6.3 Reference	results	

One of the key issue needs to be addressed is how to produce the reference results for 

reference datasets. The certified values, provided in type F1 softgauges, give an 

absolute reference for all production software in the UK. Thus, their accuracy and 

reliability are of critical importance. 

In a mathematically well-defined model, the higher accuracy can be achieved by using 

both a high precision processor and data. NIST implemented this method to produce 

the Statistical Reference Datasets (StRD) to benchmark statistical software package. 

The reference results were obtained from a multiple precision FORTRAN pre-

processor and reference data sets with 500 decimal digits of accuracy. It has been used 

to benchmark many well-known statistical software packages such as Microsoft Excel 

(version: 97, 2000, XP, 2003, 2007) (McCullough 1998; McCullough and Wilson 1999; 

McCullough and Wilson 2005; McCullough and Heiser 2008). Another method is to 

start with some reference results and produce the corresponding reference data set by a 

data generator through the null-space approach (Cox and Harris 1999). NPL has 

implemented this approach to test a range of software packages (Harris, Lines et al. 

2006; Lines, Onakunle et al. 2007).  

These methods are too advance and unsuitable for this project due to the following: 
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 These methods are developed for investigating the fitness for the purpose of a 

software implementation of an algorithm to solve a specified, and well-defined, 

mathematical model. Unfortunately, there are significant model uncertainties of 

the software of surface measuring systems as discussed in Chapter 5. 

 The indication of a surface texture parameter is normally only needed two or 

three decimal digits of accuracy. Thus, using an extra high precision method 

(both processor and data) is too advanced for this project. 

Based on the lessons learn from the use of hardgauges (see Chapter 2), there are three 

methods to provide reference values. 

1) In a national measurement system, reference values are produced by a primary 

software package, i.e. a type F2 softgauge. 

2) In international comparisons among NMIs, the reference values are often 

produced by the mean of the results obtained from different primary software. 

3) In addition, for type F1 softgauges in the simple form of function, the reference 

values can be calculated by algebraic calculation. 

The first method is widely used for providing certified value for hardgauges. As 

discussed in Chapter 2, a primary instrument provides an absolutely interpretation of 

concept of the unit. In this project, all reference values of type F1 softgauges are 

produced by NPL’s type F2 softgauge which is the primary software in the UK. 

Due to the model uncertainty and code uncertainty as discussed in Chapter 5, varied 

certified values could be obtained from different type F2 softgauges when they assess a 

type F1 softgauge. The second method will be used to produce reference values in 

inter-comparison, which will be presented in Chapter 7. However, this value is 

unsuitable as certificated value of type F1 softgauges due to it contain the model 

uncertainty and code uncertainty among NMIs. 

The third method will be used in internal test of the F2 softgauges. According to the 

duality principle, the measurand is defined in a specification chain as results of a 

specification operator. Modern computing tools like MAPLE (algebraic computation) 

and MATLAB (a numerical computation and visualization program) make it possible 
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to solve realistic nontrivial problems in scientific computing. Using MAPLE, algebraic 

calculation can provide an initial result to cross-check results with the type F2 

softgauges. The procedure is illustrated in Figure 6.11. Firstly, Matlab generates the 

discrete reference dataset according to the defined function; then the same function is 

calculated in Maple and takes the algebraic form of both profile and parameter 

functions. The most important aspect of this algebraic calculation is that a ‘true value’ 

is calculated from MAPLE by use of the algebraic form of the function.   

 

Figure	6.11	Diagram	of	the	use	of	algebraic	calculation	

For example, in the case of algebraic calculating the Pa parameter of the “sin1” profile, 

the executed code in the MAPLE will compute the profile parameter given the 

definition of the Pa parameter as 

0 0

1 1 2
= ( ) sin( )

l l

Pa Z x dx dx
l l

 



, with 5.6 mm; 0.16 mml   . 

However, the algebraic calculation is limited to those generated profiles with simple 

functions. For the more complex functions, the equivalent MAPLE function (in 

algebraic form) of the MATLAB function (in numerical form) is too difficult to apply. 

The results obtained from the algebraic calculations are used for cross checking the 

values obtained from the reference software and are purely used as an internal tool for 

development of type F1 softgauges. 
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6.4 Uncertainty	

The associated uncertainty is key part of a measurement standard. However, as 

discussed in Chapter 3, the software uncertainty (i.e. model uncertainty and code 

uncertainty) is different from the traditional meaning of measurement uncertainty (i.e. 

data uncertainty). The introduction of definitional uncertainty in the VIM3 and 

specification uncertainty in the GPS make difficult in the evaluation, even 

understanding, of measurement uncertainty.  

To make it clearer, the measurement uncertainty can be decomposed in several 

dimensions as shown in Figure 6.12. The data uncertainty is traditional meaning of 

measurement uncertainty in the metrical dimension. The specification uncertainty is 

the uncertainty in the communication level in the translational dimension. The 

definitional uncertainty is the uncertainty in cognise level in structural dimension.  

 

Figure	6.12	Dimensions	of	measurement	uncertainty	[Adapt	from	Rowe	(1994)]	

It is different of the nature of each class of uncertainty. Rowe (1994) summarises their 

parameters and evaluation methods as shown in Table 6.9. They should be addressed 

separately first, then assessing their interaction. For the uncertainty in translational and 

structural dimension, many modern theories of uncertainty-based information have 

been developed, such as possibility theory, evidence theory, fuzzy set theory, and 

imprecise probability theory. However, these theories are not well developed when 
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compared with probabilistic inference (Oberkampf, DeLand et al. 2002). So none of 

these theories, except fuzzy set theory, has been applied the engineering analysis 

problems. 

Table	6.9	Parameters	of	the	classes	of	uncertainty	(Rowe	1994)	

Uncertainty 

class 

Unknown 

information 

Discriminator 

parameter 

Valuation 

parameter 

Evaluation 

methods 

Metrical Measurement Precision Accuracy Statistics 

Translational Perspective Goals/Values Understanding Communication

Structural Complexity Usefulness Confidence Models 

Some case studies have been proposed to study the uncertainty in communication level. 

For example, Lu et al. (2008) proposed an evaluation approach for compliance 

uncertainty through a case study on the diameter characteristics. As illustrated in 

Figure 6.13, the compliance uncertainty is evaluated by three steps. They are: 1) listing 

all possible interpretations of a specification; 2) evaluating the implementation 

uncertainty of each method by the GUM’s method; and 3) combining uncertainty by 

the GUM’s method. 

 

Figure	6.13	A	method	to	calculate	compliance	uncertainty	

This approach shows a possible way to estimate the effect of model uncertainty and 

code uncertainty of software on the measurement results. However, this approach is 
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relative immature and the calculation is time-consumed. Some of the questions for this 

approach are: 1) it is impossible to predict all interpretations in complex case such as 

surface measurement; 2) each interpretation should have different weight according to 

the possibility of their appearance (this approach assumes all interpretations has same 

weight; Thus, a rarely used interpretation could have the same effect as a dominated 

interpretation on the final uncertainty result). In addition, the effect varies on 

applications. 

Therefore, it is too advanced to calculate rigorous uncertainty value for the model 

uncertainty and code uncertainty. Fortunately, a procedure for uncertainty Management 

(PUMA) is proposed in ISO/TS 14253-2 (1999). In a given measurement process, it is 

used iterative method to refine the estimation of the dominate contributors to move 

towards to a true estimate of uncertainty components. For design and development of a 

measurement procedure, a procedure is developed based on a given measuring task and 

a given target uncertainty. This project will use the PUMA method to manage the 

model uncertainty and code uncertainty by setting up a task uncertainty (a certain ratio 

of data uncertainty) via some case studies. 

