Computing and Library Services - delivering an inspiring information environment

Nano-structure of the laminin gamma-1 short arm reveals an extended and curved multidomain assembly

Patel, T. R., Morris, Gordon, Zwolanek, D., Keene, D. R., Li, J., Harding, S. E., Koch, M. and Stetefeld, J. (2010) Nano-structure of the laminin gamma-1 short arm reveals an extended and curved multidomain assembly. Matrix Biology, 29 (7). pp. 565-572. ISSN 0945-053X

Metadata only available from this repository.


Laminins are multidomain glycoproteins that play important roles in development and maintenance of the extracellular matrix via their numerous interactions with other proteins. Several receptors for the laminin short arms revealed their importance in network formation and intercellular signaling. However, both the detailed structure of the laminin γ-1 short arm and its organization within the complexes is poorly understood due to the complexity of the molecule and the lack of a high-resolution structure. The presented data provide the first subatomic resolution structure for the laminin γ-1 short arm in solution. This was achieved using an integrated approach that combined a number of complementary biophysical techniques such as small angle X-ray scattering (SAXS), analytical ultracentrifugation, dynamic light scattering and electron microscopy. As a result of this study, we have obtained a significantly improved model for the laminin γ-1 short arm that represents a major step forward in molecular understanding of laminin-mediated complex formations. © 2010.

