1. Introduction

Currently there is an absence of a best-practise framework for engineers to use when performing a full machine tool calibration. When performing the procedure of machine tool calibration it is imperative that care is taken to ensure that the results are accurate, the process is repeatable, and a full traceability chain is maintained. In addition, there is also no standard method of machine evaluation by the use of a single metric. This would be highly beneficial for reporting on the quality of the machine and the testing procedure.

2. Objectives and Goals

This project will develop a best-practise framework with beneficial features derived from well established Software Engineering & Business Methodologies. The framework will, with due reference to ISO, also provide a method for producing the evaluation metric based upon the captured data including consideration of the uncertainties within the measurement procedures. In addition to the framework, a software package will be developed that incorporates the framework and can be used throughout the calibration process from design to verification.

3. Current Procedure

- Test Selected
- Instrumentation Selection
- Data Capture
- Data Processing
- Output Parameters

Problems with the current procedure:
- Ignorance of British and international standards as well as industrial best practises.
- Complacency with working procedure could result in efficiency gains not being realised.
- Little consideration is taken to measurement uncertainties.
- Poor design and implementation can lead to the lack of traceability.
- No indication of the machine’s quality based upon the calibration process.

4. Novel Framework

- British / International Standards
- Test Type
- Historical Data
- Instrumentation
- Measurement management systems

How:
Adopting aspects from well established Software Engineering and Business Methodologies to produce a diverse but rigorous framework to apply to the process of Machine Tool Calibration.

Benefits:
- Framework maintains consistency with British and International Standards.
- Quality Metric allows for evaluation of the machine.
- Rigid design process allows for the traceability chain to be maintained.
- The accuracy and repeatability of the test is improved by ensuring the test’s validity.
- The most efficient method of calibration is always taken.

Output Parameters

Non-rigid

Geometric

Thermal

Historical Metrology Instrumentation Data stored both centrally and remotely in an anonymous fashion to its source for other users of the same instrumentation to use.

- ISO 10012
- ISO 17025
- ISO 230
- ISO 9000
- ISO 10012

Quality Metric

Wyler Zeromatic

Renishaw QC10

Renishaw Xl80

(Wyler, 2010)

(Andrew Longstaff, 2010)

(www.machinery.co.uk, 2010)