Computing and Library Services - delivering an inspiring information environment

Liquid Ammonia as a Dipolar Aprotic Solvent for Aliphatic Nucleophilic Substitution Reactions

Ji, Pengju, Atherton, John H. and Page, Michael I. (2011) Liquid Ammonia as a Dipolar Aprotic Solvent for Aliphatic Nucleophilic Substitution Reactions. The Journal of Organic Chemistry, 76 (5). pp. 1425-1435. ISSN 00223263

Metadata only available from this repository.


The rate constants for the reactions of a variety of nucleophiles reacting with substituted benzyl chlorides in liquid ammonia (LNH3) have been determined. To fully interpret the associated linear free-energy relationships, the ionization constants of phenols ions in liquid ammonia were obtained using UV spectra. These equilibrium constants are the product of those for ion-pair formation and dissociation to the free ions, which can be separated by evaluating the effect of added ammonium ions. There is a linear relationship between the pKa of phenols in liquid ammonia and those in water of slope 1.68. Aminium ions exist in their unprotonated free base form in liquid ammonia and their ionization constants could not be determined by NMR. The rates of solvolysis of substituted benzyl chlorides in liquid ammonia at 25 °C show a Hammett ρ of zero, having little or no dependence upon ring substituents, which is in stark contrast with the hydrolysis rates of substituted benzyl halides in water, which vary 107 fold. The rate of substitution of benzyl chloride by substituted phenoxide ions is first order in the concentration of the nucleophile indicative of a SN2 process, and the dependence of the rate constants on the pKa of the phenol in liquid ammonia generates a Brønsted βnuc = 0.40. Contrary to the solvolysis reaction, the reaction of phenoxide ion with 4-substituted benzyl chlorides gives a Hammett ρ = 1.1, excluding the 4-methoxy derivative, which shows the normal positive deviation. The second order rate constants for the substitution of benzyl chlorides by neutral and anionic amines show a single Brønsted βnuc = 0.21 (based on the aqueous pKa of amine), but their dependence on the substituent in substituted benzyl chlorides varies with a Hammett ρ of 0 for neutral amines, similar to that seen for solvolysis, whereas that for amine anions is 0.93, similar to that seen for phenoxide ion.

Item Type: Article
Subjects: Q Science > Q Science (General)
Q Science > QD Chemistry
Schools: School of Applied Sciences
School of Applied Sciences > Biomolecular Sciences Research Centre
Related URLs:
Depositing User: Sara Taylor
Date Deposited: 10 May 2011 10:08
Last Modified: 28 Aug 2021 11:06


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©