Item Type: Article
Uncontrolled Keywords: Ab initio modeling Analytical ultracentrifugation Dynamic light scattering Laminin Rotary shadowing Small angle X-ray scattering laminin gamma1 nanomaterial article electron microscopy light scattering molecular dynamics priority journal protein structure signal transduction ultracentrifugation X ray crystallography
Subjects: Q Science > QD Chemistry
Schools: School of Applied Sciences
Related URLs:
References: Language of Original Document: English Correspondence Address: Stetefeld, J.; Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada; email: References: Ang, S., Kogulanathan, J., Morris, G., Kök, M., Shewry, P., Tatham, A., Adams, G., Harding, S., Structure and heterogeneity of gliadin: a hydrodynamic evaluation (2010) Eur. Biophys. J., 39, pp. 255-261; Aumailley, M., Bruckner-Tuderman, L., Carter, W.G., Deutzmann, R., Edgar, D., Ekblom, P., Engel, Yurchenco, P.D., A simplified laminin nomenclature (2005) Matrix Biol., 24, pp. 326-332; Brookes, E., Demeler, B., Rosano, C., Rocco, M., The implementation of SOMO (SOlution MOdeller) in the UltraScan analytical ultracentrifugation data analysis suite: enhanced capabilities allow the reliable hydrodynamic modeling of virtually any kind of biomacromolecule (2010) Eur. Biophys. J., 39, pp. 423-435; Bruce, A., Dennis, B., Julian, L., Martin, R., Keith, R., Watson, J.D., (1994) Molecular Biology of the Cell, , Garland Publishing, a member of the Taylor & Francis Group, New York; Burchard, W., Static and dynamic light scattering approaches to structure determination of biopolymers (1992) Laser Light Scattering in Biochemistry, pp. 3-22. , Royal Society of Chemistry, Cambdrige, S.E. Harding, D.B. Sattelle, V.A. Bloomfield (Eds.); Cardinali, B., Profumo, A., Aprile, A., Byron, O., Morris, G., Harding, S.E., Stafford, W.F., Rocco, M., Hydrodynamic and mass spectrometry analysis of nearly-intact human fibrinogen, chicken fibrinogen, and of a substantially monodisperse human fibrinogen fragment X (2010) Arch. Biochem. Biophys., 493, pp. 157-168; Cheng, Y.-S., Champliaud, M.-F., Burgeson, R.E., Marinkovich, M.P., Yurchenco, P.D., Self-assembly of laminin isoforms (1997) J. Biol. Chem., 272, pp. 31525-31532; Colognato, H., Yurchenco, P.D., Form and function: the laminin family of heterotrimers (2000) Dev. Dyn., 218, pp. 213-234; Cooper, A.R., Kurkinen, M., Taylor, A., Hogan, B.L.M., Studies on the biosynthesis of laminin by murine parietal endoderm cells (1981) Eur. J. Biochem., 119, pp. 189-197; Dam, J., Schuck, P., Calculating sedimentation coefficient distributions by direct modeling of sedimentation velocity concentration profiles in methods in enzymology (2004) Numerical Computer Methods, Part E, 384, pp. 185-212. , Academic Press, M.L. Johnson, L. Brand (Eds.); Demeler, B., UltraScan a comprehensive data analysis software package for analytical ultracentrifugation experiments (2005) Modern Analytical Ultracentrifugation: Techniques and Methods, pp. 210-229. , Royal Society of Chemistry, London, D.J. Scott, S.E. Harding, A.J. Rowe (Eds.); Engel, J., Odermatt, E., Engel, A., Shapes, domain organizations and felxibility of laminin and fibronectin, two mulfifunctional proteins of the extracellular matrix (1981) J. Mol. Biol., 150, pp. 97-120; Franke, D., Svergun, D.I., DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering (2009) J. Appl. Crystallogr., 42, pp. 342-346; Garcìa de la Torre, J., Huertas, M.L., Carrasco, B., Calculation of hydrodynamic properties of globular proteins from their atomic-level structure (2000) Biophys. J., 78, pp. 719-730; Gerl, M., Mann, K., Aumailley, M., Timpl, R., Localization of a major nidogen-binding site to domain III of laminin B2 chain (1991) Eur. J. Biochem., 202, pp. 167-174; Giebeler, R., The Optima XL-A: a new analytical ultracentrifuge with a novel precision absorption optical system (1992) Analytical Ultracentrifugation in Biochemistry and Polymer Science, pp. 16-25. , Royal Society of Chemistry, Cambridge, United Kingdom, S.E. Harding, A.J. Rowe, J.C. Horton (Eds.); Gralén, N., (1944) Sedimentation and Diffusion Measurements on Cellulose and Cellulose Derivatives, , University of Uppsala, Uppsala, Sweden; Guinier, A., Fourner, G., (1955) Small Angle Scattering of X-rays, , Wiley, New York; Harding, S.E., Photon correlation spectroscopy (1999) Encyclopedia of Molecular Biology, pp. 1847-1849. , John Wiley and Sons, New York, T.E. Creighton (Ed.); Harding, S.E., Colfen, H., Aziz, Z., The ELLIPS suit of whole-body protein conformation algorithms for Microsoft Windows (2005) Analytical Ultracentrifugation Techniques and Methods, pp. 468-483. , Royal Society of Chemistry, Cambridge, United Kingdom, D.J. Scott, S.E. Harding, A.J. Rowe (Eds.); Kalluri, R., Basement membranes: structure, assembly and role in tumour