6.5 Conclusions	

Based on the reviewing results from the industry consolation and general 

manufacturing surface, a methodology of designing type F1 softgauges has been 

developed and a subset of F1 reference datasets has been generated. The method of the 

producing the reference value has been proposed. The concept of algebraic calculation 

has been introduced to provide theoretical and traceable results for the mathematically 

generated reference datasets. The algebraic calculation strictly follows the parameter 

definitions as given in ISO standards and is an important tool for cross-checking with 

type F2 softgauges.  
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7 Use	of	softgauges	

This chapter purpose to demonstrate the usage of the developed type F1 softgauges. 

Section 7.1 develops guidance for a user to set up minimum requirements for the 

calibration of surface metrological software. The developed type F1 softgauges are 

used to verify the type F2 softgauges in Section 7.2. The verified type F2 softgauges 

are utilised to calibrate the commercial software packages in Section 7.3. Section 7.4 

addresses end-users’ requirements by undertaking two case studies to demonstrate the 

evaluation of measurement uncertainty with the aid of softgauges. 

7.1 Calibration	procedure	for	surface	metrological	
software	

The calibration procedure of surface profile (stylus) instrument has been standardised 

(ISO 12179 2000). In areal surface texture characterisation, calibration procedure of 

stylus instruments, optical instruments and AFM has been proposed (Kuhle 2003; Ville 

2003). These publications focus on calibration of surface measuring instruments by 

using hardgauges only. Their calibration strategy is to identify the main components, to 

calibrate each of components separately, to estimate of corresponding uncertainty of 

each component, to combine these uncertainties and to report it. In addition, influential 

condition needs take into consideration (for example, temperate is not a component, 

but an influential condition, of length measurement). 

The requirements of software calibration have been emphasised (Song and Vorburger 

1991; Vorburger, Song et al. 1996). Mainsah et al. (1995) proposed a holistic approach 
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in the calibration procedure of areal surface texture measuring instruments. This 

approach advocated a routine in the following order: 1) validating software; 2) 

calibrating translational table; 3) calibrating magnification and condition of the probe; 

4) calibrating overall performance. Based on these studies, it can be agreed that 

software should be the first component to be calibrated in the calibration procedure of 

any type surface measuring instruments. The reasons are listed as follows: 

1) The reliability of measurement results of a hardgauge is greatly relied on the 

reliability of the software. Many hardgauges, such as type C and type D, 

provides the certified value in the form of surface parameters. 

2) Softgauges can replace some functions of the hardgauges with less cost both in 

time and labour. 

In the calibration of software, the major method is through black-box testing. Black-

box testing refers to the testing when only the inputs and outputs of the software are 

observable (it requires no detailed knowledge of the software code, although such 

knowledge can certainly help) (Beizer and Wiley 2002). 

As discussed in Chapter 3, there are two ways to calibrate production software by the 

aid of softgauges: 1) via the use of type F2 softgauges; 2) via the use of type F1 

softgauges. The end-users often only want to know the overall performance of their 

software. It is recommended that end-users calibrate their software via first way. 

Instrument manufacturers should calibrate their instruments via both ways in order to 

gain much evidence of traceability of the software of their instruments. 

7.1.1 Scope	

This proposed procedure applies to the calibration of the metrological characteristics of 

the software employed within contact (stylus) instruments for the measurement of 

surface texture by the profile method as defined in ISO 3274 (1996), the parameters 

defined in ISO 4287 (1997), the filter defined in ISO 11562 (1996) and the 

measurement conditions defined in ISO 4288 (1996). The calibration is to be carried 

out with the aid of software measurement standards, i.e. type F1 softgauges. 
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For the ambiguous concepts within above ISO standard documents, NPL’s 

interpretation, distributed in this project website, is the key reference which provides 

the absolute interpretations of these concepts. 

7.1.2 Condition	of	use	

Surface metrological software shall be calibrated when an update is undertaken. 

7.1.3 Software	measurement	standards	

The following software measurement standards, i.e. type F1 softgauges, are applicable 

to the calibrations given in the following sections: 

 Synthetic sine & cosine wave profiles; 

 Measured profiles on a typical engineering surface with their modified 

counterparts, such as the treatments of inversion, truncation, revision and 

shifting. 

7.1.4 Calibration	

7.1.4.1 Preparation	for	calibration	

Before calibration, the software shall be checked to determine if it operates correctly as 

described in the manufacturer’s operation instructions. For surface (profile) software 

the following shall be complied with. 

 The protocol of softgauges, in the form of SMD file format, is defined in ISO 

5436-2 (2000). A conversion tool can be used to convert this standardised file 

format to a file format used by the software. It should bear in mind that error 

may be introduced by this operation.  

 The conditions used to assess type F1 softgauges shall be compatible with these 

used to certify those softgauges. The conditions are expressed via an ordered 

set of operations which is adhered the latest GPS language. 
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7.1.4.2 Calibration	of	Gaussian	filter	

Overall	objective	

Determine the deviations from the use of Gaussian filter. 

Procedure	

The filtration is calibrated by comparing the amplitude parameters (e.g. Ra and Pa) of 

a series of sine wave profiles produced by using mathematical simulations with their 

nominal value. An alternative is to use a series of cosine wave profiles in order to 

avoid the possible distortions caused by levelling operation. 

In addition, a spike profile can provide useful information of respond of the filter. 

However, software packages may not deliver the results for this profile. 

7.1.4.3 Calibration	of	the	field	parameters	

Overall	objective	

Determine the deviations from the implementation of the algorithms of field 

parameters. 

Procedure	

The algorithms of field parameters are calibrated by comparing the amplitude 

parameters of mathematical defined profiles with their nominal values. 

An alternative is to use some measured profiles obtained from some typical surfaces. It 

should limit the possible deviation contributed by the filtration operation. 

7.1.4.4 Calibration	of	the	feature	parameters	

Overall	objective	

Determine the deviations from the implementation of the algorithms of the feature 

parameters. 
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Procedure	

The algorithms for feature parameters are calibrated by comparing the amplitude 

parameters obtained from the following type F1 softgauges with their nominal values. 

 A cosine wave profile is used to check the algorithm for incomplete feature; 

 Some measured profiles obtain from some typical surfaces. It should limit the 

possible deviation contributed by the filtration operation. 

7.1.4.5 Calibration	of	total	software	

Overall	objective	

Determine the reliability and stability from the implementation of algorithms. 

Procedure	

The software is calibrated by comparing all parameters obtained from the following 

type F1 softgauges with their expected values. 

 Measured profiles obtained from some typical surfaces with their revision 

counterpart. A reliable software package should deliver very closer results. 

 Measured profiles obtain from some typical surfaces with its one point shifting 

counterpart. It expects no significant difference between their results. 

7.1.5 Uncertainty	

Since uncertainty varies from application to application and depends on the user’s 

instrument and measurement condition, type F1 softgauges only provide certified 

values without associated uncertainty. The uncertainty of software is studied within the 

specified environment via the case studies that are undertaken in Section 7.4. 

