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PREDICTING AND DETERMINING THE CONTACT PRESSURE 
DISTRIBUTION IN JOINTS FORMED BY V-BAND CLAMPS 

 
M. Muller, S.M. Barrans 

University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK 
 
 

ABSTRACT 
V-band clamps are utilised in a wide range of industries to connect together a pair of circular flanges, 
for ducts, pipes, turbocharger housings and even to form a joint between satellites and their delivery 
vehicle. In this paper, using a previously developed axisymmetric finite element model, the impact of 
contact pressure on the contact surface of the V-band clamp was studied and surface roughness 
measurements were used to investigate the distribution of contact pressure around the circumference 
of the V-band. 
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1 INTRODUCTION 
 

Focussing on elastic deformation during the assembling of V-band clamp joints, Shoghi et al. (2003) 
and Shoghi et al. (2004) generated finite element models and a classical analysis of the process. 
These were validated by the experimental tests of Shoghi et al. (2006). This work then led to recently 
published research by Barrans and Muller (2009) presenting an axisymmetric finite element model 
which analysed the failure mechanism of V-band joints, proving that the ultimate axial load capacity, 
was dependent on the clamp diameter. Based on their work, Muller and Barrans (2009) showed that 
during failure of a V-band joint for small clamp diameters the cross section deformed plastically into a 
non recovering state, whereas towards larger diameters a purely elastic deformation was observed. In 
a number of applications cracks have been observed propagating on the inner surface of the V-band 
close to the small internal radius generated during the roll forming process. In the same area the finite 
element model predicted a high concentration of plastic strain during failure of the V-band joint. With 
the same FE model the impact of flange geometry could be analysed and it was found by Muller and 
Barrans (2010) that the flange thickness in the contact area had the highest influence on the ultimate 
axial load capacity, drawing attention to the importance of considering manufacturing tolerances when 
designing such a joint. For all analytical or numerical models presented previously, the contact 
pressure between the flanges and the V-band clamp was assumed to be uniformly distributed. 
However, Shoghi (2003) showed that a non-uniform pressure distribution can be expected around the 
V-band. At that time it was not possible to measure the pressure distribution. This paper proposes to 
address this knowledge gap by using surface metrology to measure the permanent surface 
deformation generated by the contact pressure, and numerically investigate this by previously 
developed finite element models.  
 

2     FINITE ELEMENT MODEL 
Details about the set up of the finite element model can be taken from Muller and Barrans (2009), and 
are also shown in Figure 1. For the material, properties for AISI 304 stainless steel were taken from 
Shoghi et al. (2003), in which the Young’s Modulus is 227GPa and the Poisson’s Ratio is 0.29. The 
finite element package ABAQUS (v6.8) was employed to carry out the numerical analysis, which 
requires all stresses and strains to be given as true values. The yield stress  was set to 648MPa and 
the true tensile strength  to 1182.7MPa. The finite element model presented here simulates a 
joint with a diameter of 235mm. The finite element model was set up to model the assembly and 
removal of the V-band clamp. The V-band is assembled by tightening the T-bolt nut with a certain 
Torque , which generates a force  in the T-bolt and the radial direction of the V-band. Due to the 
wedging action of the V-section, this radial force generates the axial clamping load , pushing the 
flanges together. All of these three forces can be calculated using equations (1) to (3) taken from 
Shoghi (2003) and (4) taken from Shoghi et al. (2006), in which equation (4) is a modification of (3).  
 
           (1) 
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 = inside diameter of the nut bearing surface 
 = outside diameter of the nut bearing surface 
 = pitch diameter of the bolt 
  = mean radius of the fastener under-head bearing surface 

 
          (2) 

 
 = clamping load in the T-bolt 
 = torque applied to the T-bolt  
 = helix angle 
 = underhead coefficient of friction 

 = coefficient of friction of threads 
 

         (3) 

 

        (4) 
 

= axial clamping force due to tightening of T-bolt nut 
= subtended angle of half the V-section 
= coefficient of friction between the V-section band clamp and rigid flanges 
= angle of the V-section  

