University of Huddersfield Repository

Kola, Susanna and Walsh, Jane C.

Effect of Communication Ability on Cardiovascular Reactivity to a Speech Task

Original Citation

This version is available at http://eprints.hud.ac.uk/9780/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.
Effect of Communication Ability on Cardiovascular Reactivity to a Speech Task

Susie Kola & Jane Walsh
Department of Psychology
National University of Ireland, Galway
Communication ability

- Communication ability may be an important variable in people’s ability to cope with a stressor.
- Appears to play a role in fostering social relationships, thus affecting social support (e.g., Sarason et al., 1985).
Cardiovascular reactivity

- CVR refers to variations in HR and BP in response to perceived stressful environmental situations
- There are individual differences in the amount of reactivity shown by different individuals in the same situation
CVR research

- A lot of research carried out in laboratories to examine what variables may moderate CVR to psychological stress
- Typically, stressors have been standardised to remove individual differences (Turner, 1994)
Speech tasks in CVR research

- Research has investigated various state-type variables in relation to speech tasks.
- Speech tasks used without consideration for individual differences in communication style and competence (Hughes, 2001).
Communication ability and CVR

- Hughes (2001) conducted study to assess the possible stress buffering effect of CA on CVR under two stress conditions.
- After task, completed CA questionnaire.
- Found that high effective communicators showed reduced levels of HR reactivity to maths task.
Present study

- Results of Hughes (2001) study suggest that CA may play some role in relationship between stressor and CVR, even when the stressor is non-speech based.
- The aim of the present study is to assess whether levels of CA would affect cardiovascular responses to a speech task.
Method

- Design – 2 (high and low CA) x 3 (baseline, task, recovery) mixed design
- IV – Communication ability (effective and dominant)
- DVs – heart rate, systolic and diastolic blood pressure
Participants

- 56 female undergraduate psychology students
- Mean age 19.45 years (SD = 4.97)
- Exclusion criteria: oral contraceptive use, medication use, history of hypertension
Equipment

- 18 items, measures CA on three scales; Effective, Dominant, and Nonverbal
- Each measure highly reliable ($\alpha = .79, \alpha = .76, \alpha = .74$, respectively).
Equipment cont.

- Speech task based on the evaluative speaking task (Saab et al., 1989).
- Participants asked to prepare and deliver a speech about a hypothetical situation.
- Tape recorder present, told the speech would be rated for style, content and articulation.
Procedure

- Pre-screening based on administration of McManus et al.’s (1997) re-standardised version of the Norton Communicator Style Questionnaire
- Random selection of 98 from those that scored in 33rd and 66th percentiles
Main study procedure

- Each participant tested individually
- Initial 10-minute resting period, CV measures taken at end of min 3, 6, 9.
- For pre-task period (5min), task period (5 min) and recovery period (5min) CV measures recorded at end of min 1, 2.5, and 4.
Results

- A series of 2x3 mixed ANOVAs were carried out for ECA and DCA
- Range of ECA scores 9-23
 - High ECA >16, Low ECA <14
- Range of DCA scores 8-22
 - High DCA >17, Low DCA <13
Results – CA and HR

- Significant main effect for time, $F_{(1.40, 71.51)} = 25.08, \ p = .000$
- No significant interaction between time x ECA, $p = .708$ or between time x DCA, $p = .663$
- No significant mean differences between high and low ECA, $p = .170$, or between high and low DCA, $p = .918$
Results – CA and SBP

- Significant main effect for time, $F_{(1.45, 73.70)} = 100.08$, $p = .000$
- No significant interaction between time x ECA, $p = .892$, or between time x DCA, $p = .596$
- No significant differences between high and low ECA, $p = .951$, or between high and low DCA, $p = .313$
Results – CA and DBP

- Significant main effect for time, $F_{(1.36, 69.17)} = 126.34$, $p = .000$
- No significant interaction between time x ECA, $p = .759$, or between time x DCA, $p = .259$
- No significant differences between high and low ECA, $p = .323$, or between high and low DCA, $p = .885$
Summary

- Study conducted to assess whether CA would have a stress-buffering effect on CVR to a speech task
- Stressor successful in eliciting stress response
- No significant differences between levels of CA for CVR or CV recovery
Summary

- Degree of reactivity during speaking determined by a wide range of factors
- Differences diminished as a result of task engagement?
- Other possibilities: extraversion/introversion, trait anxiety, communication apprehension, evaluation apprehension
Thank You

Susie Kola & Jane Walsh
National University of Ireland, Galway