7.1.6 Decision	rule	

A key question concerns the comparison between the test results (obtained from the 

test software) and certified value (provide by Softgauges). The comparison should be 
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objective and address the requirements of the application. The result of the comparison 

is the means by which a decision is made about the fitness-for-purpose of test software. 

If testy  and refy denote, respectively, the test and reference results, then 

 , ,test ref test ref
Ad y y y y   

and, for 0refy  , 

 , ,
test ref

test ref
R ref

y y
d y y

y


  

are metrics for the numerical correctness of the test result that measure, respectively, 

the absolute and relative differences between the test and reference results. It is 

unnecessary (and perhaps unreasonable) to expect that the absolute difference between 

the test and reference results is comparable to the computational precision of the 

arithmetic used to deliver the test result. If the developer of the software has made a 

claim about the numerical correctness of the results returned by the software, then this 

can be used as the basis for setting a tolerance against which to compare the calculated 

value of the absolute difference. If the user of the software has documented a 

requirement on the numerical correctness of the result, then this can also be used as a 

basis of the comparison. If the data uncertainty associated with the test result is 

available (evaluated in terms of the uncertainties associated with the measured data 

defining the surface profile), then it may be sufficient to require that the calculated 

value of the absolute difference is smaller (by several orders of magnitude, say) than 

this data uncertainty.  

A well known principle in metrology is the “weakness chain” principle - a chain is as 

strong as its weakness part. Therefore, fitness for the purpose can also mean that the 

effects arising from the use of the approximate mathematical model, approximate 

algorithm, etc. are quantitatively small compared to those effects arising from the data. 
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7.2 Verification	of	the	type	F2	softgauges	

7.2.1 Objectives	

As discussed in Chapter 2, some web-based type F2 softgauges have already been 

developed separately by NMIs in the UK, Germany, the United States and China (Jung, 

Spranger et al. 2004; Nie, Liu et al. 2006; Bui and Vorburger 2007; Blunt, Jiang et al. 

2008). These type F2 softgauges claimed that they have been developed to high 

standards and been thoroughly tested with some self-evidence. NIST also compared its 

type F2 softgauge with some commercial packages (Bui, Renegar et al. 2004). The 

results of this comparison showed that there is agreement in some parameters and 

disagreements on others. Therefore, there are some of the questions that need to be 

addressed before these type F2 standards can safely and reliably be used. Some 

important questions are: 

1) Is it safe to ignore calibration software? 

2) Do those type F2 standards qualify to be used as calibration tools? 

3) How does one make a judgement when there is a discrepancy between an 

industrial software package and a type F2 standard, or even between two type 

F2 standards? 

To address those questions, this section undertakes an inter-comparison between the 

three NMI’s type F2 softgauges with the aid of type F1 softgauges. The next section 

undertakes a calibration of four commercial software packages by NPL’s softgauges.  

This comparison follows the proposed calibration procedure in the previous section 

with the aid of some developed type F1 softgauges. It purposes to provide evidence on 

the following objectives: 

 Adherence to ISO documents: As the realisations of the ISO standardised 

metrology concept, it should strictly adhere to the ISO document.   

 Accuracy and Reliability: As the primary software, their accuracy and 

reliability are of extremely importance. It expects that they deliver the results 

closer to the “true value” than commercial software. 
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7.2.2 Preparation	of	calibration	

The measurement conditions used in this comparison are detailed in Appendix 2. 

[NIST], [PTB] and [NPL] have some differences in their interpretations of the ISO 

standard documents. Most of them were detailed in Chapter 5. The detailed 

descriptions of the type F2 softgauges are available online (see Table 5.2). In addition, 

three widely commercial software packages, developed in three different countries, 

were used in this comparison. They are named as CA, CB and CC for commercial 

protection. In this thesis, the square brackets refer to the associated software packages. 

7.2.3 Selected	type	F1	softgauges	

Six type F1 softgauges (see Table 7.1), as transfer standards, were selected in this 

comparison. Type F1 softgauge cos.smd is a cosine wave with a wavelength of 160 m 

and amplitude of 2 m. Its reference results are obtained from an algebraic calculation 

in Maple 10.03. Four measured surface profiles were selected to represent industrial 

requirements according to the survey (see Chapter 2). Their reference results are the 

non-weighted mean of results obtained from the three type F2 softgauges. 

Table	7.1	List	of	selected	type	F1	Softgauges	

Softgauges Description 

Cos.smd A cosinusoidal profile 

EDM.smd Measured profile of an EDM surface 

Mill.smd Measured profile of a milled surface 

Ground.smd Measured profile of a ground surface 

Ground2.smd Same data set as Ground.smd with the order of the data points reversed 

to simulate the opposite measuring direction. 

Polish.smd Measured profile of a polished surface 

7.2.4 Calibration	

7.2.4.1 Calibration	of	Gaussian	filter	

The transmission characteristic of a filter indicates the amount by which the amplitude 

of a sinusoidal profile is attenuated as a function of wavelength. According to ISO 

11562, the filter characteristic of the data file Cos.smd is calculated as 
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where 2a  is the amplitude of the filtered profile, and 0a  is the amplitude of the cosine 

wave profile before filtering.  

The measured data only provides six significant digits. Thus, there is no significant 

difference between the results of P-parameters and R-parameters obtained from the 

data file Cos.smd. Figure 7.1 presents these testing results. Three type F2 softgauges 

perform well with less than 0.1 nm absolute differences. They all deliver fewer errors 

than commercial packages. 
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Figure	7.1	Assessment	of	Gaussian	filtering	

7.2.4.2 Calibration	of	field	parameter	

Accuracy	

The number of correct significant digits obtained from the test software is calculated 

by the log relative error (LRE) as 

10log test ref

ref

y y
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 
	 	 	 	 (7.1)	
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where the ytest is the result obtained from the test software, and yref is the expected 

results obtained from an algebraic calculation (e.g. if yref= 0.636619 and ytest = 0.6363, 

then LRE=4.8) 33. 

Figure 7.2 shows the LRE obtained from all software implementations. [PTB] and 

[NIST] give results where only last digits are inaccurate. [NPL] delivers seven to ten 

accurate significant digits in this case, even higher than the precision of measuring data. 

They all perform better than commercial packages.  
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Figure	7.2	The	number	of	the	correct	significant	digits	

Stability	

Figure 7.3 presents the stability of parameters by comparing the results obtained from 

Ground.smd and Ground2.smd that are same data set with a different order to simulate 

difference measurement directions. For [NIST] and [PTB], the relative difference of Ra, 

Rq, Rsk, Rp, Rv, Rz, Rt and Rdq fall with the range of 0.05 %. [NPL] performs well in 

this test with same results obtained from the pair of profiles. 

                                                 
33 McCullough (1999) provides further details on measuring numerical accuracy. 
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Figure	7.3	The	effect	of	the	direction	

7.2.4.3 Calibration	of	feature	parameters	

PSm/RSm	

The value of PSm/RSm should be 160 µm, which is the “true” value for this cosine 

wave. If we strictly adhere to ISO 4287: 1997, to evaluate within every sampling 

length and discard incomplete portions at the end of sampling length,  

RSm = 152 µm and PSm = 158.857 µm.  
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If, following ASME B46.1-2002, we evaluate within the evaluation length and discard 

incomplete portions at the end of evaluation length, 

RSm = 158.4 µm. 

If we use the interval-based length definition to define the sampling length, and the 

point-based length definition to calculate the width of a profile element within each 

sampling length, and discard the incomplete portions at each ends,  

RSm = 159.95 µm. 

