Computing and Library Services - delivering an inspiring information environment

Global conformation analysis of irradiated xyloglucans

Patel, T. R., Morris, Gordon, Ebringerovz, A., Vodeniarova, M., Velebny, V., Ortega, A., Garcia de la Torre, J. and Harding, S. E. (2008) Global conformation analysis of irradiated xyloglucans. Carbohydrate Polymers, 74 (4). pp. 845-851. ISSN 0144-8617

PDF - Accepted Version
Download (314kB) | Preview


Xyloglucan isolated and purified from tamarind seed was subjected to various degrees of γ-irradiation treatments, from 10 to 70 kGy, monitored for radiation damage and then studied using a new combined hydrodynamic approach with regards to conformation and flexibility. Radiation products were analysed with regard to molecular weight (weight average) Mw from size exclusion chromatography coupled to multi-angle laser light scattering (SEC-MALLs), intrinsic viscosity [η] and sedimentation coefficient so20,w. Sedimentation coefficient distributions and elution profiles from SEC-MALLs confirmed the unimodal nature of the molecular weight distribution for each sample in solution. The chain flexibility was then investigated in terms of the persistence length, Lp of the equivalent worm-like chain model. The traditional Bushin-Bohdanecky (intrinsic viscosity) and Yamakawa-Fujii (sedimentation coefficient) relations were used separately then combined together by minimisation of a target function according to a recently published procedure [Ortega, A., & García de la Torre, J. (2007). Equivalent radii and ratios of radii from solution properties as indicators of macromolecular conformation, shape, and flexibility. Biomacromolecules, 8, 2464-2475 [see also Ortega, A. Metodologías computacionales para propiedades en disolución de macromoléculas rígidas y flexibles. Ph.D. Dissertation, Universidad de Murcia, 2005]] and yielded an estimate for Lp in the range 4-9 nm using floated and fixed mass per unit length analysis protocols and "point" global analysis: irradiated xyloglucans behave as flexible structures in common with pressure/heat treated materials. © 2008 Elsevier Ltd. All rights reserved.