 
Figures 2a and 2b show the simulated V-band contact zone after it has been taken off the flanges. In 
Figure 2a in which no friction has been assumed, almost no residual von-Mises stress can be seen at 
the surface. The peak stress lies under the surface. This phenomenon is due to the forces acting at 
the surface. Considering the von-Mises yield cylinder in three dimensional stress space, the two 
principal stresses acting in the plane of the surface will be compressive. The third principal stress is 
introduced by the contact force of the flange, acting directly normal to the surface and is again 
compressive. These three compressive stresses lead to a high hydrostatic stress and relatively small 
deviatoric stress, reducing the plastic strain and residual stress at the surface. This becomes clearer 
when taking into account friction as shown in Figure 2b ( =0.2). Adding an extra shear stress at the 
surface, leads to larger residual stresses at the surface, and increases the peak stress by a ratio of 
about 3. This assumption is confirmed by Figures 3a and 3b, showing no plastic strain at the surface 
for the non friction case, and larger plastic strain at the surface for the case where friction has been 
included. A series of FE analyses undertaken for this paper have shown that with an axial clamping 
load, , below 30kN no plastic deformation in or close to the contact zone appears. With an axial 
clamping load of 30kN (23.6Nm) and depending on the coefficient of friction, plastic deformation would 
be present but would be hard to detect by surface roughness measurement. Even with an axial 
clamping load of 60kN (47.1Nm), the plastic deformation shown in Figures 4a and 4b is very small for 
both no friction and friction cases, and therefore hard to detect. However, the peak plastic strain has 
increased by approximately 2.5 when compared to 30kN. For the 60kN case, the influence of the 
hydrostatic stress and, for taking into account friction, the influence of shear stress on the plastic strain 
is similar to those of 30kN. 
 

3     EXPERIMENTAL RESULTS 
The surface roughness on the inside of the V-band was measured in ten zones, 5 equally distributed 
around each side of the V-section, in which the band is in contact with the flanges, to create a 
methodology which enables investigation of the contact pressure distribution around the inside of the 
V-band clamp. The purpose of this investigation is to show whether or not the contact pressure is 
distributed uniformly or non-uniformly around the circumference.  
The set up of the V-band on the PGI stylus machine can be seen in Figure 5a, along with an example 
of the 25x25mm measured area shown in the red square in Figure 5b. Each band clamp was 
measured before and after assembly and the results for each area were compared to each other. 
Bands were assembled with torques  of 5, 10, 15 and 20Nm. It should be noted that the axial 
clamping loads of 30kN and 60 kN used in the FE simulation would have required T-bolt torques of 
23.6 Nm and 47.1 Nm according to equations 1 to 4. These high torques are unrealistic and could not 
be applied to the sample bands. 
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An example measurement of one area close to the T-bolt can be seen in Figure 6a for the measured 
surface before assembling the band to the joint. The results shown in Figure 6b have been taken 
along the red line shown in Figure 6a. These figures were compared to Figures 6c and 6d after the 
assembly, and showed very little difference. Especially 6b and 6d seem to be slightly different but this 
is mainly due to the difficulty of always measuring the same line before and after assembly. Even 
small deviations in the measured position can give different results, and hence it is hard to directly 
compare the two diagrams. Comparing Figures 6a and 6b the roll forming process in which the band 
clamps are manufactured can clearly be identified, as the flat section (of the V-section) is clearly 
smother than the top part of the square, which represents the bent area and hence has a larger 
surface roughness. As no plastic deformation could be detected for the range of 5 to 20Nm, there 
seems to be only elastic deformation on the surface. This correlates very well with the findings of the 
finite element work in the previous section, in which plastic deformation could only be noticed from 
30kN (23.6Nm), and even then the values were too small to be determinable. Another problem 
associated with this measurement type was marks and fringes appearing in the circumferential 
direction of the tested areas (Figures 7a and 7b). These were either due to table-noise and/or the 
preceding cold roll forming process used to manufacture these V-band clamps. 
 

4     CONCLUSIONS 
In this paper a previously developed axisymmetric finite element model for predicting the ultimate axial 
load capacity was utilised to numerically investigate the influence of contact pressure on the inner 
surface of a V-band clamp. The predictions showed very little plastic deformation in the contact area 
after the band clamp was assembled and then taken off again, even for torques that would never be 
reached in real applications.  
The surface roughness measurements correlate well with the finite element analyses as it was not 
possible to pick up any plastic deformation of the inner contact surface. Moreover, table noise and the 
influences of the cold roll forming process highly affected the results and made it impossible to give 
reliable and accurate readings. 
In the future finite element analysis of the cold roll forming process should be carried out to compare 
the residual plastic strains induced by manufacturing with the strains predicted in this paper, to see if 
either one of them is significantly smaller and, hence, can be neglected. 
The measurement methodology should be improved to prevent table noise. 
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Figure 1: Axisymmetric finite element model showing all geometrical parameters, taken from Barrans and Muller (2009) 
 

 
Figure 2: Residual stresses when V-band clamp is taken off flanges after axial clamping load of 60kN has been applied, a) =0, 
b) =0,2 
 

 
Figure 3: Plastic strains (PEEQ) when V-band clamp is taken off flanges after axial clamping load of 30kN has been applied, a) 

=0, b) =0,2 
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Figure 4: Plastic strains (PEEQ) when V-band clamp is taken off flanges after axial clamping load of 60kN has been applied, a) 

=0, b) =0,2 
 

 
Figure 5: a) V-band measured on PGI stylus, b) Position of measured surface inside of V-band 
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Figure 6: Surface roughness measurement of V-band 
 

 
Figure 7: Surface measurements after levelling, a) before and b) after assembling 
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