
University of Huddersfield Repository

Parkinson, Simon, Longstaff, Andrew P., Crampton, Andrew, Allen, Gary, Fletcher, Simon and
Myers, Alan

The use of Cryptographic Principles within Metrology Software

Original Citation

Parkinson, Simon, Longstaff, Andrew P., Crampton, Andrew, Allen, Gary, Fletcher, Simon and
Myers, Alan (2011) The use of Cryptographic Principles within Metrology Software. In: Advanced
Mathematical and Computational Tools in Metrology (AMCTM) 2011, 20-23 June 2011,
Gothenburg, Sweden.

This version is available at https://eprints.hud.ac.uk/id/eprint/10971/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

1

 THE USE OF CRYPTOGRAPHIC PRINCIPLES WITHIN

METROLOGY SOFTWARE

SIMON PARKINSON, ANDREW P. LONGSTAFF, ANDREW CRAMPTON, GARY

ALLEN, SIMON FLETCHER AND ALAN MYERS

Centre for Precision Technologies, University of Huddersfield, Queensgate,

Huddersfield, West Yorkshire, HD1 3DH, UK

Typically the design and production of metrology software is based upon a rigorous

process of establishing the software requirements. Both the metrology and security

requirements will be processed and normally evaluated in isolation, or at best

simultaneously. With the use of cryptographic principles, and the more prominent object-

oriented programming languages, a new security-centric philosophy to metrology

software design and production is presented to provide secure, robust and functional

metrology software.

1. Introduction

To enable a thorough software design, a rigorous process of establishing the

desired requirements must be performed. This methodology is certainly used for

the production of metrology software. When establishing the requirements, both

metrology and security aspects will be considered to allow for design and

production of robust, secure and functional software. This will typically result in

effort being spent to satisfy both metrology and security requirements

separately. An illustration of the current effort is shown in Figure 1A

Figure 1. Showing the design effort of the current and proposed methodology. The effort is

represented by the size of the circle.

In this paper we present a fundamental shift in philosophy to the design and

production of metrology software, which is illustrated in Figure 1B. This new

methodology involves incorporating the fundamental cryptographic principles

 2

within the design and development of metrology software to provide a proven

method of security, and a viable method of complying with the metrology-

related functional requirements, which are explained in Section 2.

2. Requirements

2.1. 2.1 Basic metrology

There is a common set of metrology related functional requirements [1],

with differences regarding the connectivity and distribution of the software. The

following list summarizes the common metrology specific functional

requirements.

 Traceability – All aspects of the measurement should be traceable, and the

software should record all the necessary information where possible to

ensure this. A good example of this can be seen in the Renishaw Ballbar 20

software [2] where the serial number, time of last calibration and the

calibration certificate number of the connected instrumentations are logged.

 Uncertainty – All uncertainties must be correctly estimated and recorded to

ensure that the measured value is meaningful. Great effort has been spent by

many to create supporting software [3] to the Guide to the Expression of

Uncertainty in Measurement (GUM) and overcoming the complexities of

validating GUM conformity [4].

 Repeatability –The software should promote repeatability by recording all

the necessary information to allow for the measurement to be performed in

exactly the same conditions.

2.2. 2.2 Basic security

The security requirements of an internet-enabled metrology system are well

explored [5]. However, the security requirements for software that makes use of

a different networking medium, or operates in a standalone manner, should be

given the same emphasis to ensure that adequate security precautions are always

taken. The following list summarizes the main software security requirements.

 Data security – Security is paramount, especially with commercially

sensitive data which might be transferred publically. This need is well

established throughout the information technology community. However, so

is the complexity associated with performing a data security risk analysis.

 Data integrity – Correctly identifying accidental and malicious data

modification is essential for establishing a high level of data confidence.

 Data authentication – Establishing the authenticity of the data and sender is

critical for maintaining traceability and repeatability.

 3

 User authentication – Stopping unwanted access to the metrology system is

necessary to protect sensitive data and equipment.

3. Security-centric design philosophy

The new philosophy proposed in this paper is a security-centric approach to

the design and production of metrology software. As illustrated in Figure 2, by

carrying out thorough design and implementation of the security requirement,

the functionality requirements can also be satisfied. This strong relationship

between the security and metrology requirements is underpinned by the captured

metrology data. For example, information making the performed measurement

repeatable and traceable, which includes all processing comparisons and

uncertainties, should be recorded within the data. This means that employing

good security procedures will maintain the integrity of the metrology data, thus

preserving its qualities.