▼ Jump to Download Statistics
Item Type: Article
Uncontrolled Keywords: γ-irradiation Bushin-Bohdanecky Chain flexibility Combined "global" analysis Xyloglucan Yamakawa-Fujii Biomaterials Fluid dynamics Combined global analysis Conformation analysis Xyloglucans Fluid mechanics Tamarindus indica
Subjects: Q Science > QD Chemistry
Schools: School of Applied Sciences
Related URLs:
References: Language of Original Document: English Correspondence Address: Morris, G.A.; National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, LE12 5RD, United Kingdom; email: References: Bohdanecky, M., New method for estimating the parameters of the wormlike chain model from the intrinsic viscosity of stiff-chain polymers (1983) Macromolecules, 16, pp. 1483-1493; Bohdanecky, M., Petrus, V., Analysis of hydrodynamic data for denatured globular proteins in terms or the wormlike cylinder model (1991) International Journal of Biological Macromolecules, 13, pp. 231-234; Burgalassi, S., Raimondi, L., Pirisino, R., Banchelli, G., Boldrini, E., Saettone, M.F., Effect of xyloglucan (tamarind seed polysaccharide) on conjunctival cell adhesion to laminin and on corneal epithelium wound healing (2000) European Journal of Ophthalmology, 10, pp. 71-76; Bushin, S.V., Tsvetkov, V.N., Lysenko, Y.B., Emel'yanov, V.N., Conformational properties and rigidity of molecules of ladder polyphenylsiloxane in solutions according the data of sedimentation-diffusion analysis and viscometry (1981) Vysokomolekulyarnye Soedineniya, A23, pp. 2494-2503; Dhami, R., Harding, S.E., Jones, T., Hughes, T., Mitchell, J.R., To, K.-M., Physico-chemical studies on a commercial food grade xanthan - I. Characterisation by sedimentation velocity, sedimentation equilibrium and viscometry (1995) Carbohydrate Polymers, 27, pp. 93-99; Freire, J.J., Garcia de la Torre, J., Sedimentation coefficients of flexible chain polymers (1992) Analytical ultracentrifugation in biochemistry and polymer science, pp. 346-393. , Harding S.E., Rowe A.J., and Horton J.C. (Eds), Royal Society of Chemistry, Cambridge, UK; Freitas, R.A., Martin, S., Santos, G.L., Valenga, F., Buckeridge, M.S., Reicher, F., Physico-chemical properties of seed xyloglucans from different sources (2005) Carbohydrate Polymers, 60, pp. 507-514; Fry, S.C., Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals (1999) Biochemical Journal, 332, pp. 507-515; Gidley, M.J., Lillford, P.J., Rowlands, D.W., Lang, P., Dentini, M., Crescenzi, V., Structure and solution properties of tamarind-seed polysaccharide (1991) Carbohydrate Research, 214, pp. 299-314; Gomez, C., Navarro, A., Manzanares, P., Horta, A., Carbonell, J.V., Physical and structural properties of barley (1->3),(1->4)-β -glucan. Part I. Determination of molecular weight and macromolecular radius by light scattering (1997) Carbohydrate Polymers, 32, pp. 7-15; Harding, S.E., On the hydrodynamic analysis of macromolecular conformation (1995) Biophysical Chemistry, 55, pp. 69-93; Harding, S.E., The intrinsic viscosity of biological macromolecules. Progress in measurement, interpretation and application to structure in dilute solution (1997) Progress in Biophysics and Molecular Biology, 68, pp. 207-262; Harding, S.E., Vårum, K.M., Stokke, B.T., Smidsrød, O., (1991) Advances in carbohydrate analysis, 1, pp. 63-144. , White C.A. (Ed), JAI Press Limited, Greenwich, USA; Hearst, J.E., Stockmayer, W.H., Sedimentation constants of broken chains and wormlike coils (1962) Journal of Chemical Physics, 37, pp. 1425-1433; Hoffman, M., Jia, Z., Peña, M.J., Cash, M., Harper, A., Blackburn II, A.R., Structural analysis of xyloglucans in the primary cell walls of plants in the subclass Asteridae (2005) Carbohydrate Research, 340, pp. 1826-1840; Huggins, M.L., (1942) Journal of the American Chemical Society, 64, pp. 2716-2718; Lang, P., Burchard, W., Structure and aggregation behavior of tamarind seed polysaccharide in aqueous solution (1993) Die Makromolekule Chemie, 194, pp. 3157-3166; Lang, P., Kajiwara, K., Investigations of the architecture of tamarind seed polysaccharide in aqueous solution by different scattering techniques (1993) Journal of Biomaterials Science, Polymer Edition, 4, pp. 517-528; Mendichi, R., Soltes, L., Schierone, A.G., Evaluation