
University of Huddersfield Repository

Pein, Raoul Pascal

Semi-Supervised Image Classification based on a Multi-Feature Image Query Language

Original Citation

Pein, Raoul Pascal (2010) Semi-Supervised Image Classification based on a Multi-Feature Image
Query Language. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/9244/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Semi-Supervised Image Classification based on a
Multi-Feature Image Query Language

Raoul Pascal Pein

A thesis submitted to the University of Huddersfield

in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

The University of Huddersfield

September 2010

I dedicate this thesis to Prof. Frank Heubach who made all this possible.

2

I would like to thank everybody who gave me support in finishing this thesis. Special

thanks go to my supervisors Dr. Joan Lu and Prof. Dr. Wolfgang Renz for their

specialist support and to family and friends for their moral support.

3

Contents

List of Tables 10

List of Figures 11

Abstract 13

1. Introduction 14

1.1. Research Hypothesis . 16

1.2. Contribution . 16

1.3. Roadmap . 17

2. Background Research 18

2.1. Related Work . 18

2.1.1. Browsing . 20

2.1.1.1. Browsing Strategies . 21

2.1.1.2. Visual Arrangement of Search Results 22

2.1.1.3. Thumbnail Format . 23

2.1.2. Query Language . 25

2.1.2.1. Textual . 25

2.1.2.2. Visual . 29

2.1.3. Relevance Feedback in Search Results 29

2.1.4. Features and Similarity Measures 30

2.1.5. Annotation . 33

2.1.6. Evaluation of Retrieval Systems 34

2.1.6.1. Benchmarks . 34

2.1.6.2. Metrics and Analysis . 35

2.1.7. Retrieval Frameworks . 35

2.1.7.1. Merging/Fusion . 36

2.1.7.2. Communication Protocols 38

4

2.1.8. Categorization . 39

2.2. Own Preliminary Work . 40

2.2.1. Query Language . 40

2.2.2. Grammar . 41

2.2.3. Plug-Ins . 42

2.3. Identification of Problems . 43

2.3.1. Browsing . 43

2.3.2. Query Language . 44

2.3.3. Relevance Feedback in Search Results 44

2.3.4. Features and Similarity Measures 44

2.3.5. Annotation . 45

2.3.6. Evaluation of Retrieval Systems 46

2.3.7. Retrieval Frameworks . 46

2.3.8. Categorization . 46

2.4. Aims and Objectives . 47

3. Methods Employed 50

3.1. Browsing . 50

3.2. Query Language . 52

3.2.1. Query Language Requirements 52

3.2.2. Query Composing . 54

3.2.3. Query Language Principles . 55

3.3. Relevance Feedback . 56

3.4. Features and Similarity Measures . 56

3.4.1. Feature Evaluation . 56

3.4.2. Feature Normalization . 57

3.4.2.1. Similarity Profiles . 57

3.4.2.2. Determining a Normalization Function 58

3.5. Evaluation of Retrieval Systems . 59

3.6. Framework . 60

3.6.1. Similarity Search . 60

3.6.2. Merging/Fusion . 61

3.7. Categorization . 62

3.7.1. Unsupervised Learning . 63

3.7.2. Supervised Learning . 63

5

3.7.3. Semi-Supervised Learning . 65

3.7.4. Definitions . 65

3.7.5. Example . 66

3.7.6. Interpretation as Decision Tree 67

3.7.6.1. Nodes . 67

3.7.6.2. Node Splitting . 68

3.7.6.3. Root Node . 69

3.7.6.4. Null Query . 70

3.7.7. Learning Algorithm . 70

3.7.8. Complexity . 72

3.7.9. Query Descriptors . 73

3.7.9.1. Pre-Classification Fusion 73

3.7.9.2. Post-Classification Fusion 75

4. Design 76

4.1. Retrieval Framework Design . 76

4.1.1. Main Components . 77

4.1.2. Speed & Quality . 78

4.2. Query Language . 79

4.2.1. Wildcards and Ranges . 79

4.2.2. Parse Trees . 79

4.2.3. Browsing . 82

4.3. Learning Algorithm . 84

4.3.1. Multi Threaded Processing . 84

5. Implementation 86

5.1. Query Language . 87

5.1.1. XML . 87

5.1.2. Visual Query . 90

5.2. Algorithms . 92

5.2.1. Normalization Algorithm . 92

5.2.2. Learning Algorithm . 94

5.2.3. Multi Threaded Processing . 98

6

6. Case Studies 100

6.1. Impact of Query Image Size on Features and Similarity Measures 101

6.1.1. Requirements . 101

6.1.2. Testing . 101

6.1.3. Results . 102

6.1.4. Discussion . 102

6.1.5. Summary . 104

6.2. Feature Normalization . 104

6.2.1. Requirements . 104

6.2.2. Testing . 104

6.2.3. Results . 105

6.2.3.1. Original Profiles . 105

6.2.3.2. Normalized by ETH-80 107

6.2.3.3. Normalized by Caltech 101 108

6.2.4. Analysis . 110

6.2.4.1. Original Profiles . 111

6.2.4.2. Normalized by ETH-80 111

6.2.4.3. Normalized by Caltech 101 113

6.2.4.4. Summary . 113

6.2.5. Discussion . 115

6.2.6. Summary . 116

6.3. Estimating the Improvement Capabilities of Different Features 116

6.3.1. Requirements . 117

6.3.2. Data Preparation . 117

6.3.3. Data Collection . 117

6.3.4. Data Normalization . 118

6.3.5. Results . 118

6.3.6. Analysis . 120

6.3.7. Limitations . 122

6.3.8. Discussion . 123

6.3.9. Summary . 123

6.4. Supervised Learning . 124

6.4.1. Requirements . 124

6.4.2. Preparation & Implementation 124

6.4.3. Testing . 125

7

6.4.4. Results . 126

6.4.4.1. Effect of Single Clauses 126

6.4.4.2. Effect of Additional Clauses and Tolerance 126

6.4.4.3. Effect of Boost Parameter 132

6.4.4.4. Constructed Category Queries 136

6.4.5. Analysis . 137

6.4.6. Discussion . 139

6.4.7. Summary . 139

6.5. Query Descriptors . 139

6.5.1. Requirements . 140

6.5.2. Testing . 140

6.5.3. Results . 140

6.5.4. Analysis . 142

6.5.5. Discussion . 144

6.5.6. Summary . 145

6.6. Semi-Supervised Learning . 145

6.6.1. Requirements . 146

6.6.2. Testing . 146

6.6.3. Results . 147

6.6.3.1. Impact of removed MUST NOT 147

6.6.3.2. Reference System . 149

6.6.4. Analysis . 149

6.6.5. Discussion . 153

6.6.6. Summary . 154

6.7. Discussion . 154

7. Conclusion 156

7.1. Achieved . 156

7.2. Future Work . 157

Bibliography 158

A. Definitions 177

B. Descriptors 179

Glossary 181

8

Acronyms 183

Copyright Statement 186

9

List of Tables

2.1. Thumbnail Layouts . 22

2.2. Thumbnail Image Formats - Display . 24

2.3. Thumbnail Image Formats - Storage . 25

2.4. Language Approaches . 26

2.5. Language Features Compared . 28

2.6. Similarity Measures . 32

3.1. Query Composing . 54

6.1. Cumulated Average Error . 114

6.2. Summarized Improvement . 120

6.3. Query Composition . 138

6.4. Query Quality Parameters . 138

6.5. Raw Categorization Summary . 143

6.6. Categorization Summary . 144

6.7. Additional False Categorizations . 149

6.8. Recognition Results for the categorization of unknown objects [68] 149

6.9. Raw Categorization Summary . 150

6.10. Categorization Summary (Leave-One-Object-Out) 151

6.11. Wrong Classification by Object . 152

10

List of Figures

2.1. Research Field Dependencies . 19

2.2. Searching Process [44] . 20

2.3. Search Strategies [63] . 21

2.4. Query shape . 36

3.1. Ranking in a Typical CBIR-System [133] 51

3.2. Retrieval-Workflow [94] . 51

3.3. User Experience Levels . 53

3.4. Optimal Similarity Profile . 58

3.5. Feature Space Separation . 66

3.6. Decision Tree . 70

4.1. Layers in the Retrieval Process [96] . 76

4.2. Main Components . 77

4.3. Parse Tree of a complex Query . 80

5.1. Visual Query Composer . 91

5.2. findClassificationQuery - Sequence Diagram 95

5.3. findBestQualityParameters - Sequence Diagram 96

5.4. buildDescriptors - Sequence Diagram . 99

6.1. Impact of query image sizes . 103

6.2. Similarities Cumulated by Rank (ETH-80) 105

6.3. Similarities Cumulated by Rank (Caltech-101) 106

6.4. Similarities Cumulated by Rank (ETH-80, normalized by ETH-80) 107

6.5. Similarities Cumulated by Rank (Caltech-101, normalized by ETH-80) . 108

6.6. Similarities Cumulated by Rank (ETH-80, normalized by Caltech-101) . 109

6.7. Similarities Cumulated by Rank (Caltech-101, normalized by Caltech-101) 109

6.8. Error of Original Similarity Profiles for ETH-80 Images 110

11

6.9. Error of Original Similarity Profiles for Caltech-101 Images 111

6.10. Error of Normalized (ETH-80) Similarity Profiles for ETH-80 Images . . 112

6.11. Error of Normalized (ETH-80) Similarity Profiles for Caltech-101 Images 112

6.12. Error of Normalized (Caltech-101) Similarity Profiles for ETH-80 Images 113

6.13. Error of Normalized (Caltech-101) Similarity Profiles for Caltech-101 Images114

6.14. Cumulated Average Error . 115

6.15. Improvement Factor . 119

6.16. Caltech 101 - category subset: BACKGROUND Google 120

6.17. Caltech 101 - category subset: car side 121

6.18. Caltech 101 - category subset: inline skate 121

6.19. Caltech 101 - category subset: stop sign 122

6.20. Caltech 101 - category subset: airplanes 122

6.21. Precision/Recall of ETH-80 categories, single feature 127

6.22. Precision, Recall and Quality (F-Measure) for “cow” related queries . . . 128

6.23. Highest Ranked False Positives for “cow”, 20 SHOULD (first 100 hits) . 129

6.24. Highest Ranked False Positives for “cow”, MUST NOT (first 100 hits) . . 130

6.25. Precision/Recall of Manually Edited Query for “cow” up to Rank 900 . 131

6.26. Highest Ranked False Positives for “cow”, modified MUST NOT (first

100 hits) . 131

6.27. Precision/Recall of ETH-80 “cow”, max 20 SHOULD clauses, variations

of “slack” . 132

6.28. Equal Application of Slack . 133

6.29. Boost Dependent Application of Slack 135

6.30. Decision Tree for concept ”cow” (most relevant clauses) 136

6.31. Category Probabilities for ETH-80 Images 141

6.32. Category Probabilities for ETH-80 Images (all cows) 148

6.33. Wrong Classification by Object . 152

6.34. Most Difficult Objects . 152

12

Abstract

The area of Content-Based Image Retrieval (CBIR) deals with a wide range of research
disciplines. Being closely related to text retrieval and pattern recognition, the probably
most serious issue to be solved is the so-called “semantic gap”. Except for very restricted
use-cases, machines are not able to recognize the semantic content of digital images as
well as humans.

This thesis identifies the requirements for a crucial part of CBIR user interfaces, a
multimedia-enabled query language. Such a language must be able to capture the user’s
intentions and translate them into a machine-understandable format. An approach to
tackle this translation problem is to express high-level semantics by merging low-level
image features. Two related methods are improved for either fast (retrieval) or accurate
(categorization) merging.