If we use the interval-based length definition to define the evaluation length, and the 

point-based length definition to calculate the width of a profile element within the 

evaluation length, and discard the incomplete portions at each ends,  

RSm = 159.99 µm. 

Table 7.2 presents the PSm/RSm results for Cos.smd. [PTB] and [NPL] performs well 

in this test. [PTB] delivers a small error due to a different length definition. The results 

obtained from three type F2 softgauges are closer the “true value” than the commercial 

package [CB] and [CC].  

Table	7.2	Influence	of	the	incomplete	portion	for	RSm	and	PSm	

 PSm (µm) RSm (µm) 

NIST 160.00 160.00 

NPL 160.00 160.00 

PTB 159.99 159.99 

CA - 160.00 

CB 158.89 156.01 

CC 158.86 158.40 

Stability	

As illustrated in Figure 7.3, there are noticeable difference results of Rc and RSm 

delivered by [NIST] and [PTB] (in the range of 0.76% and 2.1%). [NPL] performs well 

in this test.  
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7.2.4.4 Calibration	of	total	software	

Table 7.3 and Table 7.4 present the percentage of coefficients of variation among the 

three type F2 softgauges and three commercial packages. For the three type F2 

softgauges, most of the relative differences are less than 0.5 %. [NPL] delivers slightly 

greater values of Rp, Rv, Rz, Rt, Pp, Pv, Pz and Pt due to its interpolating method, and 

only one result is greater than 0.5 % (Rp for Polish.smd). For PSm, RSm, Pc and Rc, 

variations are significant (Figure 7.4 - Figure 7.7) as the result of ambiguous definition 

(see Chapter 4). Together with the three commercial packages, most of the relative 

differences for R-parameters are more than 0.5 %. 

Table	7.3	Percentage	of	coefficients	of	variation	among	three	type	F2	standards	

 Softgauge

s 
Ra Rq Rsk Rku Rp Rv Rz Rt Rc RSm Rdq 

Cos.smd 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 

EDM.smd 0.00 0.14 0.19 0.06 0.05 0.06 0.06 0.05 3.18 6.95 0.02 

Mill.smd 0.00 0.15 0.12 0.01 0.14 0.18 0.16 0.13 3.78 7.10 0.07 

Polish.smd 0.01 0.13 0.03 0.02 0.38 0.13 0.17 0.15 10.76 24.98 0.04 

Ground.smd 0.00 0.25 0.13 0.00 0.05 0.03 0.04 0.02 6.39 16.66 0.01 

 

Table	7.4	Percentage	of	coefficients	of	variation	among	three	type	F2	standards	and	
commercial	packages	

Softgauges Ra Rq Rsk Rku Rp Rv Rz Rt Rc RSm Rdq 

Cos.smd 1.03 1.02 - 0.00 1.03 1.03 1.02 1.02 1.72 0.93 1.13 

EDM.smd 1.03 1.36 30.17 0.89 7.10 5.65 2.71 0.60 6.10 9.08 2.31 

Mill.smd 2.60 2.32 8.19 2.85 5.59 12.28 1.69 1.19 6.25 45.41 17.17 

Polish.smd 1.03 1.21 1.29 1.98 7.30 7.95 3.11 1.24 13.66 33.77 9.12 

Ground.smd 0.80 0.84 15.90 2.12 13.90 7.03 1.24 0.62 9.91 22.30 4.37 
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Figure	7.4	Results	of	parameter	RSm	

 

Figure	7.5	Results	of	parameter	PSm	

 

Figure	7.6	Results	of	parameter	Rc	
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Figure	7.7	Results	of	parameter	Pc	

7.2.5 Performance	metrics	

Sinusoidal artefacts have been widely used in the calibration of surface measuring 

instruments, since they were introduced by Sharman (1967). Sinusoids are insensitive 

to many measurement conditions. Some research comparison results are listed in Table 

7.5. To reproduce these research results, the effect of software should be of 

insignificance. The metric for Ra is set based on the reproducibility of those results 

from the software aspect. 
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Table	7.5	The	performance	metrics	for	Cos.smd	

No Reference1 Metric 

for Ra2 

1 Haitjema (1998) has estimated the uncertainty of roughness parameters 

using a styles instrument. It shows that the uncertainty of Ra and RSm 

for a sinusoidal artefact (nominal Ra: 2.9 µm and RSm: 100 µm) are 

0.25 % and 0.03 % (at 95 % confidence).  

0.04 % 

2 [NIST] is able to simulate the measurement error by adding the normal 

distributed random noise to each data point. The uncertainty of Ra and 

RSm for Cos.smd (nominal Ra: 636.62 nm and RSm: 160 µm) is ± 2.68 

nm and ± 6.97 µm (at 95 % confidence).  

0.07 % 

3 Vorburger et. al.(2007) has undertaken a comparison between optical 

and stylus methods. For a sinusoidal specimen (nominal Ra: 500 nm 

and RSm: 50 µm), the difference of Sa value and Ra value is 6 nm 

obtained from difference type of instruments.  

0.1 % 

4 Thomas and Charlton (1981) has investigated the (in)homogeneity of 

some typical manufactured surfaces. The variation of 1.8~3 % for Ra 

are found on RTH reference standards (Two-dimension sinusoidal 

surfaces, nominal Ra: 0.27 µm).  

0.6 % 

Note: 1. Based on the assumption that software used in this research work is qualified.  
2. The pass margin set as 1/3 of value of uncertainty and 1/10 of absolute difference. 

Table 7.6 presents the performance of test software for Ra of Cos.smd. It indicated that 

the three type F2 softgauges could be used to reproduce all the measurement tasks 

listed in Table 7.5. 

Table	7.6	The	performance	of	software	implementations,	assessed	by	the	effect	of	the	
reproducibility	of	measurement	tasks	listed	in	Table	7.5	

 Tasks 

[NIST] 1;2;3;4 

[NPL] 1;2;3;4 

[PTB] 1;2;3;4 

[CA] 2;3;4 

[CB] NONE 

[CC] 2;3;4 
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Table 7.7 lists the percentage coefficients of variation from place to place on a 

manufactured surface studied by Thomas (1981). ISO 4288 introduces the “The 16 %-

rule” and “The max.-rule” for comparison of the measured values within tolerance 

limits. For the measured profiles used in this comparison, we provide six significant 

digits that include false precision and guard digits. For measured profiles, the software 

effect is considered as insignificant when the relative difference of results obtains from 

the test software and a reference result is less than 0.5 %. Therefore, we set the “pass 

margin” as 0.5 % in this comparison. Most of results obtained from three type F2 

softgauges have passed (see Table 7.3 and Table 7.4). 

Table	7.7	Percentage	coefficients	of	variation	from	place	to	place	on	a	manufactured	
surface	(Thomas	and	Charlton	1981)	

 Milled Ground 

Ra /% 17 ~ 65 7~80 

Rq /% 15 ~ 61 9 ~ 56 

Rsk* 0.35 ~ 0.75 0.22 ~ 0.73 

Note: * which is an absolute value) 

7.2.6 Conclusions	

To address the questions arisen at beginning of this section, conclusions of the 

comparison are listed as follows: 

1) Is it safe to ignore calibration software? 