of radius of gyration and intrinsic viscosity molar mass dependence and stiffness of hyaluronan (2003) Biomacromolecules, 4, pp. 1805-1810; Morris, G.A., Li, P., Puaud, M., Liu, Z., Mitchell, J.R., Harding, S.E., Hydrodynamic characterisation of the exopolysaccharide from the halophilic cyanobacteria Aphanothece halophytica GR02: A comparison with xanthan (2001) Carbohydrate Polymers, 44, pp. 261-268; Nishinari, K., Yamatoya, K., Shirakawa, M., Xyloglucan (2000) Handbook of hydrocolloids, pp. 247-267. , Phillips G.O., and Williams P.A. (Eds), Woodhead Publishing Limited, Cambridge, UK; Ortega, A., García de la Torre, J., Equivalent radii and ratios of radii from solution properties as indicators of macromolecular conformation, shape, and flexibility (2007) Biomacromolecules, 8, pp. 2464-2475. , [See also Ortega, A. (2005). Metodologías computacionales para propiedades en disolución de macromoléculas rígidas y flexibles. Ph.D. Dissertation, Universidad de Murcia.]; Patel, T.R., Picout, D.R., Ross-Murphy, S.B., Harding, S.E., Pressure cell assisted solution characterisation of galactomannans 3. Application of analytical ultracentrifugation techniques (2006) Biomacromolecules, 7, pp. 3513-3520; Picout, D.R., Ross-Murphy, S.B., Errington, N., Harding, S.E., Pressure cell assisted solubilization of xyloglucans: tamarind seed polysaccharide and detarium gum (2003) Biomacromolecules, 4, pp. 799-807; Picout, D.R., Ross-Murphy, S.B., Jumel, K., Harding, S.E., Pressure cell assisted solution characterization of polysaccharides. 2. Locust bean gum and tara gum (2002) Biomacromolecules, 3, pp. 761-767; Ralston, G., (1993) Introduction to analytical ultracentrifugation, , Beckman Instruments, Inc, Fullerton, USA; Ren, Y., Picout, D.R., Ellis, P.R., Ross-Murphy, S.B., Solution properties of the xyloglucan polymer from Afzelia africana (2004) Biomacromolecules, 5, pp. 2384-2391; Sato, T., Norisuye, T., Fujita, H., Double-stranded helix of xanthan: Dimensional and hydrodynamic properties in 0.1 M aqueous sodium chloride (1984) Macromolecules, 17, pp. 2696-2700; Schachman, H.K., (1959) Ultracentrifugation in biochemistry, , Academic Press, New York, USA; Schuck, P., Rossmanith, P., Determination of the sedimentation coefficient distribution by least-squares boundary modeling (2000) Biopolymers, 54, pp. 328-341; Schweikert, C., Liszkay, A., Schopfer, P., Scission of polysaccharides by peroxidase-generated hydroxyl radicals (2000) Phytochemistry, 53, pp. 565-570; Shankaracharya, N.B., Tamarind - Chemistry, technology and uses - A critical appraisal (1998) Journal of Food Science and Technology - Mysore, 35, pp. 193-208; Sreelekha, T.T., Vijayakumar, T., Ankanthil, R., Vijayan, K.K., Nair, M.K., Immunomodulatory effects of a polysaccharide from Tamarindus indica (1993) Anti-Cancer Drugs, 4, pp. 209-212; Strickland, F.M., Darvill, A., Albersheim, P., Eberhard, S., Pauly, M., Pelley, R.P., Inhibition of UV-induced immune suppression and interleukin-10 production by plant oligosaccharides and polysaccharides (1999) Photochemistry and Photobiology, 69, pp. 141-147; Tanford, C., (1961) Physical chemistry of macromolecules, , John Wiley & Sons, New York, USA; Tsvetkov, V.N., Eskin, V., Frenkel, S., (1970) Structure of macromolecules in solution, , Butterworth, London, UK; Vodenicarova, M., Drimalova, G., Hromadkova, Z., Malovikova, A., Ebringerova, A., Xyloglucan degradation using different radiation sources: A comparative study (2006) Ultrasonics Sonochemistry, 13, pp. 157-164; Wang, Q., Ellis, P.R., Ross-Murphy, S.B., Burchard, W., Solution characteristics of the xyloglucan extracted from Deratium senegalense Gmelin (1997) Carbohydrate Polymers, 33, pp. 115-124; Wyatt, P.J., Combined differential light scattering with various liquid chromatography separation techniques (1992) Laser light scattering in biochemistry, pp. 35-58. , Harding S.E., Sattelle D.B., and Bloomfield V.A. (Eds), Royal Society of Chemistry, Cambridge, UK; Yamakawa, H., Fujii, M., Translational friction coefficient of wormlike chains (1973) Macromolecules, 6, pp. 407-415
Depositing User: Gordon Morris
Date Deposited: 20 May 2011 09:41
Last Modified: 28 Aug 2021 21:31


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©