A query language has previously been developed by the author of this thesis. It allows
the formation of nested Boolean queries. Each query term may be text- or content-based
and the system merges them into a single result set. The language is extensible by
arbitrary new feature vector plug-ins and thus use-case independent.

This query language should be capable of mapping semantics to features by applying
machine learning techniques; this capability is explored. A supervised learning algo-
rithm based on decision trees is used to build category descriptors from a training set.
Each resulting “query descriptor” is a feature-based description of a concept which is
comprehensible and modifiable. These descriptors could be used as a normal query and
return a result set with a high CBIR based precision/recall of the desired category. Ad-
ditionally, a method for normalizing the similarity profiles of feature vectors has been
developed which is essential to perform categorization tasks.

To prove the capabilities of such queries, the outcome of a semi-supervised training
session with “leave-one-object-out” cross validation is compared to a reference system.
Recent work indicates that the discriminative power of the query-based descriptors is
similar and is likely to be improved further by implementing more recent feature vectors.

13

Chapter 1.

Introduction

With rapid development of digital technologies, building an efficient and reliable im-

age retrieval system is always challenging in computing science and related application

disciplines [14, 15, 38, 44, 47, 80, 94, 116, 145]. A typical application area of CBIR is

multimedia publishing and design. Often, an image with specific properties is required

for a certain layout. Garber and Grunes [44] describe a typical layout task, where

somebody needs to pick some images from a huge repository. Similarly, the growing

amount of personal digital image collections (like Flickr [145] or Picasa [47]) could ben-

efit from a CBIR system. Another suggestion is the use of CBIR techniques to retrieve

copyright infringements [116]. Further more, in medical environments, the use of 3D

body scanners with high resolution results in an immense amount of visual data [80].

Space agencies and Geographic Information System (GIS) companies taking pictures

with high-resolution cameras on satellites also produce large amounts of pixel images,

depicting planet surfaces, surface features and other content [14, 38]. Even more general

cases in Multimedia Information Retrieval (MIR) have been studied, such as the pow-

erful supporting tools in the retrieval of 3D models for engineering companies [94] or

similar sound files for musicians [15]. It follows that this key technology, Content-Based

Image Retrieval, always plays a significant role in the application search engines, though

the development of consistent theory in CBIR is still rudimental.

Many basic issues in CBIR have been collected by Eakins and Graham [34] in 1999.

The most severe problems of image retrieval identified in their report remain unsolved.

The key is “bridging the semantic gap” between low-level image content (pixels, as seen

by machines) and its high-level meaning (semantics, as seen by humans) [149]. Though

many new technologies and methods have been continually improving the quality of

Multimedia Information Retrieval (MIR) [140] and several real-life applications have

been developed in many areas. A summary of recent challenges in MIR is provided by

14

Lew et al. [70].

MIR systems mostly apply the feature vector paradigm because the documents to be

retrieved are typically very large. Further, the information contained in each document

exhibits a considerable amount of redundancy and fuzziness. For example, several default

colour space models in computing are mapped to 24 bits which corresponds to 224 =

16777216 different colours for each pixel. Modern hardware is capable of generating

images with a resolution expressed in megapixels. Therefore, a single image can easily

contain millions of pixels, encoding some real or synthetically generated information.

Matching any set of two high-resolution images directly would consume a very high

amount computing resources, rendering a naive matching based retrieval for thousands or

even millions of images useless with the currently available technology. To greatly reduce

the retrieval complexity, MIR systems perform the most time consuming part of data

analysis only once and generate a so-called “feature vector” for each document during the

indexing phase. These feature vectors are designed to contain a highly condensed piece

of information representing the original data, without losing too much of the relevant

characteristics. A direct comparison between two feature vectors is expected to be similar

as a comparison of the respective original documents. The feature vector approach is

basically a lossy transformation from an extremely high dimensional representation to

a representation with a dimensionality that can be handled within seconds.

Gupta and Jain [50] coined the term Visual Information Retrieval (VIR) which covers

the visual subset of MIR. They propose a retrieval system to find images and videos.

VIR is a research domain that links the analysis aspects of computer vision with the

querying aspects of database systems. A main difficulty in their work was to map

natural language to a machine understandable query language. Natural language may

be suitable to describe complex sceneries, but it is inherently ambiguous and the retrieval

has to be performed by a machine with no deeper understanding. Also a plain textual

query is considered to be not powerful enough to express all required details. In contrast

to VIR, the research for other media types such as audio data are less common. One

such system specifically developed to retrieve music is “Muugle” [15].

After more than a decade in research on CBIR and MIR in general, the interest in

this area is very high and still seems to increase [28]. Observing the currently available

software compared to the amount of publications indicates that still no general break-

through has been achieved. A study by Datta et al. [28] published in 2005 analyses the

amount of related publications in detail. Only about 20% of about 300 briefly surveyed

papers in this study described real-life applications, most of them being merely proto-

15

types. This seems to be an indication that there are many theories available, but none is

capable of causing a real breakthrough. Thus, Datta et al. [28] recommend the building

of useful systems in parallel, even if they are limited to specific domains.

1.1. Research Hypothesis

This thesis investigates several CBIR techniques and their interrelationship. The main

emphasis is put onto the issue of querying. Being able to express the user’s needs in

a machine-readable way is assumed to be a crucial element of any retrieval system.

Generic object recognition and semantic scene interpretation remains an open problem

[70]. Thus, the so-called “semantic gap” cannot be completely bridged yet. This leads

to the research question investigated in the following:

Are multi-feature query languages capable of narrowing down the semantic

gap in Content-Based Image Retrieval?

Below, a multi-feature query language is evaluated to estimate its capabilities in map-

ping high-level semantics to a set of low-level feature vectors. A machine learning ap-

proach is applied to generate a set of the most efficient queries to find specific categories

within an image repository. The discriminative power of each query is evaluated.

1.2. Contribution

• Two feature merging approaches for fast retrieval and for image categorization/

tagging (sections 3.6.2 and 3.7.9)

• A way of describing high-level semantics with an arbitrary and extensible set of

low-level features in a query language (sections 3.7.9 and 6.5)

• A machine learning approach to find queries describing a category with positive

and negative Query-By-Example (QBE), thus potentially reducing the semantic

gap (sections 3.7.9 and 6.5)

• The derived queries describing a category are comprehensible to humans and thus

can be modified manually (sections 3.7.9 and 6.4)

16

• Proposed metrics for evaluating the appropriateness of feature vectors and their

potential information gain in various applications, e.g. which available feature

vector achieves the best ranking quality for a given image category (section 6.3)

• Evidence that the expressiveness of the query language developed by the author of

this thesis can compete with traditional machine learning approaches (section 6.6)

1.3. Roadmap

The thesis is arranged in seven chapters. The background research in chapter 2 is

split into four smaller sections. Publications in multiple CBIR related research areas

are mentioned in section 2.1. Related preliminary work of the author of this thesis is

described in section 2.2. Section 2.3 provides an overview of currently unsolved problems

to motivate the aims and objectives of this thesis (section 2.4).

Chapter 3 lists the methodologies used in this thesis inferred from the background

research. The design and implementation of the prototype developed to support this

thesis are explained in chapters 4 and 5.

The core of the thesis is located in chapter 6. This chapter focuses on six different case

studies that are used to underpin the methodology from chapter 3. The first case studies

examine several basic feature vector properties an their interrelationship (sections 6.1

to 6.3). The latter ones focus on the machine learning aspects and how low-level feature

vectors could be applied to describe higher-level semantics (sections 6.4 to 6.6).

The final chapter 7 concludes the thesis and gives a brief overview of the achievements

of this thesis and potential future work in this particular area.

17

Chapter 2.

Background Research

2.1. Related Work

Many of the basic issues in CBIR have been collected by Eakins and Graham [34] in

1999. The most severe problems of image retrieval identified in their report remain

unsolved. The key to image retrieval is “bridging the semantic gap” between low-level

image content (pixels, as seen by machines) and its high-level meaning (semantics, as

seen by humans) [149]. In Figure 2.1, the semantic gap is represented by the two

research fields Features/Similarity and Annotation. The first one deals with low-level

content whereas the second one deals with its high-level counterpart. A technology to

connect these two fields is the Categorization.

New technologies and methods have been continually improving the quality of MIR

[140] and several real-life applications have been developed in many areas. Yet, a large

amount of recent challenges in MIR are still to be solved. Lew et al. [70]. provide a

summary of these challenges.

Currently the research seems to shift from image retrieval towards video retrieval.

Nevertheless it should be considered that the diversity in multimedia retrieval is bene-

ficial for all sub-disciplines as they overlap in many cases. Also the researchers coming

from several different disciplines contribute to the richness of different approaches and

solutions [139].

The recent overview provided by Datta et al. [30] concludes with the statement that

the research focused more in systems, feature extraction and relevance feedback than in

application-oriented aspects such as interface, visualisation, scalability and evaluation.

Thus it seems desirable to improve research in these areas.

According to Lew et al. [70] there are several recent research topics trying to bridge

the semantic gap. In human-centred computing the system tries to satisfy the user while

18

Relevance
Feedback

Query
Language

Evaluation /
Optimizing

Features /
Similarity

Browsing

Annotation

Categorization

Figure 2.1.: Research Field Dependencies

keeping the interface easily understandable. Learning algorithms could be beneficial in

adding semantic value. Developing new features based on low-level information may still

be beneficial, when adapted to the human perception and easy to use. Their conclusion

is that none of the major challenges in MIR are actually solved and all areas require

significant further research.

This section briefly describes several research areas closely related to CBIR (fig. 2.1).

Some of these are user-centred and some deal with the underlying methodology. Con-

cerning the user interface, the areas of Browsing, Query Languages and Relevance Feed-

back play an important role. This supports the user in creating queries and to navigate

through a given repository. Creating Feature Vectors and Similarity Measures is a matter

of improving the system quality on the server side. Similarly, the Annotation is impor-

tant to enable keyword based retrieval. They usually need to be tuned by an Evaluation

process. The area of Categorization is an approach to link existing low-level features

directly to high-level keywords and categories. Finally, there are Retrieval Framework

Designs available, which provide researchers with the basic functionality needed to do

this kind of research.

19

Generate
criteria and
weightings

Enter picture
and similarity

criteria

Retrieve set
of images

View images and
information about

the images

Put on or remove
from light table, etc.

Re-define
search

Change
criterion

Add
restriction

Pull target
image

Add
criterion

Figure 2.2.: Searching Process [44]

2.1.1. Browsing

In order to build a user interface for a CBIR system, typical related work flows need to

be examined. A detailed analysis of a retrieval work flow is described by Garber and

Grunes [44]. They focused on a common task of art directors, searching images for use

in advertisement. The iterative searching process is depicted in figure 2.2.

A perfect search engine would already contain all relevant hits in this first overview,

omitting all unrelated content. In reality, precision and recall are far from being perfect

and the user needs to pick the relevant images manually. At this point, a well designed

browsing interface could guide a user through the repository, presenting only the most

related fraction of images and refining the initial query. This iterative approach supports

an evolving search process as described by Garber and Grunes [44].

Frohlich et al. [43] interviewed 11 families about their photo management and usage

habits. Their paper concludes with a list of requirements for useful software. A similar

use case was examined by Rodden and Wood [107]. Their analysis of user behaviour was

carried out for six months and 13 participants using the management system “Shoebox”.

The outcome was that the advanced features such as CBIR were rarely used. Instead,

the basic browsing capabilities proved to be the most important feature of the system.

This was mainly due to the rather small and well known personal image set.

The recent system PARAgrab by Joshi et al. [63] provides a browsing interface that

offers several retrieval techniques. Results are listed by matches on file name, surround-

ing text and images that have been viewed by other users. In addition, the semantics

20

(a) Strict order (b) Hierarchical tree (c) Search sequence

Figure 2.3.: Search Strategies [63]

from WordNet [76] are used for improving the keyword based search. A ranking based

on visual similarity and query-by-example rounds off the system.

