With tolerances in production constantly reducing it is necessary to know the capabilities of machine tools. A major source of inaccuracy in machine tools is down to spindle errors.

It is therefore the aim of this project to assess the effect of these errors on part production depending on machine and operation, with a view to enabling easier spindle checks and therefore predictive maintenance.

INTRODUCTION

SOURCE OF ERROR

- **Thermal Error**
- **Positional Error**
- **Non-Rigid Error**
- **Geometric Error**

TECHNOLOGIES

- **Eddy Current Sensor**
 - These work using a magnetic field to sense the distance to the target

- **Laser Displacement Sensor**
 - These work using a high frequency laser triangulation to sense distance to the target

- **Capacitance Sensors**
 - These work using an electric field to sense the distance to the target

- **Accelerometer**
 - These usually use a piezoelectric material generating voltage proportional to acceleration

RESEARCH

PROJECT AIMS: TO INCREASE SPINDLE ANALYSIS EFFICIENCY AND ACCURACY

- **Non-Contact Measurement**
- **Spindle Bearings**
- **Types**
- **Advantages**
- **Disadvantages**
- **Vibration Cause/Effect**
- **Bearing Life**

CONCLUSIONS

The successful completion of this project will result in:

- A better knowledge of the capabilities of non-contact measurement technologies including measurement uncertainty in different environments, cost etc.
- A clearer understanding of the cause/effect of spindle bearing vibration
- The ability to analyse machine tool spindles in industry in order to assess capability and predict maintenance requirements