With tolerances in production constantly reducing it is necessary to know the capabilities of machine tools. A major source of inaccuracy in machine tools is down to spindle errors.

It is therefore the aim of this project to assess the effect of these errors on part production depending on machine and operation, with a view to enabling easier spindle checks and therefore predictive maintenance.

Introduction

Non-Contact Measurement and Analysis of Machine Tool Spindles

D. A. Clough, S. Fletcher, A. P. Longstaff, P. Willoughby, J. Richards
Computing & Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK

Sources of Error

- **Thermal Error**
- **Positional Error**
- **Non-Rigid Error**
- **Geometric Error**

Thermal Expansion due to heat generated in the spindle bearings at high speeds is the most common source of error in machine tools.

Bearing Vibration due to bearing wear / damage can cause a poor quality surface finish. The figure to the left shows spikes in noise at certain frequencies.

Spindle Position in relation to the machine tool, including axial and radial errors. The figure to the left shows an out of roundness plot.

Sources of Error

- **Thermal Expansion**
- **Bearing Vibration**
- **Spindle Position**

Requirements & Considerations

- Non-Contact Measurement Required for Dynamic Tests
- Spindle Speeds (typically up to 120000rpm)
- Sampling Frequencies necessary dependant on bearing size against spindle speed
- Spindle Sizes and tool holder interfaces

Technologies

- **Eddy Current Sensor**
 - These work using a magnetic field to sense the distance to the target

- **Laser Displacement Sensor**
 - These work using a high frequency laser triangulation to sense distance to the target

- **Capacitance Sensors**
 - These work using an electric field to sense the distance to the target

- **Accelerometer**
 - These usually use a piezoelectric material generating voltage proportional to acceleration

Measurement Uncertainty

- **Non-Contact Measurement Technologies**
- **Types**
- **Advantages**
- **Disadvantages**
- **Vibration Cause / Effect**
- **Bearing Life**

Spindle Bearings

Project Aim: To increase spindle analysis efficiency and accuracy

The successful completion of this project will result in:

- A better knowledge of the capabilities of non-contact measurement technologies including measurement uncertainty in different environments, cost etc.
- A clearer understanding of the cause / effect of spindle bearing vibrations
- The ability to analyse machine tool spindles in industry in order to assess capability and predict maintenance requirements