Shneiderman et al. [122] focus on a user interface, determined to provide simple brows-

ing and using as much meta information as possible. Sharing the photos with others

is considered important, but it is assumed, that the casual user is less interested in

annotating images than browsing them to have fun. Otherwise solutions like the direct

annotation in PhotoFinder [121] could utilise their full potential. Huynh et al. [55] pro-

pose a way to organize images by their timestamps and a ranking simultaneously. The

time line is broken down into parallel parts and the images are located in the correct

position. To stress the relevance of each hit, the images are scaled accordingly. Several

techniques to interweave multimedia results from several dimensions are discussed by

Candan et al. [18].

2.1.1.1. Browsing Strategies

Some basic browsing strategies are described by Joshi et al. [63]. The concepts are

visualised in fig. 2.3. All these strategies should be supported by a retrieval client.

(a) “Begin with a single query image and browse result pages strictly in the order of

visual similarity to query.”

(b) “Begin with a single query image and then hierarchically explore the next level,

using each top level result as a subsequent query.”

(c) “Begin with a single query, and keep performing visual searches based on personal

preference and relevance to query. The sequence thus can potentially deviate further

and further from the original query.”

21

Especially in a creative process, the user is usually not sure about the desired findings

and the requirements may change during a retrieval session. This probably matches

best browsing strategies b and c. During this process, the user might want to keep some

intermediate results as a potential candidate and put them onto a “light table”. Later,

these images can either be used directly or fed into a new search, like in strategy b.

2.1.1.2. Visual Arrangement of Search Results

Table 2.1.: Thumbnail Layouts

Article Dim. Pattern
traditional 1 list
Liu et al. [71] 2 Similarity, Adjustable Overlap
Liu et al. [71] 2 Fisheye
Huynh et al. [55] 2 Truncated Timeline, Relevance Zooming
Torres et al. [133] 2 Concentric Rings
Torres et al. [133] 2 Spiral
Torres et al. [133] 2 Spiral + Image Similarity Degree

Liu et al. [71] examined several layouts for arranging result thumbnail images on a

screen. The images were sorted by similarity, either in a 1D ranking list or clustered in

a 2D grid. They performed a user study to evaluate the influence of image overlapping,

zoomed images and different arrangements. Huynh et al. [55] and Torres et al. [133] also

experimented with innovative 2D layouts. Some proposed layouts are listed in table 2.1.

First of all, it is to be decided, in how many dimensions the results are to be displayed.

The traditional solution is a simple one dimensional ranking, beginning with the high-

est and proceeding with a gradually decreasing similarity. This approach requires an

algorithm to determine a linear ranking.

Exploiting two dimensions for display, greatly increases the possible layouts. The

resulting images could be directly arranged by 2 features on an x and y axis, which

hopefully generates meaningful clusters. Having a single ranking dimension, the images

could be arranged in a zigzag pattern, a ring or spiral with the best match in the centre

[133] or even randomly distributed on the screen. Most important hits can also be

accentuated by an enlarged image [55, 71]. Clustering the results by semantics provides

another guideline for a good layout.

Experiments indicated that an irregular (or “untidy”) arrangement of overlapping

thumbnail images is rather irritating than helpful. Sorting the images into a clean grid

was much more accepted in multiple studies [71, 108].

22

Having arranged several thumbnail images on the screen, the user might want to see

some meta information. This could be done by a dedicated area at the border, a tool

tip window or separate windows. A dynamical approach could also be used to reduce

the overall amount of images displayed. Clusters of very similar images could be merged

into a single representative image, hiding the others. Selecting that image would then

expand the view to show all of the hidden images.

Another interesting feature is to crop thumbnails automatically to enhance its infor-

mation density ans reduce the required space. The proposed techniques by Suh et al.

[128] include cropping by salient regions and faces.

2.1.1.3. Thumbnail Format

With unlimited resources, a system could easily store the original images in full resolution

and without any compression. This would offer a very high flexibility and the system

could scale the images down to an appropriate size for each reading access. In reality,

the restrictions of the technology used need to be considered.

Because each stage in the system has several restrictions, a hybrid approach may

be beneficial. The browser should have access to Joint Photographic Experts Group

(JPEG) or Portable Network Graphics (PNG) images of various resolutions. JPEG

is usually preferable for photographs and PNG is more suitable for images with high

contrast, like sketches or drawings.

At least two strategies for persistence issues are possible. The persistence could be

either optimized on speed or a reasonable storage capacity.

Having almost unlimited (or just very cheap) disk space available, the images could

be easily stored in multiple resolutions redundantly. The Database Management System

(DBMS) or file system would simply load the relevant images directly from the hard

disk and could stream the file directly to the client. The bottleneck would still be the

connection between client and server. Thus, the time required for reading the informa-

tion from the hard disk is unlikely to be perceivable by the user. A disadvantage would

be that all the thumbnails need to be prepared in advance.

A more sensible and flexible solution is to avoid redundancy and save disk space by

using multi-resolution images. Image formats like Joint Photographic Experts Group

2000 (JPEG 2000), Enhanced Compression Wavelet (ECW), Multiresolution Seamless

Image Database (MrSID) or Progressive Graphics File (PGF) formats are all capable of

doing such tasks. Only one image needs to be stored. At runtime, the system simply

reads data up to the desired accuracy and then stops reading the stream. The main

23

Table 2.2.: Thumbnail Image Formats - Display

Format colour open browser-
depth standard support
(≥ 32bit)

JPEG [137] 3 most 3

JPEG 2000 [130] 3 most 7

PNG [31] 3 3 3

GIF [27] 7 patented by 3

Unisys
ECW [35] 3 3 7

MrSID [72] 3 patented by plug-in
LizardTech

PGF [127] 3 3/LGPL 7

task is to convert the image into a browser supported format. This hardly avoidable

computation time is the main disadvantage of this second approach.

Further, if the images are stored in a reasonable quality, the feature extraction process

does not need to access the original images in all cases. Especially global features should

still be present in “high-resolution” thumbnail images. Often the original images are

scaled down in the pre-processing anyway, like the wavelet approach by Jacobs et al.

[58]. The requirements for image display a) and storage b) are different. For display,

well-known standards extend portability while the storage format should focus on storage

efficiency.

a) The requirements for the browser representation are focused on user friendliness.

All used image formats should be easily displayable in common browsers and tools. The

file size should be small while ensuring a reasonable quality. Finally, the image resolution

depends on screen size (from mobile phone up to a power wall). A set of several formats

is listed in table 2.2.

Regarding the browser support, either JPEG (photographs) or PNG (drawings) should

be used. GIF has no real advantage to PNG. All the other formats are simply not

supported by most browsers. Nevertheless, they could be of much use in specialized

clients.

b) The second task is to store the thumbnail images in a reasonable quality and as

many resolutions as possible. There are both lossy and lossless formats available. An

interesting feature to be used is multi-resolution, allowing the extraction of smaller

24

Table 2.3.: Thumbnail Image Formats - Storage

Format comp. lossy/ multi- open focus of
algo. lossless resolution standard optimizing

JPEG [137] DCT lossy 7 most size
JPEG 2000 [130] DWT both 3 most quality
PNG [31] LZ77 both 7 3 quality
ECW [35] DWT lossy 3 3 memory
MrSID [72] DWT both 3 LizardTech flexibility
PGF [127] DWT both 3 3(LGPL) speed

versions of an image without loading the whole file. Some recent formats are compared in

table 2.3. Unfortunately, none of the multi-resolution formats are supported by browsers.

Allowing a conversion from a storage format into a browser-standard, either ECW or

PGF should be used. Being open, both standards can be used. A slight advantage of

PGF is the lossless option.

2.1.2. Query Language

Users need to formulate their queries, i.e. be able to express what they expect to

receive from a search engine. Converting the mental model to a structured machine

understandable format [50] is not straightforward. Firstly, it requires a user, whose

mental model correlates to the machine model. Secondly, the query language must be

able to capture all the relevant nuances of the users intent. Otherwise the retrieval

system cannot return relevant results without making assumptions.

There are multiple languages available which are basically suitable to be applied in

CBIR. In the following, a couple of textual and visual query languages are presented.

2.1.2.1. Textual

Most query languages for search engines are based on strings. This is not surprising,

as most documents can be retrieved by keywords. It is especially true for pure text

documents, but also applies to a certain extent to correctly annotated multimedia data.

Usually these query languages are defined in Backus-Naur Form (BNF) to ensure a

mathematical sound background and consistency. Representative examples are widely

used in Internet search engines, such as the Google Query Syntax [46]. Others are

provided by frameworks and toolkits like the Apache Lucene Query Syntax [7]. Often

these languages understand basic queries like single or multiple keywords separated by

25

Table 2.4.: Language Approaches

Language CBIR Approach Base Language
Nepal and Ramakrishna [84] FOQL object driven ODMG/OQL
Town and Sinclair [134] OQUEL ontology driven none/natural
Pein et al. [95] feature driven Lucene

spaces which are widely used by untrained users. More advanced searchers are also able

to exploit meta information (e.g. title, author, creation date, etc.), Boolean expressions

and nesting. While there is a diversity of full text query languages, most of them follow

this basic behaviour and even define a similar syntax. Nevertheless there seems to be

no uniquely accepted standard.

Still there are several standards of query languages available. This is especially true

for areas, where a high accuracy is of importance. A popular language used in relational

data bases, is the SEQUEL/SQL family [21]. It can be applied for huge amounts of struc-

tured data and ensures a short response time combined with absolute and deterministic

precision. Recently a new kind of data base is gaining popularity, the XML database.

Its main advantages are the increase of XML based communication protocols and the

high flexibility to storing new or unpredicted data structures. Much effort is currently

put into research for developing a query language for XML databases. A promising

candidate is XQuery [20], proposed by the World Wide Web Consortium (W3C). It may

become the successor of SQL. It is also attempted to add full text search capabilities to

this language, e.g. the extension TeXQuery [5].

In the area of CBIR it is very difficult to point out query languages or even standards.

Most languages are not more than a research project. Three representative languages

with varying approaches are compared in table 2.4. Example queries for the languages

are given below.

FOQL example The Fuzzy Object Query Language (FOQL) by Nepal et al. [83] is

specifically designed for image databases. As it is based on Object Query Language

(OQL), the syntax complexity is similar to that of SQL. This language lets the user

specify anything in detail. An example of a natural language query converted into

FOQL is given below (see Nepal et al. [83]):

“Find all distinct images from the image collection ‘Flower’ that have color

similar to the example image ‘flower1.gif’ and contain an image component

26

similar to the example image component rose (whose imgobjno is ‘01’). As-

sume an overall similarity of greater than 0.8.”

select distinct [0.8] I.imagename

from Img-col R, I in R.has, O in I.contains,

Image J, Image-comp K

where R.name = "Flower" and I.colormatch(J)

and O.similarto(K) and J.imagename = "flower1.gif"

and K.imgobjno= "01"

OQUEL examples The Ontological Query Language (OQUEL) is an image retrieval

language proposed by Town and Sinclair [134] with a focus on user friendliness. It is

based on an ontology and the user input remains very basic. The actual work has to

be done by the system. The system is working with segmentation and categorization.

Regions are arranged in a region graph for spatial relationships. Below some query

examples by Town and Sinclair [134]:

• “some sky which is close to trees in upper corner, size at least 20%”

• “[indoors] or [outdoors] & [people]”

• “[some green or vividly coloured vegetation in the centre] which is of

similar size as [clouds or blue sky at the top]”

• “artificial objects, smooth and polygonal”

Own language examples The third language by Pein et al. [95] (see section 2.2) is

designed to be user-friendly and flexible. The language follows the principles of the

Lucene Query Syntax [7] where each term is composed of a an optional field and the

desired content. The field is interpreted as a feature and the content is directly forwarded

to the corresponding feature parser.