For commercial packages, the results indicate that software is a primary contributor to 

variability in the results of surface profile measurement. One commercial software 

package delivered significantly different results. The variation of the results obtained 

from these software packages is even greater than the variation caused by the surface 

inhomogeneity, variation of measurement environment and different data collection 

methods. Therefore, it is not safe to ignore the calibration of software embedded within 

a surface measuring instrument 

2) Do those type F2 standards qualify to be used as calibration tools? 
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In general the results for R-parameters obtained from the three type F2 softgauges are 

in good agreement. The exceptions are the RSm and Rc parameters. The three type F2 

softgauges performed better than the three commercial packages by giving high 

precision results and their specifications adhere closely to ISO standards. Some 

particular conclusions are as follows: 

 The current specifications of parameters Ra, Rq, Rsk, Rp, Rt and Rz are clearly 

defined and stable. The three type F2 software standards are qualified to 

provide accredited results for those parameters of commercial packages.  

 The specifications of parameters RSm and Rc are ambiguous and unstable. The 

variation of RSm is significant. The revised specification of RSm in NPL’s 

interpretation is mathematically stable in this test.  

 The specifications of P-parameters are unambiguous in standard documents. 

However, there are different understandings of the meaning of P-parameters, 

which leads to different interpretations.  

 The effect of rounding error is insignificant in the test. The major contributor to 

the variation is the specification variation. 

 In addition, there are significant variations on the results of W-parameter as 

well34. 

3) How does one make a judgement when there is a discrepancy between an industrial 

software package and a type F2 standard, or even between two type F2 standards? 

This is depends on the requirements. Examples are given in section 7.2.5 to illustrate 

how to make a judgement.  

                                                 
34 We do not present the results of W-parameters in this report because they are seldom used  

and have same “nature” as R-parameters and P-parameters. Moreover, the specifications of W- 

parameters defined within ISO standards do not accepted by industry. 
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7.3 Calibration	of	commercial	software	packages	

This comparison result (Li, Leach et al. 2009) was noticed by the instrument 

manufacturers. We received a respond from the company B. This company claimed 

that the latest version, refers to as [CBv2], has fixed all reported issues. 

This section presents the calibration results of four commercial packages, all latest 

version of [CA], [CBv2], [CC], and one more of commercial software package [CD]. 

Same type F1 softgauges were used in this calibration. Note that the reference results 

were produced by NPL’s type F2 softgauge. Same calibration procedure and 

measurement condition were used (see the previous section). Only a brief report for 

each software package is given as follows. 

[CA]	

Figure 7.8 shows that the difference is relative small in parameter Ra, Rq, Rz, Rt, while 

significant in parameter Rsk, Rku, Rp, Rv and RSm.(The significant disagreement on 

parameter Rp and Rv is due to [CA] follows American Standard ASME B46). 

In the case of Cos.smd, [CA] delivers three correct significant digits (see Figure 7.9). 

This software can be use to reproduce most of the measurement tasks listed in Table 

7.5.  

It delivers stable results on most of the parameters (except RSm) (see Table 7.8). 

 

Figure	7.8	Calibration	results	of	[CA]	
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Figure	7.9	The	number	of	the	correct	significant	digits	

Table	7.8	Percentage	of	relative	difference	between	results	obtained	from	the	same	
software	on	the	same	profile	with	reversed	order	of	data	points.		

  Ra Rq Rsk Rku Rp Rv Rz Rt Rc RSm Rdq 

CA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 * 1.1 0.0 

CB (v1) 2.1 2.4 39.4 2.4 10.9 3.4 7.1 0.0 1.4 4.3 0.5 

CB (v2) 2.0 2.9 108.1 3.0 15.8 5.2 4.2 0.0 1.1 1.2 1.6 

CC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.6 0.0 

CD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 * 0.9 0.0 

(Note: * signifies that the result is not available). 

[CB(v1)]	and	[CB(v2)]	

Figure 7.10 and Figure 7.11 show that [CB(v1)] and [CB(v2)] produce significant 

differences on all parameters. 

In the case of Cos.smd, [CB(v2)] delivers two correct significant digits (see Figure 7.9). 

[CB(v2)] can be use to reproduce most of the measurement tasks listed in Table 7.5. 

Both [CB(v1)] and [CB(v2)] deliver significant unstable results (up to 108% difference) 

on nearly all R- parameters (see Table 7.8). 

Ra Rq

[CA] 3.2 2.9

[CB (v1)] 1.6 1.6
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Figure	7.10	Calibration	results	of	[CB(v1)]	

 

Figure	7.11	Calibration	results	of	[CB(v2)]	
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Figure 7.12 shows that [CC] produces significant differences on all parameters. This 
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In the case of Cos.smd, [CC] delivers more than 3 correct significant digits (see Figure 

7.9). [CC] can be use to reproduce most of the measurement tasks listed in Table 7.5.  

It delivers stable results on most of the parameters (except RSm and Rc) (see Table 7.8). 
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Figure	7.12	Calibration	results	of	[CC]	

[CD]	

Figure 7.13 shows that the difference is relative small in parameter Ra, Rq, Rp, Rv,Rz, 

Rt, while significant in parameter Rsk, Rku, and RSm. 

It delivers stable results on most of the parameters (except RSm) (see Table 7.8). 

 

Figure	7.13	Calibration	results	of	[CD]	
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7.4 Estimating	the	measurement	uncertainty	

In order to understand the uncertainty of surface profile measurements, this section 

undertakes two case studies. These case studies show uncertainty estimation methods 

for roughness measurement in the workshop environment. These case studies 

implemented two methods, the ANOVA method and a computer simulation method. 

7.4.1 ANOVA	method	

ISO 12179 (2000) introduces the ANOVA method into the field of surface metrology 

to analysis the variations in surface measurement. In this section, ANOVA method is 

implemented to estimate the Type A uncertainties. And type F2 softgauge is used to 

assess a component of the Type B uncertainties. The combination of different type 

uncertainties follows the GUM’s method. 

7.4.1.1 Case	study	1:	A	type	D1	hardgauge	

As discussed in chapter 2, the type D hardgauges are the only hardgauges for 

calibrating the whole measurement procedure. This standard is characterised by the 

parameters Ra and Rz. The minimum number of traces required is 12, which are evenly 

distributed across the measuring window. The measurement of this sample, a type D1 

hardgauge 1271, details in this author’s publication (Li, Blunt et al. 2009) . 

Evaluate	the	random	effect	

The hardgauge 1271 was evaluated five times in twelve positions according to the 

measuring plan given in Figure 2.8. The results of Ra values on this sample are given 

in Table 7.9. 
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Table	7.9	Ra	values	on	type	D1	measurement	standard	1271	

Ra 

/nm 

Evaluation (j)  

1 2 3 4 5 Mean 

P
os

it
io

n 
(i

) 

1 667.0 667.0 667.2 667.2 667.0 667.08 

2 672.7 672.6 672.2 672.4 672.7 672.52 

3 671.9 671.9 671.6 671.7 671.8 671.78 

4 672.3 671.9 672.0 672.0 671.9 672.02 

5 665.4 665.3 665.5 665.5 665.5 665.44 

6 669.7 669.7 669.6 669.8 669.6 669.68 

7 662.9 662.6 662.5 662.7 662.5 662.64 

8 669.3 669.3 669.3 669.4 669.2 669.30 

9 663.0 663.0 663.2 662.8 663.1 663.02 

10 670.7 670.6 670.5 670.6 670.5 670.58 

11 658.1 658.4 658.2 658.4 658.1 658.24 

12 668.2 668.1 668.3 668.4 668.0 668.20 

Mean 667.60 667.53 667.51 667.58 667.49 667.54 

The random effects contributing to the observed variability of the measurements are 

listed in Table 7.10. According to ISO 12179 (2000), each of these random effects is 

assumed to have associated with it an unknown variance, denoted by 2
R , 2

E  and 2
M . 

