Introduction

Machine tool (MT) capability & availability are of paramount importance in modern manufacturing industry. The first is determined by measurement, the second depends on maintenance & calibration which includes measurement procedures.

Increasing measurement efficiency leads to:
1. More accurate & repeatable results
2. Machine downtime decrease
3. Uncertainty estimation

Novelty

More investigated
- Measurement
- Compensation
- Efficient measurement

Less investigated
- Modelling
- Prediction

Methodology

Input
- Sort
- Analyse
- Compare
- Report
- Format
- Store

MS Office Access DBMS

Data management

Measurement Equipment
- Manual Input
- Report Generator

Graphical User Interface
- Novel Database

Environment & Machine Type

Uncertainty Estimation

Statistical Process Control
- Measurement Equipment
- Environment & Machine Type
- Novel Database
- Uncertainty Estimation

New test development

The alternative to a traditional laser measurement is proposed for a straightforward approach. Simple, precise and more effective on long ranges, the method utilizes taut wire and an optical sensor, mounted on a moving table (saddle).

Sensor displacement is measured in a number of points which form a graph showing a combined error of the guide and the wire like shown on the graph:

\[x_i = x_{i-1} + x_s - c_{i-1} \]

where \(x \) - guide error on a step \(i \), \(c \) - combined error (measured), and \(s \) - combined error on the shifted wire.

The accuracy of measurement does not depend on wire surface defects and its straightness, the only factor which affects the result is repeatability of the wire which proved to be very high. This brings final measurement error to a sub-micron level.

Legend:
- Input data
- Output data
- Conditions
- Calculation
- Assessment