“Find an orange image or a fruit with double weight on the mean colours.”

fv_mean:($orange$)^2 keywords:"fruit"

“Find images that are wavelet-similar to image 123 and remove images that

have more than a 0.9 histogram similarity to image 987.”

fv_wavelet:123 NOT fv_histogram:987@0.9

27

Table 2.5.: Language Features Compared

L
an

gu
ag

e

F
u
zz

y
B

o
ol

ea
n

M
in

T
h
re

sh
ol

d

U
se

r
D

efi
n
ed

S
or

ti
n
g

E
x
te

n
si

b
le

(F
ea

tu
re

s)

A
N

D
-O

R
-N

O
T

W
ei

gh
ts

H
ig

h
-L

ev
el

C
on

ce
p
ts

S
im

p
le

S
tr

u
ct

u
re

Q
u
er

y
-B

y
-E

x
am

p
le

FOQL [84] 3 3 3 3 3 31 32 7 3

OQUEL [134] 3 3 7 73 3 3 3 3 7

Pein et al. [95] 3 3 7 3 3 3 74 3 3
1 sum of partial weights must be 1.0
2 keyword define to map low-level queries to high-level con-

cepts
3 ontology can be modified
4 mapping only possible by nesting/meta features contain-

ing prepared low-level queries

Comparison Table 2.5 compares the three query languages mentioned above concern-

ing several key CBIR properties.

The Fuzzy Boolean is necessary to capture the blurred line between hit and miss. To

limit the result space to a reasonable amount, the Min Threshold is required. Both are

available in all checked languages. A User Defined Sorting is helpful to further control

the ranking, especially in situations with many identically ranked images, but this is

only supplied by FOQL. For a widespread use in several scenarios, the Extensibility by

Features seems to play an important role. While OQUEL requires the modification of

the ontology model, the others capture new features individually. Boolean combinations

by AND-OR-NOT and Weights are supported in all cases.

The user friendliness is assessed by three final properties. Introducing important High-

Level Concepts into the language by Pein et al. [95] requires additional work in the feature

code itself, while FOQL offers the keyword define and OQUEL implicitly uses high-level

concepts. Measuring the Simple Structure is indeed arguable. In this case, it is checked,

whether the language is initially designed for amateur users or for specialists. FOQL

requires much overhead, the other languages offer very short and concise queries. Finally

the integration of Query-By-Example (by ID or Uniform Resource Locator (URL)) is

not available in OQUEL.

28

2.1.2.2. Visual

Providing a graphical query interface to the user can simplify the assembly of queries.

Rather than having to type a query string, the query can be assembled with a couple

of mouse-clicks. These interfaces are similar to a drawing program for diagrams. The

query is drawn to a canvas and all available constructs are listed in a tool bar. The

user picks the relevant nodes and drops them at relevant positions. Each node could be

edited in detail or linked to other nodes while each single element has certain semantics.

In the end the user has built a graph representing the query, which is sent to the search

engine.

Several visual query languages have been developed for GIS environments [14, 17,

38, 88]. Others are usually related to object oriented approaches [19]. The Classifica-

tion Query Language (CQL) by Järvelin et al. [60] is based on classifications and their

relationship. It provides a user interface with several forms to compose a query.

The proposal by Keim and Lum [64] is a visual interface for a Multimedia Database

Management System based on relational data. It differs from visual interfaces in com-

mon DBMS, because multimedia content is inherently ambiguous. Its purpose is to

simplify the SQL like language towards usability of natural language. Users can see all

possibilities and choose them by point-and-click (no misspelling).

2.1.3. Relevance Feedback in Search Results

Relevance feedback in CBIR applications gives the user some additional control to in-

fluence the search results. Usually the user can judge the quality of a result set and

submit hints to the system in order to improve future retrieval sessions. A relevance

feedback mechanism needs to be integrated into the result browser. It relies on the

active participation of a searcher.

Zhou and Huang [151] published a useful overview of multiple relevance feedback as-

pects. The algorithms are classified into several categories for short-term and long-term

learning. They summarized several issues to be considered when designing a relevance

feedback algorithm as follows (see Zhou and Huang [151]):

• ‘Minimize the influence of (false) negative examples’

• ‘The training set must be large enough to cover all feature dimensions’

• ‘Pre-clustering usually requires to assume a specific point-of-view’

29

• ‘Queries can be considered to be global or regional’

• ‘The low-level features should be enriched with textual annotation’

• ‘The nearest neighbour search needs to be fast, even with many dimensions in-

volved’

Many papers related to relevance feedback in CBIR scenarios can be found. Some

interesting contributions are recommended for further reading. An early article by Ben-

itez et al. [12] gives a good idea of the basic problems involved. Müller et al. [77] discuss

the differences between positive and negative relevance feedback.

A couple of research systems using relevance feedback have been developed. One

of the first systems was ImageRover by Taycher et al. [131], which is an early image

retrieval system with integrated relevance feedback for Internet use. Sciascio et al.

[118] additionally allowed query-by-sketch in their approach. A more recent approach is

Cortina by Quack et al. [100], a large-scale CBIR system which also included relevance

feedback aspects. One of the latest researches in this area has been published by Chiang

et al. [24]. They combined relevance feedback with an object movie retrieval.

A special variation of relevance feedback is the annotation by searchers. Instead of

letting the originator of the image do all the hard work, it is delegated to all users.

Russell et al. [110] developed the LabelMe system, which is suitable for region aware

web based image annotation.

2.1.4. Features and Similarity Measures

The selection of supported features and similarity measures is highly application specific

[28]. For this reason it should be possible to add them as needed to the retrieval engine

used [90].

Many image features have been proposed so far. While earlier ones focused on single

low-level features, later approaches tried to include more and more complex ones. Also

the effort shifted from global to local features. In the following some exemplary features

are described.

Jacobs et al. [58] proposed a feature based on Haar wavelets. Their approach is

performing a multi resolution decomposition of the images. Short signatures containing

a set of wavelet coefficients with the highest amplitudes for each picture are extracted.

Several other attempts are also based on wavelets (e.g. [32]). Their strength is usually

their sensitivity for the image texture.

30

Histogram approaches are a way to focus on colour-based similarity as well as provid-

ing rotation invariance. An examples is the feature vector proposed by Al-Omari and

Al-Jarrah [4], compressing the histogram into 12 stochastic moments (mean, variance,

skewness, colour correlation) for three colour channels. Another one has been proposed

by Berens et al. [13]. Their feature vector compresses an opponent colour histogram

with several transformations (Karhunen–Loêve, discrete cosine, Hadamard and hybrid)

with a stated compression rate of up to 250:1.

A third field tries to get the grips on shape detection often based on an autocor-

relograms. Typical instances are both the features by Latecki and Lakämper [66] and

Mahmoudi et al. [73]. Other research even attempts to do some object recognition based

on extracted shapes [11] by matching the contours of objects identified in an earlier pro-

cessing stage. A comprehensive overview of early descriptors for the MPEG-7 standard

are presented by Manjunath et al. [74].

One representative for a more recent feature is the aesthetics measure by Datta et al.

[29]. They do not try to find images based on similarities, but on higher visual aspects.

This feature could be used as a filter to automatically reject poor quality images in

advance.

Carefully choosing appropriate features for a use case is only the first step in designing

a CBIR application. Afterwards it is to be considered, how the similarity between each

of two image features can be calculated. Several basic metrics and their properties are

collected and described by Santini and Jain [111] as well as Jolion [62]. It is argued that

the similarity (or dissimilarity) should not always be measured as a simple geometric

distance. Santini points out that the four axioms for metrics (self-similarity, minimality,

symmetry and triangular inequality) cannot be applied to both perceived and judged

similarity. They state that several recognition experiments revealed the weaknesses of

the distance approach. Still measures like varieties of the Minkowski/Lm distances are

widely interpreted as similarity. This is probably mostly done in order to minimize the

effort to develop a whole new indexing structure for faster retrieval.

A major problem of many features is their retrieval performance. Having a simple

structure and similarity metric, indexes can be based on generic solutions. Using the

euclidean distance, allows for implementing one out of several multi dimensional index

trees. The more specific a single feature gets, the more specific is the related index

structure.

Early research in this field has been done by Seidl and Kriegel [119]. Recent results by

Gelasca et al. [45] already claim to handle image databases with more than 10 million

31

T
a
b
le

2
.6
.:

S
im

il
ar

it
y

M
ea

su
re

s
C

it
at

io
n

S
im

il
ar

it
y

M
ea

su
re

F
ea

tu
re

D
a
ta

F
or

m
a
t

M
a
th

s
M

o
d

el
(s

Q
I

=
..
.)
(1

)
S

y
m

m
et

ri
c

A
l-

O
m

ar
i
an

d
A

l-
J
ar

ra
h

[4
]

ve
ct

or
d

ot
p

ro
d

u
ct

h
is

to
gr

am
m

om
en

ts
ve

ct
o
r

(1
2

d
im

)

2
(V

Q k
f
•
V

I k
f
)

V
Q k
f
•
V

Q k
f

+
V

I k
f
•
V

I k
f

3

B
el

on
gi

e
et

al
.

[1
1]

L
1

D
is

ta
n

ce
(2

)
p

ol
y
go

n
s

ve
ct

o
r

(3
d

im
)

n ∑ i=
1

|Q
i
−
I i
|

3

B
er

en
s

et
al

.
[1

3]
ve

ct
or

d
ot

p
ro

d
u

ct
co

m
p

re
ss

ed
h

is
to

gr
am

ve
ct

o
r

(n
)

∥ ∥ ∥q Q
−
q I

∥ ∥ ∥2

3

D
o

an
d

V
et

-
te

rl
i

[3
2]

K
u

ll
b

ac
k
-

L
ei

b
le

r
d

iv
er

ge
n

ce
(K

L
D

)

w
av

el
et

co
effi

-
ci

en
ts

18
va

lu
es

B ∑ j
=
1

D
(p

(.
;α

(j
)

Q
;β

(j
)

Q
)‖
p
(.

;α
(j
)

I
;β

(j
)

I
)

7

J
ac

ob
s

et
al

.
[5

8]
av

er
ag

e
co

lo
u

r
su

m
of

m
at

ch
es

w
av

el
et

co
effi

-
ci

en
ts

co
effi

ci
en

t
b

in
s

w
0
|Q

[0
,0

]−
I
[0
,0

]|
−

∑
i,
j
:Q̃

[i
,j
]6=

0

w
b
in

(i
,j
)
(Q̃

[i
,j

]
=
Ĩ
[i
,j

])
7

L
at

ec
k
i

an
d

L
ak

äm
p

er
[6

6]

in
te

gr
al

p
ol

y
go

n
s

ta
n

g
en

t
fu

n
ct

io
n

(∫ 1 0

(T
(Q

)(
s)
−
T

(I
)(
s)

+
Θ

0
)2
d
s) m

a
x

(l
(Q

),
l(
I
))
m
a
x

(l(Q
)

l(
I
)
,
l(
I
)

l(
Q

)

)
3

M
ah

m
ou

d
i

et
al

.
[7

3]
L
1

D
is

-
ta

n
ce

ed
ge

s
m

a
tr

ix
(n

,m
)

n ∑ i=
1

m
|Q

i
−
I i
|

3

(1
)

T
h

e
va

lu
e
s Q

I
is

th
e

si
m

il
ar

it
y

b
et

w
ee

n
q
u

er
y
Q

a
n

d
im

a
g
e
I

re
sp

ec
ti

ve
ly

it
s

fe
a
tu

re
s.