Table	7.10	The	random	effects	(ISO	12179	2000)	

Symbol Variation 

2
R

 
Variation between each individual roughness measuring 

position  

2
E

 Variation of between evaluations (at same position) 

2
M  Repeatability of the instrument 

Associated with these means are the sum-of-square S1, S2 ,S3 and S4, and the results are 

summarised in Table 7.11.  
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Table	7.11	Summary	of	ANOVA	

Source of 

variability 

Sum of squares 

lS  

Degree 

of 

freedom 

lv  

Mean square 

1
l

l

S
M

v
  

Variance 

estimated 

by mean 

square 

Mean 

2

1 60S X  

      = 26736712.6 
1 1M

=26736712.6 
- 

Across 

measurement 

standard 

12
2

2
1

5 ( )i
i

S X X


 
 

       = 1078.773833 

11 2M
=98.0703484 

2 25M R   

Between 

evaluations 

5
2

3
1

12 ( )j
j

S X X


 
 

       = 0.098333333 

4 3M
=0.02458333 

2 212M E 
 

Instrument 

repeatability 

12 5
2

4
1 1

( )
 

    ij i j
i j

S X X X X  

= 0.813666667 

44 4M
=0.01849242 

2
M  

Denoting the estimates of by 2
R , 2

E  and 2
M   by 2

Rs , 2
Es  and 2

Ms  respectively, it 

follows from the last columns of the table that: 

2 2 4( )

5R

M M
s




	 	 	 	 	 	 	

Thus, sR = 4.428 nm; 

2 3 4( )

12E

M M
s




	 	 	 	 	 	 	

Thus, sE = 0.023 nm; 

2
4Ms M 	 	 	 	 	 	 	 	

Thus, sM = 0.136 nm. 
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Calibration	Uncertainty	

The calibration certificate gives a nominal value of Ra = 669 nm with “an uncertainly 

of ±4 nm with k = 2,17 ”. Assuming that the results have a Gaussian distribution this 

gives a standard uncertainty estimate of: 

4
1,9calu nm

k
 

	 	 	 	 	 	 	

The calibration certification states that this uncertainty already includes the variation of 

the parameter values across the measurement standard so this will not have to be 

included a second time in the combined standard uncertainty.  

Software	Uncertainty	

One of the measurement data files for a type D1 1271 hardgauges were evaluated by 

NPL’s type F2 softgauge. The difference of Ra is 4nm. The uncertainty is assumed to 

be uniformly distributed. Dividing by the half-width of the uncertainty by 3 gives the 

standard uncertainty of: 

 
2

1, 2
3

su nm   

Combined	Uncertainty	

The calibration cortication states that this uncertainty already includes the variation of 

the parameter values across the measurement standard so this will not have to be 

included a second time in the combined standard uncertainty.  The combined standard 

uncertainty is thus: 

2 2 2 2 2,2c E M s calu s s u u nm    
 

And the expended uncertainty, U, is 4,4 nm with k = 2. 

7.4.1.2 Case	study	2:	A	honed	surface	

Automotive cylinder bores are an important class of technical components. The 

specification and control of their surface texture is an important manufacturing 

requirement. Compared with other areas of dimensional metrology, surface roughness 
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is relatively immature in terms of the provision of the statements of uncertainty (Leach 

2009). In the workshop, it is usually the case that no statement is provided at all. The 

objective of this case study is to illustrate how to produce a traceable surface roughness 

result in the workshop environment with the aid of softgauges. 

Evaluate	the	random	effect	

The measurement of this sample, the honed surface of an automotive cylinder bore, 

details in (Li, Blunt et al. 2009). This honed surface was evaluated five times at six 

different positions across the surface. “16%- rule” sets of the default tolerance zone for 

surface. In this case, we assume it specified the USL only. Thus, we simply remove 

results obtained from position 6 (the biggest) to reduce the effect from the outlier of the 

tolerance zone (see Table 7.12). 

Table	7.12	Results	of	parameter	Ra	(nm)	used	in	assessment	

Ra 

/nm 

Evaluation  

1 2 3 4 5 Mean 

P
os

it
io

n 

1 650.2 641.1 645.7 651.3 664.0 650.46 

2 643.1 657.9 658.5 662.8 701.9 664.84 

3 676.1 691.6 697.1 666.7 679.9 682.28 

4 587.6 614.9 637.7 616.4 610.3 613.38 

5 640.2 661.1 645.7 641.3 636.0 644.86 

Mean 639.44 653.32 656.94 647.70 658.42 651.164 

Using the ANONA method detailed in the previous section, the random effects are 

evaluated.  

Rs  = 24,8nm; 

Es  =4,4nm; 

Ms  = 14,3nm. 
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Calibration	Uncertainty	

The instrument has been calibrated. From the specification of this instrument, it stated 

that the surface peak parameter uncertainty is: 2% + 4nm at 95% confidence. 

Assuming that the results have a Gaussian distribution this gives a standard uncertainty 

estimate of:  

( 2%) 4
9I

Ra nm
u nm

k

 
 

	 	 	 	 	 	

Software	Uncertainty	

One of the measurement data files was evaluated by NPL’s type F2 softgauge. The 

difference of Ra is 14 nm. The uncertainty is assumed to be uniformly distributed. 

Dividing by the half-width of the uncertainty by 3 gives the standard uncertainty of: 

7
4

3
su nm 

      
 

Combined	Uncertainty	

According to ISO 4288:1996, the uncertainty of measurement shall be estimated 

without taking into account the inhomogeneity in the surface which is already 

accounted for in the 16% allowance. Thus, the combined standard uncertainty is 

calculated without the variation between positions. 

2 2 2 2 18c E M s Iu s s u u nm    
	 	 	 	 	

And the expanded uncertainty, U, is 36 nm with k=2.  

7.4.1.3 Discussions	

These two case studies show that: 

R M ES S S   

Key:  SR – Variation between position 

SM – Variation between evaluations (at same position) 

SE – Repeatability of the instrument 
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Thus, surface inhomogeneity is the major contributor to the variation of the results. It 

influences repeatability of the instrument on this surface as well (SM is several times 

greater than SE). Clearly, the instruments’ variations are far less than that of the surface. 

In addition, attention should be paid to the software uncertainty. It is greater than 

repeatability of the instrument. 

7.4.2 Computer	simulation	

Computer simulations are the next frontier for uncertainty assessment. A surface 

metrology algorithm testing system is provided NIST in the USA (Bui and Vorburger 

2007). This software is a free access at the web site: 

http://syseng.nist.gov/VSC/jsp/Filter.jsp. This software can estimate the propagated 

uncertainty arisen from data errors by using computer simulations. Figure 7.14 shows a 

diagram of NIST’s model. 

 

Figure	7.14	The	NIST’s	model	for	calculating	the	uncertainty	of	surface	roughness	(Bui	
et.al	2007)	

One of the measurement data files from a Type D1 1271 measured was uploaded to the 

NIST system. Five evaluations were undertaken and results are listed in Table 7.13. 