angiogenesis (2003) Nat. Rev. Cancer, 3, pp. 422-433; Konarev, P.V., Volkov, V.V., Sokolova, A.V., Koch, M.H.J., Svergun, D.I., PRIMUS: a Windows PC-based system for small-angle scattering data analysis (2003) J. Appl. Crystallogr., 36, pp. 1277-1282; Kozin, M.B., Svergun, D., Automated matching of high- and low-resolution structural models (2001) J. Appl. Crystallogr., 34, pp. 33-41; Kumaran, D., Bonanno, J., Romero, R., Burley, S.K., Swaminathan, S., to be published. Crystal structure of a glycosyl hydrolases family 2 protein from Bacteroides thetaiotaomicronKurkinen, M., Barlow, D.P., Jenkins, J.R., Hogan, B.L., In vitro synthesis of laminin and entactin polypeptides (1983) J. Biol. Chem., 258, pp. 6543-6548; Laue, T.M., Shah, B.D., Ridgeway, T.M., Pelletier, S.L., Computer-aided interpretation of analytical sedimentation data for proteins (1992) Analytical Ultracentrifugation in Biochemistry and Polymer Science, pp. 90-125. , Royal Society of Chemistry, Cambridge, United Kingdom, S.E. Harding, A.J. Rowe, J.C. Horton (Eds.); Mercurio, A.M., Rabinovitz, I., Towards a mechanistic understanding of tumor invasion-lessons from the Œ±6Œ≤4 integrin (2001) Semin. Cancer Biol., 11, pp. 129-141; Miner, J.H., Yurchenco, P.D., Laminin functions in tissue morphogenesis (2004) Annu. Rev. Cell. Dev. Biol., 20, pp. 255-284; Odenthal, U., Haehn, S., Tunggal, P., Merkl, B., Schomburg, D., Frie, C., Paulsson, M., Smyth, N., Molecular analysis of laminin N-terminal domains mediating self-interactions (2004) J. Biol. Chem., 279, pp. 44504-44512; Petoukhov, M.V., Svergun, D.I., Global rigid body modeling of macromolecular complexes against small-angle scattering data (2005) Biophys. J., 89, pp. 1237-1250; Pusey, P.N., (1974) Photon Correlation and Light Beating Spectroscopy, pp. 387-428. , Plenum Press, New York, H.Z. Cummings, E.R. Pike (Eds.); Ralston, G., (1993) Introduction to analytical ultracentrifugation, , Beckman Instruments, Inc., Fullerton; Rehmann, H., Das, J., Knipscheer, P., Wittinghofer, A., Bos, J.L., Structure of the cyclic-AMP-responsive exchange factor Epac2 in its auto-inhibited state (2006) Nature, 439, pp. 625-628; Rousselle, P., Keene, D.R., Ruggiero, F., Champliaud, M.-F., Rest, M., Burgeson, R.E., Laminin 5 binds the NC-1 domain of type VII collagen (1997) J. Cell Biol., 138, pp. 719-728; Rowe, A.J., The concentration dependence of transport processes: a general description applicable to the sedimentation, translational diffusion and viscosity coefficients of macromolecular solutes (1977) Biopolymers, 16, pp. 2595-2611; Schuck, P., Sedimentation analysis of noninteracting and self-associating solutes using numerical solutions to the Lamm equation (1998) Biophys. J., 75, pp. 1503-1512; Stetefeld, J., Mayer, U., Timpl, R., Huber, R., Crystal structure of three consecutive laminin-type epidermal growth factor-like (LE) modules of laminin [gamma]1 chain harboring the nidogen binding site (1996) J. Mol. Biol., 257, pp. 644-657; Stetefeld, J., Mayer, U., Timpl, R., Huber, R., Crystal structure of three consecutive laminin-type epidermal growth factor-like (LE) modules of laminin g1 chain harboring the nidogen binding site (1996) J. Mol. Biol., 257, pp. 644-657; Svedberg, T., Pedersen, K.O., (1940) The Ultracentrifuge, , Oxford University Press, Oxford; Svergun, D., Determination of the regularisation parameter in indirect transform using perceptual criteria (1992) J. Appl. Crystallogr., 25, pp. 495-503; Svergun, D., CRYSOL-a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates (1995) J. Appl. Crystallogr., 28, pp. 768-773; Svergun, D.I., Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing (1999) Biophys. J., 76, pp. 2879-2886; Svergun, D.I., Petoukhov, M.V., Koch, M.H.J., Determination of domain structure of proteins from X-ray solution scattering (2001) Biophys. J., 80, pp. 2946-2953; Takagi, J., Yang, Y., Liu, J.-H., Wang, J.-H., Springer, T.A., Complex between nidogen and laminin fragments reveals a paradigmatic [beta]-propeller interface (2003) Nature, 424, pp. 969-974; Tanford, C., (1961) Physical Chemistry of Macromolecules, , John Wiley & Sons, Inc., New York; Tzu, J., Marinkovich, M.P., Bridging structure with function: structural, regulatory, and developmental role of laminins (2008) Int. J. Biochem. Cell. Biol., 40, pp. 199-214; Volkov, V.V., Svergun, D.I., Uniqueness of ab initio shape determination in small-angle scattering (2003) J. Appl. Crystallogr., 36, pp. 860-864; Yurchenco, P., Cheng, Y., Colognato, H., Laminin forms an independent network in basement membranes [published erratum appears in J Cell Biol 1992 Jun;118(2):493] (1992) J. Cell Biol., 117, pp. 1119-1133
Depositing User: Gordon Morris
Date Deposited: 18 May 2011 11:57
Last Modified: 06 Apr 2018 12:00


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©