(2
)

T
h

is
is

th
e

se
co

n
d

st
ag

e
in

th
e

ca
lc

u
la

ti
on

to
co

m
b
in

e
th

e
m

o
re

co
m

p
le

x
re

su
lt

s“
sh

a
p

e
co

n
te

x
t”

,
“
a
p

p
ea

ra
n

ce
co

st
”

a
n

d
“
b

en
d

in
g

en
er

g
y
”
.

32

entries.

Jain et al. [59] mention the problem of score merging when using multiple sources

in biometrics. Each source would generate a different score depending on the technol-

ogy and matching algorithm involved. Merging the results of multiple image unrelated

feature vectors in a CBIR system basically faces the same challenges.

Table 2.6 shows a concise comparison of diverse similarity measures. The value sQI

defines the similarity between the query representation Q and any image/document

representation I. Below the notation of the related maths models are explained.

The similarity equation by Al-Omari and Al-Jarrah [4] uses the two 12 dimensional

vectors called Vkf . The “•” denotes the inner or dot product.

The feature vector proposed by Belongie et al. [11] is matching sets of polygon points

based on three values: “shape context”, “appearance cost” and “bending energy”. Each

one is calculated by a different function, but the resulting 3 dimensional vectors Q and

I are then merged into a single value.

In the vector dot product of Berens et al. [13], the value q represents the vector of

weights generated by the histogram compression algorithm. The similarity between

those weights is proven to be equivalent to the similarity of the original histograms.

The KLD based similarity measure of Do and Vetterli [32] sums all distances D from

all analyzed sub bands j into a single value. The values α(j) (“scale paramater”) and

β(j) (“shape parameter”) are defined as the extracted texture features from the wavelet

sub band j. Both are assigned to a feature vector p().

In the feature vector by Jacobs et al. [58], w denotes the relative weight of a single

value. The notation X[i, j] describes a single two-dimensional coefficient for image X.

Quantized coefficients are written as X̃.

The equation by Latecki and Lakämper [66] uses the tangent function T (X) of the

turning function X. Further, l(X) is the relative arclength of an arc and Θ0 is a constant

minimizing the integral.

Mahmoudi et al. [73] also use the L1 distance for the extracted matrices. The similarity

is measured by the summed distance of all value pairs.

2.1.5. Annotation

The annotation carried out by humans is an important way to tell computers something

about the ground truth of images. In the end, every learning algorithm requires some

input for validation. In the simpler case, a search engine can directly use existing

33

annotation information for text based retrieval [149]. A current meta data standard is

the International Press Telecommunications Council - Information Interchange Model

(IIM) (IPTC) description, which will most likely be succeeded by the more flexible

Extensible Metadata Platform (XMP) [56].

The annotation itself can be done for whole image files or bounded objects within.

Simple annotation for each image is relatively straightforward and can be easily sup-

ported. Several commercial or experimental systems adopt this scheme, especially for

private photo books [107, 145]. Advanced user interfaces may even provide drag&drop

solutions [121, 122].

The support of bounded objects requires much more effort, as the regions need to

be defined somehow. These regions are usually represented as rectangles, polygons or

pixel-based overlays. Algorithms are able to find several regions in an image. Based

on those regions, humans only have to select and maybe edit them to define the proper

boundaries. The next logical step is to annotate each image region separately [110].

2.1.6. Evaluation of Retrieval Systems

As soon as a CBIR prototype has been developed, the question arises how to evaluate

its quality. There are several synthetic benchmarks available.

2.1.6.1. Benchmarks

A very popular, yet non standardized benchmark is using the Corel Stock Photo col-

lection. It contains several images, already assigned to several categories. This data is

especially useful to measure classification algorithms.

Other than the Corel dataset, the Caltech 101 collection [40] has been specifically

developed for benchmarks. It consists of 101 categories (plus a background category)

with about 40 to 800 images per category. In addition, the outlines of each object and

further annotation are available. Recently an updated version of the collection has been

released, named Caltech 256 [48]. The amount of categories has been increased to 256

and each category now holds at least 80 images. Another Caltech database contains

several thousand images of planes, motorbikes cars and general background [41].

Further image databases are the UIUC Image Database for Car Detection [2, 3], the

TU Darmstadt Database (formerly the ETHZ Database) [67], the TU Graz-02 Database

[86, 87] and the MIT-CSAIL Database of Objects and Scenes[132]. The PASCAL Object

Recognition Database Collection uses some of the collections above to compile different

34

test sets used in the Visual Object Classes Challenges [36, 102]. Some collections also

contain images from Google, Flickr and the Microsoft Research Cambridge database.

The Benchathlon framework [79] is another attempt to generate and collect bench-

marks for a fair and general comparison of various retrieval systems, such as BIRDS-I

[49].

Several conferences (e.g. ImageCLEF [25], TRECVID [52, 123]) are especially dedi-

cated to competitive multimedia retrieval solutions. These conferences develop challeng-

ing tasks closely related to real-world applications. Each participant needs to submit a

prototype system solving certain tasks and the results are then compared to each other.

ImageCLEF [25] is focused on Cross-Language Information Retrieval (CLIR) and

CBIR. In the last workshop, the topics were: “photographic retrieval”, “medical re-

trieval”, “photographic concept detection”, “medical automatic image annotation” and

“image retrieval task from a collection of Wikipedia images”. The TRECVID [52, 123]

is essentially dedicated to video retrieval.

2.1.6.2. Metrics and Analysis

The performance of CBIR systems is usually measured by calculating values as Precision-

Recall (PR), Receiver Operating Characteristic (ROC), F-Measure/F-Score and Fall-

Out. They use the amount of true/false positives and true/false negatives in the result

set. Some metrics are dependent on other values like the result size or cannot be reduced

to a single number. Each metric must be applied carefully regarding its specific strengths

and weaknesses. A comprehensive discussion about these measures, especially ROC has

been done by Fawcett [39].

2.1.7. Retrieval Frameworks

All technologies described so far are different building blocks for a CBIR system. Ex-

cept for the optional relevance feedback, each part is required. Research in the CBIR

area often requires a prototype implementation and thorough testing of the outcome.

Instead of building a search engine from scratch each time, the application of an existing

framework should be considered.

An early solution was the Virage search engine [8, 50]. It already allowed to extend

the basic system by simple or complex primitives. MetaSEEk [9] is a meta search engine,

supporting the systems VisualSEEk [125], WebSEEk [23], QBIC [85] and Virage.

The Viper retrieval system [78] from the University of Geneva is based on the open

35

GNU Image Finding Tool (GIFT) framework. It uses altered techniques from traditional

information retrieval. The idea is to merge several sources of information for the retrieval

itself, such as textual as well as visual features. Currently the system is being replaced

by a new development, called “ComMon SensE: Cross-Modal Search Engine”.

Joshi et al. [63] describe the recent, scalable web architecture PARAgrab for image

retrieval, able to handle CBIR and keywords as well as interactive image tagging. It is

part of a research group supervised by James Z. Wang at the Carnegie Mellon University,

who also developed SIMPLIcity [138] and other CBIR related research.

2.1.7.1. Merging/Fusion

When merging multiple sub queries into a single one, there are several possibilities to do

so. “Multi-modal fusion” is a recent research area emerging from the needs of modern

retrieval systems.

(a) weighted average [65] (b) convex, clustering [65] (c) concave, disjunctive [65]

(d) concave, conjunctive

Figure 2.4.: Query shape

Kim and Chung [65] distinguish three kinds of merging multiple query points in a

36

single feature space for relevance feedback (figure 2.4). In fig. 2.4(d), the model used by

the author of this thesis is visualized. It can be argued that all given query points are

within the desired cluster. The search engine must now decide how the final similarity

should be calculated. In the simplest case, all query points are averaged in the feature

space to get a new query point. The generation of convex or concave similarity shapes is

more complex, but provides advantages if the cluster has no circular borders. Especially

the first two methods require the use of a simple distance measure. Otherwise the

calculations may become overly complex.

The Rocchio’s formula [105] is based on the vector space model and represents the

query type in figure 2.4(a):

Q1 = Q0 + β

n1∑
i=1

Ri

n1

− γ
n2∑
i=1

Si
n2

(2.1)

where Q0 is the original query, Ri is the feature vector for the relevant document

i and n1 the number of relevant documents. This formula also considers non-relevant

documents Si by subtracting them from the query. The importance of the two sums can

be justified by the weights β and γ [57]. A second formula for query point movement by

Porkaew et al. [98] would be:

C[j] =

n∑
i=1

wiEi[j]

n∑
i=1

wi

(2.2)

where E1 to En are the n query objects/feature vectors and w1 to wn are the cor-

responding weights. C denotes the resulting centroid to be used as the next query.

Parameter j stands for a single dimension of the feature vector. The second approach

depicted in figure 2.4(b) assumes, that all relevant documents lie close to each other in

the feature space. The query points are clustered to a maximum of N clusters. For each

cluster, the point closest to the centroid is used and weighted according to the cluster

size. These form the next multi point query M = 〈n, P,W,D〉, where P is the set of

points, W the corresponding weights and D is the distance function between two points.

In this case — also proposed by Porkaew et al. [98] — the distance between M and any

point x is:

37

D(M,x) =
n∑
i=1

wiD(Pi, x) (2.3)

The third approach (fig. 2.4(c)) is a multi point query, where each query point is

taken as a separate query and the final result is merged from the sub results. This could

be done by applying weighted sums, fuzzy sets or else. An example is the approach

by Fagin [37], who interprets results as graded sets. They are basically lists sorted by

similarity and set characteristics. He proposes to apply the basic Fuzzy rules defined by

Zadeh [147]:

• Conjunction:

µA∧B(x) = min{µA(x), µB(x)} (AND)

• Disjunction:

µA∨B(x) = max{µA(x), µB(x)} (OR)

• Negation:

µ¬A(x) = 1− µA(x) (NOT)

Using the disjunction would directly produce the concave shape depicted in fig. 2.4(c).

In general, the merging approach which is most suitable for a given use case cannot

be decided. This highly depends on the nature of the implemented features. Systems

designed for experts should offer a choice, but for occasional use a decision has to be

made by the administrator or the system itself.

This problem applies to a single feature with multiple query points and also to multiple

disjunct features for a single query image. Further a more complex combination of these

cases can be imagined. The proposed query language [95] offers the ability to create and

use those queries. Though, it does not define the way of merging. A fourth merging

alternative is the weighted sum of sub results (fig. 2.4(d)), where the similarities for all

query points are added up and normalized [93]. Another, non-linear fusion approach

called “super-kernel fusion” has been presented by Wu et al. [144].

2.1.7.2. Communication Protocols

It is remarkable that even after several years the existing prototypes are not yet estab-

lished in daily life. Probably one reason is the diversity of approaches and the lack of

interoperability. Recently emerged communication protocols could be the key to link

many smaller systems together.

38

A communication protocol for this purpose, called Multimedia Retrieval Markup Lan-

guage (MRML), is proposed by Müller et al. [81]. It is based on XML, has a formal

specification and is already in use. The most recent proposal is version 2.0.

Currently, a de-facto standard for textual retrieval is emerging and gaining popularity.

The Open Search Interface [1] is developed by A9.com. It wraps up several XML formats

in order to allow federated search across the web. The whole standard is based on the

assumption, that specialized engines are best suited to certain domains. Hence, a unified

communication between clients and search engines is meant to be the best approach.

2.1.8. Categorization

Automatic image categorization — letting a machine determine, which semantic category

an image belongs to — always involves some kind of more or less sophisticated machine

learning. Common techniques are Artificial Neural Networks (ANNs) [33], Support

Vector Machines (SVMs) [54, 141, 150] and Self Organizing Feature Maps (SOFMs) [22]

or Decision Trees (DTs) [114]. Besides other techniques, there are two main approaches

for machine learning, supervised and unsupervised.