This table also provides the results obtained from [NIST], [CC] (the software package 

used in this measurement instrument) and NPL’s F2 softgauges directly (i.e. without 

adding noise on profile).  
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Table	7.13	Results	of	one	profile	obtained	from	Type	D1	hardgauge	1271	

 [NIST] [CC] [NPL] 

 Evaluation 
1 

(default) 

Evaluation 
2 

Evaluation 
3 

Evaluation 
4 

Evaluation 
5 

   

Z-Noise 
Uz(j) 

1% of Pq1 0,5% of 
Pq 

0,5% of 
Pq 

1% of Pq 2% of Pq 

X-Noise 
Ux(j) 

2,0% of 
spacing 

1,0% of 
spacing 

2,0% of 
spacing 

1,0% of 
spacing 

2,0% of 
spacing 

Parameter Mean ± U Mean ± U Mean ± U Mean ± U Mean ± U Nominal   

Ra /nm 675,8 ± 
6,7 

677,1 ± 
4,3 

675,9 ± 
6,8 

676,9  ± 
4,7 

676,1  ± 
6,4 

677,9 672,5 676,4 

Rq /nm 798 ± 24 798 ± 24 799 ± 24 798  ± 24 799  ± 24 822 829 820 

Rt /nm 4462 ± 65 4446 ± 33 4452 ± 67 4460  ± 43 4481 ± 78 4447 4393 4443 

 Rz /nm 3448 ± 84 3432 ± 90 3443 ± 76 3437  ± 93 3470 ± 89 3447 3446 3510 

RSm /µm 237 ± 22 244 ± 15 245 ± 15 238  ± 21 - 221 266 269 

Figure 7.15 shows the Ra results with the uncertainties produced by the simulation and 

ANOVA. It shows that evaluation 2, obtained from simulation, delivers uncertainty 

value close to the value produced by ANOVA method (see Section 7.4.1.1). However, 

the disagreement of the measured values of Ra obtained from two methods is 

significant. Some of reasons are listed below. 

1) The inconsistence of the measurand: Only one profile is used to represent the 

whole surface in simulation, while 60 profiles are used in ANOVA method. So 

the disagreement could be arisen from to the inconsistence on the surface. 

2) The software uncertainty: The absolute difference of the Ra values obtained 

from [CC] and [NIST] is 5.4 nm. 

3) The difference between the nominal and mean value: The absolute difference of 

the Ra values obtained from [NIST]-Evaluation 1 and [NIST]-Nominal is 2.1 

nm. 
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Figure	7.15	Comparison	of	parameter	Ra	values	with	uncertainties	

Table 7.13 shows that parameter Rq, obtained from different the level of noise, has 

close measured value (only 1nm difference). Compared with the random effect, 

software uncertainties are relatively significant. 

In addition, associated uncertainties of parameter Rq, obtained from different the level 

of noise, have same value (see table 7.13). This is due to parameter Rq has more 

weight on significant features and less weight on insignificant features. Parameter Ra 

gives same weight for both significant and insignificant feature, thus, its uncertainty 

values are increased (from 4.3 to 6.7, shown in table 7.13) when noised level is 

enlarged.  

7.5 Conclusions	

This chapter has attempted to bring together the main practical issues involved in the 

use the softgauges for surface texture.  

A calibration procedure for surface metrological software has been developed with the 

aid of softgauges. This has been carried out by assessing filtration operations, field 

parameters, feature parameters and whole software packages. 

This procedure and some developed type F1 softgauges has been used to verify three 

type F2 softgauges. The inter-comparison shows that three type F2 softgauges are more 

660
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accurate and stable than selected commercial software packages. These F2 softgauges 

can be used as references to calibrate commercial software packages.  

This chapter also presented the calibration results of four commercial software 

packages. This work shows that it is not safe to ignore the software calibration as some 

software packages deliver very unreliable results. 

The uncertainties of surface roughness measurement have been presented via two case 

studies. This work has assessed the random effect by ANOVA method and systematic 

effect with the aid of softgauges. This study provided a practical method to evaluate 

the uncertainty for roughness measurement in the workshop environment. The random 

effect is also estimated by computer simulation. This work showed that the computer 

simulation can be used to study the data uncertainty, but attention should be paid to its 

software uncertainty. 
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8 Conclusions	and	future	work	

This chapter summarises the outcomes of this project and highlights the contribution to 

knowledge in the relevant research domains. Further work on the softgauges, 

especially for areal surface texture characterisation, is also discussed. 

8.1 Summary	of	contributions	

The first main contribution of this project is the development of a new traceability 

route of surface texture measurements. This route includes two important components, 

hardgauges to check the data collection process, and softgauges to calibrate the data 

processing process. This route has some distinctive advantages over the conventional 

one, and they are listed below. 

 It provides a sound solution for maintaining metrological traceability of surface 

texture measurements. This new route enables to check metrological 

traceability of all parameters of surface measurement, while the current route 

only can check the traceability of two parameters within limited conditions.  

 It significantly reduces the cost of using national measurement standards.  

The second contribution of this project is the development of a methodology to 

estimate software uncertainty, which is based on the latest uncertainty concepts and 

philosophy of metrology. Uncertainty is used as an economical tool to balance the 

requirements in each stage of the use and design of surface measuring instruments. In 
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addition, a guide is provided to evaluate the measurement uncertainty in workshop 

level by using of ANOVA and softgauges. 

The third contribution of this project is the development of type F1 softgauges for 

surface profile parameters as the national standards in the UK. They have been used to 

verify type F2 softgauges developed in the UK, Germany and the United States.  

8.2 Future	work	

Detailed work in the development of software measurement standards in this thesis 

revealed more interesting issues, some of which need to be investigated further: 

1) In this thesis, a framework for softgauges was focused on the surface profile 

measurements. With areal surface texture measurements becoming an industry 

norm, a further work is needed to extend the knowledge gained here to cover 

them.  

2) The information model developed in Chapter 4 requires more related 

components, such as the XSLT components for transforming the SMD file, 

other XML formats into SMTL and vice versa. A continuous update to stay in 

current is also needed. 

3) This project has investigated the software uncertainty in modelling and coding 

process in the case of ISO 4287 parameters. The study of the uncertainty of 

other parameters (e.g. Motif parameters, areal surface texture parameters) is 

required. 

4) Chapter 6 has developed the type F1 softgauges and Chapter 7 has presented 

the use of softgauges. The extending is also needed to cover areal surface 

texture measurements. Using computer simulation to evaluation of 

measurement uncertainty has been developed significantly, and BIPM35 will 

fully release new version of the GUM in 2012. A study is required to evaluate 

the measurement uncertainty more rigorously. 

                                                 
35 http://www.bipm.org/en/publications/guides/gum.html 
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Appendix 1	

Examples	of	the	messages	in	STML	

This section lists the example file of standardised message in the Surface Texture 

Markup Language (STML), developed in Chapter 4.  