Figure 2. Illustration showing the relationship between the security and the metrology requirements

of a software-based metrology system

4. Cryptographic Principles

Previous efforts have incorporated the use of cryptographic functionality in

a bottom up approach from design to implementation [5, 6]. Here we propose a

similar procedure, however, now we are concentrating on satisfying the security

requirements first in the knowledge that by doing so we are also satisfying the

metrology requirements. The asymmetric public-key infrastructure provides a

function set that can satisfy all the security requirements of metrology software.

The following list states the cryptographic functionality that can be implemented

to meet the security requirements.

 Data security – Using the asymmetric infrastructure it is possible to encrypt

information using a recipient’s public-key which can subsequently only be

decrypted with the matching private-key [7]. There are many different

 4

encryption algorithms that have slightly different computational

requirements [8]. However, with the decreasing cost of computations

power, any performance disadvantages are significantly reduced.

 Data integrity – With the use of a one way hash function, a unique hash

value can be produced for a given data set and can be used for integrity

checking at any time. By incorporating, for example, the measurement

timestamp traceability to a particular measurement can be guaranteed.

 Data Authenticity - The same public-key infrastructure allows for

information to be signed by an individual’s private-key, which can

subsequently be verified by anyone with access to the individual’s matching

public-key.

 User Authentication – Digital signatures can be used as an alternative

method of authentication from specifying a username and password. An

example of this would be where a user creates a digital signature using their

private key, which can then be programmatically verified by using the

user’s public key.

5. Implementation

Implementing cryptographic functionality within many programming

languages has been made possible by pre-written and tested programming

libraries within the languages Application Programming Interface (API). The

programming language of Java contains the Java Cryptography Architecture,

and similarly, the Microsoft .NET framework provides the

System.Security.Cryptography namespace.

Figure 3. Illustration of where to insert the cryptographic functionality within a software system

The implementation of cryptographic functionality within well-established

Object-Oriented (OO) languages like Java and those in the .NET framework is

 5

not programmatically difficult and can be implemented with little additional

cost. If programmed using an OO language, the cryptographic functions can be

used globally throughout the software as frequently as required. Figure 3 shows

the many locations where a software engineer might consider implementing

cryptographic techniques within the metrology software.

6. Conclusion

In this paper we have demonstrated the relationship between the security

and metrology software requirements. We have presented the philosophy of a

security-centric approach to the design and implementation of metrology

software. Following this philosophy, and the use of cryptographic functionality

within an object-oriented language, can save on programming effort to achieve

secure, reliable and functional software. However, further work will be

performed to validate the feasibility of the presented philosophy for both small

and large scale software development projects.

7. References

1 BS, Measurement management systems - Requirements for

measurement processes and measuring equipment. 2003, BSI: London,

United Kingdom.

2. Renishaw. System software for QC20-W ballbar. 2011 [cited 2011;

Available from: http://www.renishaw.com/en/system-software-for-

qc20-w-ballbar--11076

3. G. Norbert, S. Heike, R. Dieter, Software validation in metrology: A

case study for a GUM-supporting software. Measurement, 2006. 39(9):

p. 849-855.

4. B.Wichmann, G. Parkin, R. Barker, Software Support for Metrology

Best Practice Guide No. 1, in Validation of Software in Measurement

Systems. 2007, National Physical Laboratory.

5. R. M. Barker., Software Support for Metrology Best Practice Guide

No. 19, in Internet-enabled Metrology Systems. 2006, National

Physical Laboratory

6. Å. Sand, H. Slinde, T. A. Fjeldly, A Secure Approach to Distributed

Internet-Enabled Metrology. IEEE Transactions on Instrumentation and

Measurement, 2007. 56(5): p. 1979 - 1985

7. IEEE, Standard Specifications for Public-Key Cryptography. 2000,

IEEE.

8. D. S. A. Elminaam, H. M. A. Kader, M. M. Hadhoud, Evaluating The

Performance of Symmetric Encryption Algorithms. International

Journal of Network Security, 2010. 10(3): p. 213-219.