Unsupervised techniques have no real need of training sets and manual annotation.

They take a given set of input and try to find a describing model. A common way of doing

this is clustering the data where no additional information is needed. The supervised

techniques have in common that they are optimizing certain parameters to satisfy a

training set with respect to certain classes as good as possible. A given input should

lead to a defined output. An intermediate discipline is the semi-supervised learning,

where a labelled training set is provided to learn a set of samples. This approach is a

trade-off between the effort of annotating large amounts of data and the lack of semantic

information.

In this investigation it is attempted to automatically build up descriptors based on a

multi-feature query language. It is essential to provide at least a minimal ground truth,

if certain concepts are to be learned in conjunction with a keyword. It can either be

manually prepared for this purpose or has to be derived from the information context.

This feeds essential information into the learning algorithm to optimize the descriptors.

Thus, a supervised or semi-supervised approach is required if high-level semantics are

to be learned. Semi-supervised learning has been successfully applied in image retrieval

software, such as the “Multimedia Analysis and Retrieval System” [126] by IBM. The

aspect of semi-supervised learning is further expanded in section 6.6.

39

2.2. Own Preliminary Work

This section summarizes related work of the author prior to the PhD itself, mostly

contained within the master thesis [90].

2.2.1. Query Language

Prior to the PhD work, a CBIR query language has been developed by the author of this

thesis [96]. It is based on the Lucene Query Parser [6] which defines a common language

for full text search. The language allows queries similar to those used in traditional

search engines and the parser is generated by JavaCC. This approach tries to merge key

design principles of different languages. Like in OQUEL [134], queries are kept as simple

and natural as possible. Yet, to provide a high machine readability, a strict grammar

like in SQL is defined. The main extensions to provide CBIR functionality are:

fuzzy related operators and a nested two-layer grammar. The boost parameter for

terms in the Lucene parser [6] has been extended in the master thesis of the author to

multiple TermParams allowing additional control of fuzzy result sets [90].

To provide a high extensibility the grammar is split into two different layers. The basic

layer (see 2.2.2) is parsed and interpreted by the search engine directly. This part of

the grammar is predefined and fixed. Users may specify which meta information should

be searched for by simply using fields. Typically these are fields like title, content,

author, creationdate. Images hold other fields than normal text documents, typically

Exchangeable image file format (Exif) and IPTC information. In the near future, this

information may be replaced by the XML based XMP [104]. Additionally, a CBIR

environment provides one or multiple feature vectors holding low-level information about

the pixels. These feature vectors can be added by plug-ins, each one having a unique

identifier which is the field name for content based queries. The difficulty now lies in

specifying how the query feature vector is entered. There are at least three different

ways possible:

• ID of an image stored in the repository

• Uniform Resource Identifier (URI) of a query image

• specification of the feature vector itself

The simplest way is to use an existing image for a query (query-by-example). Images

already in the repository have the prepared feature vector available. Specifying the URI

40

of an image requires the engine to load the image and to extract the feature vector. The

most advanced and complicated way is to let the user specify a feature vector in detail.

As a custom feature vector may contain any kind of proprietary data, offering an all-

embracing language is not possible. Thus a second layer is added to the query language.

A Term may contain the string <FEATURE START> [<FEATURE CONTENT>]

<FEATURE END>. The parenthesized part<FEATURE CONTENT> is extracted by

the search engine and passed to the responsible plug-in. The plug-in is fully responsible

for parsing and interpreting this string to return the object representation of the feature

vector.

2.2.2. Grammar

Below, the grammar of the query language in Extended Backus-Naur Form (EBNF).

Conjunction ::= [<AND> | <OR>]

Modifiers ::= [<PLUS> | <MINUS> | <NOT>]

Query ::= (Conjunction Modifiers Clause)*

Clause ::=

[LOOKAHEAD(2)

(<TERM> <COLON> | <STAR> <COLON>)

]

(Term | <LPAREN> Query <RPAREN> [TermParams]

)

Term ::=

(

(<TERM> | <STAR> | <PREFIXTERM> |

<WILDTERM> | <NUMBER> | <URI>)

[<FUZZY_SLOP>]

[TermParams [<FUZZY_SLOP>]]

| (<RANGEIN_START>

(<RANGEIN_GOOP>|<RANGEIN_QUOTED>)

[<RANGEIN_TO>]

(<RANGEIN_GOOP>|<RANGEIN_QUOTED>)

<RANGEIN_END>)

[TermParams]

| (<RANGEEX_START>

(<RANGEEX_GOOP>|<RANGEEX_QUOTED>)

41

[<RANGEEX_TO>]

(<RANGEEX_GOOP>|<RANGEEX_QUOTED>)

<RANGEEX_END>)

[TermParams]

|

(<FEATURE_START>

[<FEATURE_CONTENT>]

<FEATURE_END>)

[TermParams]

| <QUOTED>

[<FUZZY_SLOP>]

[TermParams]

)

TermParams ::=

(

<CARAT> boost (

([<HASH> maxCount] [<AT> threshold])

| ([<AT> threshold] [<HASH> maxCount])

)

| <HASH> maxCount (

([<CARAT> boost] [<AT> threshold])

| ([<AT> threshold] [<CARAT> boost])

)

| <AT> threshold (

([<CARAT> boost] [<HASH> maxCount])

| ([<HASH> maxCount] [<CARAT> boost])

)

)

2.2.3. Plug-Ins

The plug-in concept of the retrieval framework described in [90] allows the definition

of any new feature. To make such a plug-in available in this language, only a few

requirements need to be met. The plug-in needs an identifier which is automatically

used as a term field. With this information it is already possible to formulate queries

containing an example image (either by internal id or URI). The tricky part is to develop

a syntax for user defined feature vector information embedded in a query. As features can

be arbitrarily complex, each plug-in should use a simple default language to describe the

42

contents of a feature vector. Otherwise the embedded data string of a query is forwarded

directly to the feature plug-in where it needs to be converted into a valid feature object.

2.3. Identification of Problems

This section highlights major problems in the research fields analyzed in section 2.1.

This collection of issues is used to identify the aims presented in section 2.4.

The whole MIR area has to deal with fuzziness and uncertainty. Both approaches —

either using primitives or semantics — are not yet suitable to create satisfying results on

large data bases. A retrieval system based on low-level information is too imprecise, as

a deeper understanding of the content is missing. A semantic based approach requires a

lot of human annotation effort to be correct. Semantics created automatically also rely

basically on low-level analysis and some human annotation.

A great deal of the problems in MIR seem to be caused by an imperfect human-

machine interaction, missing machine intelligence and a lack of standards.

Most papers in section 2.1 indicate that human beings are still better in generic object

recognition than machines. Thus, the information which is already available should be

used in the best way possible.

2.3.1. Browsing

For browsing, the search engine must present an initial overview of the contents. In pure

CBIR, this is usually done by generating an initial image subset of the database. This

can either happen at random or by a specific query from the user. Based on the user

input, a more specific overview of probably related items must be generated.

In CBIR, often a number of thumbnail images is presented to the user [50, 85]. It is

even possible to present a quite large number of images. Unlike text, image content can

often be perceived at a glance. The user may now scan the results for potential matches.

It is still an open question, as to how the results should be arranged. Several different

ways [26, 69, 71] have been already proposed, each one with certain advantages and

drawbacks. Sorting these hits by categories or visual similarity seems to be beneficial in

many cases. To find eye-catching images, a random distribution seems to be even more

useful, while the user does not necessarily need to know the arranging method [106, 108].

The challenge is to find a convenient solution.

43

2.3.2. Query Language

Independent from the user interface, each search engine needs to support queries. Usually

they define a string representation covering the whole set of parameters. Internally the

string is parsed and probably optimized before it is executed. The application area has

a strong influence on each individual grammar. Image retrieval systems often provide a

visual interface to compose queries.

Currently, the CBIR systems available mostly seem to use a proprietary query lan-

guage, specifically adapted to each particular implementation. Several attempts have

been made (e.g. FOQL [84], OQUEL [134]), but none of the proposed languages was

highly successful in CBIR yet. The main reason for that seems to be the immense vari-

ability of requirements to such a language, as each system focuses on a certain field. In

the current research the most important aspects about querying are:

• How to formulate a meaningful query?

• How to support as many useful queries as possible?

• How to support the user in searching/browsing the results?

Another issue is the possible variety of user expertise. People working at workplaces

with an immense amount of data, such as travel agencies or libraries are used to deal

with complex query strings. But these queries are only special to a single application

area and require a good deal of training.

2.3.3. Relevance Feedback in Search Results

Relevance feedback requires user interaction to work properly. The system behaviour

is adapted to the user. For this reason the newly provided information must be more

correct than the current situation. Otherwise the future results cannot be improved

in quality. Further, the user is probably forced to do additional work which actually

slows down a current retrieval session. In such a case, the search engine taxes the user’s

patience.

2.3.4. Features and Similarity Measures

There are two important characteristics of a feature in retrieval scenarios. The feature

vector requires to be highly descriptive for a given document and there needs to be a

44

similarity measure for each two feature vectors of the same kind. A feature vector usually

captures one certain document feature in a highly condensed format. This format does

not allow a reconstruction of the original data, but it is describing a certain part of it.

The multi dimensional nature of many feature vectors turns out to be very difficult

to define a generally valid similarity measure. Each feature has its own structure and

every dimension in the structure may reflect specific semantics, which cannot be easily

captured. In the case of simple mathematical vectors, a default distance measure could

be applied. Often a low dimensional Minkowski/Lm distance is used. Very popular mea-

sures are the Euclidean distance (L2) and the Manhattan distance(L1) [90]. Standard

index structures like multi dimensional trees such as the R-Tree [51] could be applied.

In some cases, the vector representation is too coarse to capture all aspects of a feature.

A more complex distance calculation between two features could be based on another

feature model. The similarity function does not even have to be inverse.

An example is a set of keywords attached to each image interpreted as image feature.

It has been implemented by Pein [89] in an earlier CBIR prototype. The image to be

retrieved is represented by the set I = {a, b, c, d} and the search query is Q = {a, c}
The similarity between these sets could be defined as sIQ = |I∩Q|

|Q| , which is the relative

occurrence of the query terms in the image feature. In this example, the resulting

similarity would be sIQ = {a,c}
{a,c} = 2

2
= 1. Swapping image and query set, the result is

different: sQI = |Q∩I|
|I| = {a,c}

{a,b,c,d} = 2
4

= 0.5.

From a users point of view, this behaviour appears consistent. By specifying several

keywords, one would expect, that the highest ranked results would contain all of them.

Consequently, the relative amount of matches should be taken into account.

In these cases none of the basic feature vector theories can be applied without care.

This disqualifies these features for many standard optimizations. But sometimes other

ways of feature specific, but more efficient indexing can be found. E.g. for keywords,

the reverse index is a highly efficient structure.

2.3.5. Annotation

The annotation problem is the foundation of all object recognition effort. Single images

and small repositories can be easily annotated by humans whereas a growing amount of

information cannot be handled any more by a single person. Due to the fact that object

recognition is still an open problem, it is necessary to find a practicable workaround for

the time being.

45

2.3.6. Evaluation of Retrieval Systems

It is claimed that benchmarking in CBIR is a very controversial topic [139]. Due to

the immense fan out of use cases and application areas, the aims of all the systems

vary. It is a common opinion that synthetic benchmarks could kill innovation and

causing new systems to be focused on solving the pre-defined tasks. For this reason,

generic benchmarks should only apply to already established and small application areas.

Judging the whole of research by a set of standardized benchmarking criteria would

probably slow down innovation.