A.1.1	IndicationSample.XML	

<?xml version="1.0" encoding="UTF-8"?> 
<Indication xmlns="http://www.surfacetexture.info/schemas/indication" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://www.surfacetexture.info/schemas/indication.xsd"> 
 <SurfaceTextureRequirement> 
  <Parameter> 
   <SpecificationLimitType>U</SpecificationLimitType> 
   <FilterType>Gassian</FilterType> 
   <TransmissionBand> 
    <LowLimit Unit="mm">0.0025</LowLimit> 
    <UpLimit Unit="mm">0.8</UpLimit> 
   </TransmissionBand> 
   <ParameterName>Ra</ParameterName> 
   <EvaluationLength Unit="mm">4</EvaluationLength> 
  
 <SpecificationLimitInterpretation>16%</SpecificationLimitInterpretation> 
   <ParameterValue Unit="um">0.9</ParameterValue> 
  </Parameter> 
  <Parameter> 
   <SpecificationLimitType>L</SpecificationLimitType> 
   <FilterType>Gassian</FilterType> 
   <TransmissionBand> 
    <LowLimit Unit="mm">0.0025</LowLimit> 
    <UpLimit Unit="mm">0.8</UpLimit> 
   </TransmissionBand> 
   <ParameterName>Ra</ParameterName> 
   <EvaluationLength Unit="mm">4</EvaluationLength> 
  
 <SpecificationLimitInterpretation>16%</SpecificationLimitInterpretation> 
   <ParameterValue Unit="um">0.4</ParameterValue> 
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  </Parameter> 
  <Parameter> 
   <SpecificationLimitType>U</SpecificationLimitType> 
   <FilterType>Gassian</FilterType> 
   <TransmissionBand> 
    <LowLimit Unit="mm">0.0025</LowLimit> 
    <UpLimit Unit="mm">0.8</UpLimit> 
   </TransmissionBand> 
   <ParameterName>Rz</ParameterName> 
   <EvaluationLength Unit="mm">4</EvaluationLength> 
  
 <SpecificationLimitInterpretation>16%</SpecificationLimitInterpretation> 
   <ParameterValue Unit="um">5.0</ParameterValue> 
  </Parameter> 
  <ForAllOutlineSurface>No</ForAllOutlineSurface> 
 </SurfaceTextureRequirement> 
 <MaterialRemoval>MRR</MaterialRemoval> 
 <SurfaceLayAndOrientation>Perpendicular</SurfaceLayAndOrientation> 
 <ManufacturingMethod>turned</ManufacturingMethod> 

</Indication> 

A.1.2	MeasurandLRa0.4.xml	

<?xml version="1.0" encoding="UTF-8"?> 
<Measurand xmlns="http://www.surfacetext.info/Schemas/SpecificationOperator" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://www.surfacetext.info/Schemas/SpecificationOperator 
L:\Projects\STML\FullSpecificationOperator.xsd"> 
 <Partition/> 
 <Extraction> 
  <NumCutoff>5</NumCutoff> 
  <SamplingLength Unit="mm">0.8</SamplingLength> 
  <EvaluationLength Unit="mm">4</EvaluationLength> 
  <Instrument> 
   <Type>Stylus</Type> 
   <MaxSamplingSpacing Unit="um">0.5</MaxSamplingSpacing> 
   <MaxTipRadius Unit="mm">2</MaxTipRadius> 
  </Instrument> 
 </Extraction> 
 <Filtration> 
  <Filter> 
   <FilterName>Gassuian</FilterName> 
   <UpLimt Unit="mm">0.8</UpLimt> 
   <LowLimit Unit="um">2.5</LowLimit> 
  </Filter> 
 </Filtration> 
 <Evaluation> 
  <ParameterName>Ra</ParameterName> 
  <ParameterValue Unit="um">0.4</ParameterValue> 
  <Tolerance> 
   <Limits>L</Limits> 
   <ComparisonRule>16%</ComparisonRule> 
  </Tolerance> 
 </Evaluation> 

</Measurand> 
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A.1.3	MeasurevalueRa0.5.xml	

<?xml version="1.0" encoding="UTF-8"?> 
<MeasuredValue xmlns="http://www.surfacetext.info/Schemas/SpecificationOperator" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://www.surfacetext.info/Schemas/SpecificationOperator 
L:\Projects\STML\AcutualVerificationOperator.xsd"> 
 <Partition/> 
 <Extraction> 
  <NumCutoff>5</NumCutoff> 
  <SamplingLength Unit="mm">0.8</SamplingLength> 
  <EvaluationLength Unit="mm">4</EvaluationLength> 
  <MeasurementLength Unit="mm">4.8</MeasurementLength> 
  <Instrument> 
   <SamplingSpacing Unit="um">0.25</SamplingSpacing> 
   <TipRadius Unit="um">2</TipRadius> 
   <InstrumentType>Stylus</InstrumentType> 
  </Instrument> 
  <MeasurementInfo> 
   <CreatedBy>Tukun Li, Univeristy of Hudderfield</CreatedBy> 
   <MeasurementDate>2010-12-8</MeasurementDate> 
  </MeasurementInfo> 
 </Extraction> 
 <Filtration> 
  <FOperator>Remove residual tilt by Linear least square method</FOperator> 
  <Filter> 
   <FilterName>Gassian</FilterName> 
   <UpLimt Unit="mm">0.8</UpLimt> 
   <LowLimit Unit="um">2.5</LowLimit> 
   <EndEffect>Remove half cutoff at each end of sampling 
length</EndEffect> 
   <SoftwareID>Taylor-Hobson Ultra v4.6</SoftwareID> 
  </Filter> 
 </Filtration> 
 <Evaluation> 
  <ParameterName>Ra</ParameterName> 
  <ParameterValue Unit="um">0.5</ParameterValue> 
  <Tolerance> 
   <Limits>L</Limits> 
   <ComparisonRule>16%</ComparisonRule> 
  </Tolerance> 
 </Evaluation> 
</MeasuredValue> 
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Appendix 2	

Measurement	conditions	for	comparison	of	

type	F2	softgauges	

This section lists the measurement condition used in the comparison of three type F2 

softgauges, which is discussed in Chapter 7. 

Form	Removed	

The form removal operation is set as standard in PTB’s F2 standard, is an option in 

NIST’s F2 standard, and is not used in NPL’s F2 standard. Therefore, in this test, all 

measured reference data sets were levelled by the least-squares straight line method 

on NIST F2 standards before input into all F2 software standards and commercial 

packages. 

Filtering	

At the filtration stage, we used only a Gaussian filter with long-wavelength cut-off λc 

of 0.8 mm calculated by the convolution method. 

Sampling	Length	and	Evaluation	Length	

To minimise the distortion due to the convolution filter, one cut-off at each end of the 

roughness profile is normally removed. All data sets include 7 cut-offs and the 
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evaluation of the R-parameters is based on the middle five cut-offs. P-parameters are 

calculated based on all data points in files and, therefore the evaluation length of P-

parameters is equal to 5,6 mm in these profiles. 

Parameters	

The parameters to be compared here are defined in ISO 4287 (1996). The waviness 

profile is not well defined in current ISO standards due to there is no common 

understanding of the meaning and use of waviness parameters. Thus, the comparison 

of W-parameters calculation is not very meaningful and is not discussed in the report. 

File	format	

It should be noted that some test used different data file format due to some software 

packages do not support SMD data format. In some case, data type is converted and 

precision is reduced.  

The	variation	of	measuring	condition	

The variation of measuring condition is listed in the following table.  

Table	A2.1	Variation	of	measuring	conditions	

 [PTB] [NIST] [NPL] [CA] [CB] [CC] 

Levelling LSQ    LSQ  

Profile filtering λs      2,5 μm 

The number of data points 22400 22400 22401 22400 22400 22400a 

19200b 

The number of removed cut-

offs at each end of the profile 

(End effect of λc profile 

filtering) 

1 1 1 1 1 0,5 

Note:  a. The number of points of P-profile,  
b. The number of points of R-profile 

 