2.3.7. Retrieval Frameworks

It is obvious that until now no CBIR framework has made a final breakthrough. This

might also be caused by the diversity of objectives.

An important problem is the lack of a generic indexing structure for features. Possible

approaches are not implemented within the boundaries of the thesis but are going to be

considered in the future. Examples are used in the prototypes by Joshi et al. [63] and

Quack et al. [100].

Which merging approach for sub-queries is most suitable for a given use case, cannot

be decided generally. This highly depends on the nature of the implemented features.

Systems designed for experts should offer a choice, but for occasional use a decision has

to be made by the administrator or the system itself. The proposed query language [95]

offers the ability to create and use complex Boolean queries. However, it does not define

the way of merging.

2.3.8. Categorization

In the field of image recognition, several case specific problems arise. A major problem

is to find suitable samples representing a certain object. For optimal learning, the object

has to be totally isolated from the image background. Otherwise, the algorithm may

also learn to recognize irrelevant noise instead of the relevant object only.

Further, most images do contain more than a single object. In that case, it is important

to distinguish them and inform the learning algorithm which region represents which

object. Overlaps, irregular shapes and high-contrast patterns increase the difficulty of

automatically clustering images.

It is also important to keep in mind, that multiple samples of a single concept could

differ significantly from each other. Using low-level descriptors and simply calculating

46

a single average value or centroid is not sufficient in many cases. Then a “divide-and-

conquer” approach for detailed modelling is required, as investigated by Wu and Nevatia

[143]. They propose an iterative algorithm to subsequently add specific classifiers to a

classification tree. If the category to be learned cannot be matched by a simple classifier,

the training samples are spilt into smaller and more specific clusters. As a result, the

classifier complexity grows with each single split and methods for joining them afterwards

are required.

2.4. Aims and Objectives

The recent overview provided by Datta et al. [30] concludes with the statement, that

the research focused more in systems, feature extraction and relevance feedback than in

application-oriented aspects such as interface, visualisation, scalability and evaluation.

Thus it seems desirable to improve research in these areas.

According to Lew et al. [70] there are several recent research topics trying to “bridge

the semantic gap”. In human-centred computing the system tries to satisfy the user

while keeping the interface easily understandable. One possible approach is to apply

machine learning to connect low-level features to high-level semantic concepts

The currently available technology can be applied to a CBIR system. This thesis

examines a possible way of reducing the semantic gap. It focuses on how to link low-

level features to high-level semantics. Key technologies to achieve this aim are:

• a user interface allowing guided browsing of an image repository

• a query language that can handle arbitrary features

• a core retrieval system supporting multiple feature vector types simultaneously

• a decision tree based learning algorithm to build category-related queries

User Interface The user interface to be developed needs to address the problems stated

in the former sections.

Section 2.3.1 indicates that the process of retrieving images depends on the users

needs and the particular use-case. Thus, the user interface should offer guidance for

inexperienced users and detailed control for experts.

47

Query Language In section 2.3.2 the query language is identified to be the main con-

nection between user interface and retrieval system. It is attempted to determine the

crucial parts of a versatile language and to define a grammar covering them. Further,

this language should be easily convertible between human-readable, XML and machine

representations. The recently developed query language [95] is used as a foundation and

is examind in detail.

Core System The core system relies on mathematical models rather than human in-

teraction. The back end of the project deals with the problems arising on pixel-level and

fuzzy definitions. Having no universal feature covering all requirements in a single fea-

ture, it seems to be necessary to keep on researching new feature models and similarity

measures. Also, these different features need to be mergeable.

A CBIR framework should wrap up all of the aims above into a fully functional system.

The optimal system would be flexible enough to be set up in many different use-cases.

Categorization To reduce the need of building up a suitable and annotated image

repository, some prepared image collections with category annotation are used in this

investigation. These images usually represent a single concept and the object of interest

is either located in the centre or fills almost the complete image. This approach largely

avoids the trouble of image segmentation.

A couple of previously implemented low-level features are then used as a basis for

classification. Having various features available for optimization allows for determining

the best ones for each single object class. The use of a query language with Boolean

operators allows the learning algorithm to specify multiple independent clusters at the

same time. Each single cluster may vary in its boundaries and the feature used.

The resulting query descriptors should be describing a given concept as well as possible.

As with most learning algorithms, the problems of over-fitting and unpredictable run

times have to be addressed. Thus, suitable heuristics for this learning scenario need to

be developed.

Image collections containing several images for a single concept are used. Two can-

didates are the Caltech-101 [40] and the ETH-80 [67] repository. Both contain between

31 and 800 samples for each contained category and the main object is centred in the

images. As all feature vectors used within this thesis are global features and no segmen-

tation is applied, it is important for the image sets to fulfil the following preconditions:

1. Each image represents a single object/concept

48

2. The object/concept to be learned fills most of the image area, is centred and

completely visible

3. The ETH-80 collection provides additional mask files which define the relevant

segment

Finally, the developed system is evaluated. This is done by comparing the query

descriptors learnt in the categorization stage to an existing approach.

49

Chapter 3.

Methods Employed

This chapter points out certain technologies that will be applied for a CBIR system. A

prototypical retrieval system is developed in order to evaluate the research hypothesis

(section 1.1).

Typically, a CBIR system consists of user interface, query-processing-module and the

image database (figure 3.1). The user interface is probably the most important part of a

search engine. An engine producing perfect results is of no value, if it cannot be handled.

It is necessary to reduce the perceived complexity for the user. The approach is to provide

graphical guidance while hiding the complex background theories as much as possible.

This is especially useful for inexperienced users. Experts have usually far less difficulties

in understanding and using complex interfaces. A real life example is the comparison

between graphical user interfaces and console applications. Programs started from a

console offer several parameters for detailed configuration. This requires knowledge of

the program name and the parameter syntax. Their graphical representations are in

many cases much easier to handle, but they offer less parameters and actions. For this

reason, expert users should always be able to have a lower level access than the beginner.

3.1. Browsing

A basic browsing loop during retrieval is shown in figure 3.2. The user starts with

an initial query, waits for the results and then checks the results. In the best case,

the desired content is already displayed on a prominent position on the screen. If not,

the user may navigate through more results that are not yet visible on the screen. To

improve the results, the initial query may be refined or even rewritten completely to

initiate a new search.

This work flow contains all the important stages that need to be presented to the

50

Figure 3.1.: Ranking in a Typical CBIR-System [133]

Query

Results

Search

Refining

Navigation

Figure 3.2.: Retrieval-Workflow [94]

51

searcher. Each stage requires some methodology and techniques applied in the retrieval

system.

For efficient browsing, the user needs to see some content of the available repository.

This could be a structure of available categories, the results of a preceding search or

other information.

The developed system does only provide a one dimensional list of results, as the

aspect of browsing cannot be investigated in depth within this thesis. This list is always

generated by a query which either generates a set of random results or represents a

normal retrieval.

3.2. Query Language

In section 2.3.2, a set of important aspects for the design of a query language is men-

tioned. The requirements for the query language applied in this thesis are derived from

these aspects. Converting the users mental model into something machine readable in-

evitably causes a loss of information. The task of a query language is to minimize this

loss. Based on this assumption, the requirements are composed and presented below.

3.2.1. Query Language Requirements

Which aspects does a query language for a CBIR system need to cover?

• Boolean Queries

• Nested Queries

• Feature Vector Queries

• Keyword, Tag Queries

• Querying Concepts (“discrete”/fuzzy):

– Weights and Preferences

– Filters

– Temporal Aspects [53]

• Technology:

– Query-By-Example (existing image/upload tool)

52

User
Expertise

User
Interface

Level of
Automation

Semantic
Level

Specialist

Intermediate

Amateur

Low

High

Average

Command Line
+

Graphical Tools

Selected
Graphical Tools,

Guided

Graphical Tools

All

All

High-level only

Figure 3.3.: User Experience Levels

– Query-By-Sketch (drawing tool)

– Query-By-Feature (input tool)

As the level of user expertise may differ, the interface needs to provide multiple levels

of complexity. Thus, is seems to be necessary to provide several user interface levels

(fig. 3.3). The users can be split into three main categories:

specialist users Basic query language with all possible parameters and constructs, string

based “console”

intermediate users Complex visual language constructs to compose queries close to the

abilities of the underlying language, some tool support

amateur user Simplified visual language, containing only the essentials and much guid-

ance/tools

Beginning with the lowest level, more and more complexity of the underlying query

language will be hidden. This usually leads to better usability as well as less freedom of

manipulation. In fact, the whole retrieval system has to rely on a sound and powerful

query language.

On higher abstraction levels, the user may be guided through a use case dependent

work flow. The system could decide in the background, which low-level features suit the

53

Table 3.1.: Query Composing

Type Advantages Disadvantages
Query String highly flexible must be learned

complex features tedious
Query-By-Example simple seed image by upload

or other query
Query-By-Sketch no image required relies on user’s painting skills

requires canvas
Query-By-Feature no image required user needs basic

feature understanding
Random trivial trivial

rough overview
Browsing by good overview requires structured/
meta data directed search annotated content

users needs and how they should be weighted. This functionality needs either to be set

up by an experienced administrator, or by a learning algorithm. These could be realized

with techniques like use neural or Bayesian networks. The training is usually performed

by relevance feedback or dedicated training sets [16, 33, 97, 109, 120]. In section 3.7, a

learning approach is presented.

3.2.2. Query Composing

Especially amateurs expect to see a well designed interface. The learning curve ought

to incline very gently. Otherwise the user might be discouraged before even entering the

first query. Being all about images, the CBIR scenario virtually suggests itself a visual

query interface. Several query types related to CBIR are listed in table 3.1. Though the

most flexible approach, plain query strings are only of use, if they are easy-to-use or for

experts. QBE is still feasible with URLs and Query-By-Feature (QBF) could also be

represented by a serialized representation. The Query-By-Sketch (QBS) finally requires

a graphical interface. To complete the collection of query types, the random and meta

data queries are also important. Without any random capabilities, QBE could not work

properly. No one can expect that the user has suitable example images at hand to be

uploaded.

Composing queries by drawing them with objects from a toolbox directly, shows the

user the most important possibilities. Without reading any documentation, the user can

see useful constructs and try them out directly. Further, a visual query is not based on

54

natural language. This keeps specifications clear and allows high complexity without

any parsing errors.

The main task is to reflect all essentials of the underlying query grammar. Special

nuances should always be possible by falling back to a basic query string. With a sound

query grammar, the mapping from query objects to visual components and back is not

a difficult task. Even the generation of basic input forms automatically created by the

use of formal field definitions can be applied.

In addition, the visual query language should at least provide support for Boolean

queries, image features and some parameters. Especially the features require attention,

because entering them manually can be a very tedious work. There should be a visual

tool to create and alter features. Otherwise, it can only be used for QBE. Considering

the fuzzy nature of CBIR, these features need to understand range queries and wild

cards.

Having graph like queries, it is of importance, how the objects are spatially arranged.

The amount of overlaps and crossing joints should be low. Of course, incremental query

building should be also supported, allowing to integrate newly found information into

the query. This way, the query might grow very complex. In this case, sub-queries

should be visually collapsed to hide details of an internal sub-query.

3.2.3. Query Language Principles

According to the problems mentioned in section 2.3.2, the query language should follow

these basic principles:

• keep it simple

• keep flexible

• keep it parseable

• avoid ambiguities

• stick to a reasonably sound mathematical grammar

This ensures both a reasonably understandable language as well as a sound theoretical

background. The basis chosen for this is the language proposed earlier [95]. Designed

to be a flexible CBIR language, it provides all the functionality needed for the next

steps. It is also easily convertible into an object-oriented format. These objects will be

55

the nodes of the query graph. These nodes can hold and display all the information of

the query. That is a visual representation of query images or a given feature as well as

additional parameters.

3.3. Relevance Feedback

Relevance feedback gives the user some control to influence the search results. Usually

the user can judge the quality of a result set and give the system hints to improve future

retrieval sessions. The feedback mechanism is always closely related to the user interface,

either to allow direct input or to analyse the users behaviour in the background.

Short-term relevance feedback can be implemented by simply altering the query in the

background. If the user dislikes certain images, they are added as a negative example

with a certain threshold to remove a couple of images from the result set.

Long-term approaches require much more attention, as the index itself is altered. The

impact of wrong information needs to remain low and the weight of positive must be

higher than negative ones Müller et al. [77].

The integration of relevance feedback in the developed system is not considered due

to resource constraints. Nevertheless, a short-term relevance feedback mechanism is

technically available on a low level. The boolean structure of the query language itself

offers a couple of parameters to alter results.

3.4. Features and Similarity Measures

As the application areas for CBIR are multifaceted, it seems to be necessary to use

multiple feature vectors to describe similarity.

3.4.1. Feature Evaluation

The feature vector evaluation can be measuring several parameters of each feature vector.

An exemplary evaluation dealing with the impact of the query image size is described in

section 6.1. Due to restricted resources, further measurements have not been prepared

within this thesis. The case study follows a common pattern that can be applied to

other parameters as well.

This pattern (algorithm 1) uses multiple modifications of the original image as query.

This is done by scaling it down in several steps to square images of defined width and

56

height. The loss in accuracy is measured by the decline of similarity compared to the

original feature vector and also by determining the rank of the original image in the

result of the altered query.

Algorithm 1 evaluateFeatures()

1: for all i ∈ I, f ∈ F do
2: Scales← {160, 80, 40, 20}
3: for all scale ∈ Scales do
4: iscaled ← downscale(i, scale)
5: f(iscaled)
6: s← calculateSimilarity(f(iscaled), f(i))
7: rank← pos(i, getRanking(f(iscaled)))
8: end for
9: end for

3.4.2. Feature Normalization

It is obvious that every feature vector developed has different characteristics. Sec-

tions 2.1.4 and 2.3.4 discuss some examples, where data format and the maths model

are of various kinds. Also, calculating the similarity of two feature vectors highly differs.

Earlier tests with implemented feature vectors indicated that the similarity values of two

different feature vector models cannot be compared directly. While one feature vector

model may usually rank the first 100 hits with a similarity of 0.99, another feature vec-

tor model may hardly ever return such a high value except from identical images [90].

Thus, it seems to be beneficial to provide a normalization mechanism for feature vector

plug-ins.

The challenge is to determine a useful normalization function that can be applied

to every similarity calculation to make the results comparable with other, completely

unrelated features. To do so, the behaviour of the similarity distribution of each feature

vector is required.

3.4.2.1. Similarity Profiles

An empirical approach is used in order to determine the individual characteristics of

a given feature vector model. This information is needed to normalize the similarity

distribution of the model.

Every feature is tested against the same image dataset. Every image is used as a

query to generate a full result set of the complete repository. These results are sorted

57

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

normalized ranking position

si
m

ila
rit

y

Figure 3.4.: Optimal Similarity Profile

by decreasing similarity. For each ranking position, the similarities of all search runs are

accumulated, i.e. the average, the highest and lowest similarity.

The resulting profile consists of three monotonic decreasing discrete functions with

rank ∈ [1, |I|] and average(rank) ∈ [0.0, 1.0];min(rank) ∈ [0.0, 1.0];max(rank) ∈
[0.0, 1.0]. These functions can be easily compared against each other and are the starting

point for a normalization function. Naturally, these profiles depend on the image dataset

used and may look significantly different with another repository. In section 6.2, two

image collections, mainly consisting of photographs are used.

3.4.2.2. Determining a Normalization Function

Aim of the normalization is to achieve a steadily decreasing profile. The first ranked

image should have a similarity of 1.0 whereas the last ranked image should be at 0.0.

In between, the profile should decrease steadily. In terms of a function, the optimal

normalized profile would be:

s (x) = 1− x;x =
rank

|I|
(3.1)

where rank is the ranking position of an image, |I| is the size of the repository and s is

the similarity of the image to the query. The optimal profile from eq. (3.1) is visualized

in fig. 3.4.

A normalization function requires to have the following characteristics:

• every value x ∈ [0.0, 1.0] must be mappable to an f(x) ∈ [0.0, 1.0]

58

• f(0.0) = 0.0, f(1.0) = 1.0

• f(x) must be monotonic ascending

• determinable by an algorithm

• fast calculation

The retrieval system requires every feature vector plug-in to return only similarity

values in the range [0.0, 1.0] (section 3.6.2). Thus, every normalized value must also lie

in between these boundaries. The end points of this range are fixed and must not be

changed. Further, the original ranking order must also be maintained. This demands

for a monotonic ascending function, preferably strict. To allow the system to adapt to

changing environments, the normalization function should be automatically generated

by an algorithm. Finally, the normalization should be fast to compute as it needs to be

performed for every result in every search request.

In order to generate a normalization function, a set of data points
∑n

i=1 Pi(xi, yi) for

interpolation can be extracted from the profile. These data points should be chosen

carefully to ensure a high quality. If too few points are chosen, the interpolated function

may become inaccurate. Too many points may unnecessarily slow down the calculations.

For interpolation between each two points P0(x0, y0) and P1(x1, y1) in the normaliza-

tion function, the common linear model y = y0 + (x− x0) y1−y0x1−x0 is chosen. It is fast and

ensures keeping the monotonic characteristics of the profile. Polynomial or spline inter-

polation may cause overshooting of the curve, thus changing the ranking order. Also,

a perfectly smooth normalization function is not mandatory, as a very high accuracy is

not demanded and the functions does not need to be differentiated.

3.5. Evaluation of Retrieval Systems

The current effort put in the development of benchmarks is immense. Whole confer-

ences are determined to apply benchmarks to restricted application areas. It is almost

impossible to find a globally useful benchmark.

Nevertheless, default metrics such as precision/recall should always be used when

testing the performance of a system. Also it is in the responsibility of each researcher

to pick an appropriate data base for testing. Each available benchmark has its right to

exist, but one must carefully choose the right ones.

59

In this thesis, two existing databases (i.e. ETH-80 and Caltech-101) are used for

evaluation. The basic metrics used are precision π and recall ρ that are defined as

follows according to van Rijsbergen [136]:

π =
tp

tp+ fp
=
|R ∩ retrieved|
|retrieved|

(3.2)

ρ =
tp

tp+ fn
=
|R ∩ retrieved|

|R|
(3.3)

where tp stands for the true positives, fp for the false positives and fn for the false

negatives. The true negatives tn are not used in these equations (see appendix A). In

order to capture both precision π and recall ρ in a single value, the F-Measure or the

effectivity measure by van Rijsbergen [136] is applied:

Fβ = (1 + β2) ∗ π ∗ ρ
β2 ∗ π + ρ

E = 1− 1

α(1
π
) + (1− α)1

ρ

(3.4)

where β and α are weights to modify the balance between precision and recall. In

section 6.6, the results of the system are also compared to a reference learning approach.

3.6. Framework

The retrieval engine is supposed to be powerful enough to handle both textual and

content-based queries. Primarily the engine needs to fulfil the requirements given by the

user interface. Mainly the previous prototype [90] and the Lucene tool kit [6] were used.

3.6.1. Similarity Search

The main problem is the lack of a generic indexing structure. While small reposito-

ries can handle a linear scan, large ones require better solutions. Approaches like pre

calculating clusters of similar images and the use of multidimensional trees are to be

implemented. Examples are the prototypes by Joshi et al. [63] and Quack et al. [100].

In order to minimize potential side effects of index based retrieval, no indexing technique

is applied. Instead, a full scan is performed during ranking.

60

3.6.2. Merging/Fusion

The main difficulty of combining sub results from a CBIR system is the fuzzy nature

of the results. Some simple features with filtering character (e.g. keywords) deliver a

rather clean set of hits. But it is essential to have a a fuzzy model for merging these

with highly similarity based features. Those results are usually a sorted list [37, 103].

The approach by Fagin [37] interprets results as graded sets, which are lists sorted by

similarity and set characteristics. He uses the basic rules defined by Zadeh [147].

The text retrieval concept of boosting single terms by any float value is adapted to the

extended engine. Before merging sub results, the similarities are boosted as specified to

shift the importance into the desired direction.

An additional acknowledgement to the fuzzy nature is the use of additional set opera-

tors to keep the results at a reasonable size. The minimum similarity is a value between

0.0 and 1.0 and forces the engine to drop all results below this similarity threshold. As

the efficiency of the threshold highly depends on the available images and features, a

maximum size parameter limits the result to the specified size.

In the current prototype, a query q (eqn. 3.5) is defined in the following way:

q = C ∪ C+ ∪ C− (3.5)

c = subquery or term (3.6)

C = {c|c ∈ q} (3.7)

t = field/feature name and data f(i) (3.8)

f(i) = feature of image i (3.9)

where c is a subquery or term and t is a single term that can be processed as a single

retrieval request. The subsets C, C+ and C− contain the clauses for SHOULD HAV E,

MUST HAV E and MUST NOT HAV E. The similarity is defined as:

s(f(iq), f(ix)) = similarity of iq to ix by f (3.10)

= sx (short hand)

where s(f(iq), f(ix)) is the similarity between two images iq and ix. It is defined for

each feature f independently. The result sets are defined as:

61

r(q) = [r(C+) ∩ r(C)] \ r(C−) (3.11)

r(t) = {(ix, sx)|ix ∈ I ∧ sx ∈ [0.0, 1.0]} (3.12)

r(c) =

r(q) if c is subquery

r(t) if c is term
(3.13)

where the results r(cx) of each boolean clause cx are a set of tuples (ix, sx). Each

one contains a retrieved image i from the repository I and the similarity s to the query

feature. These sub results are merged according to the unary operators of each clause:

r(C+) = I

n⋂
x=1

r(c+x) (3.14)

r(C) =
n⋃
x=1

r(cx) (3.15)

r(C−) =
n⋃
x=1

r(c−x) (3.16)

First, the MUST HAV E results r(C+) (eqn. 3.14) are intersected, which hopefully

reduces the total search space for the SHOULD HAV E clauses that generate r(C)

(eqn. 3.15). This possibility of optimization is the main reason why no established

fuzzy concept as proposed by Fagin [37] or Zadeh [147] is currently used. Based on this

subspace, the second part of sub results is collected. These are joined and obtain a new

weighted relevance. Finally, the MUST NOT HAV E results r(C−) (eqn. 3.16) are

removed from the final results r(q) [90].

3.7. Categorization

According to Schapire [113], classification tasks can be successful when using multiple

“weak learning” algorithms. An important requirement for each weak learning algorithm

is the ability of having at least a small classification advantage over random guessing.

This section describes a learning approach published by the author of the thesis in more

detail [91].

62

3.7.1. Unsupervised Learning

A totally unsupervised learning is not feasible for directly linking keywords to learned

categories. Yet, it could be applied in order to build unlabelled clusters of similar images

for each feature space. These clusters may be useful as an index for fast retrieval or to

provide a quick overview of the repository [112]. They could also be manually annotated

afterwards, if they are mainly describing a single concept.

Within the boundaries of this thesis, this type of learning is not applied.

3.7.2. Supervised Learning

The proposed theoretical model is based on the following assumptions which are essential

to justify the decisions described below. Most of which are necessary simplifications to

tackle the still unsolved problem of the “semantic gap” [61, 124].

1. High-level semantics can be described by a set of low-level features

2. Certain low-level features are efficient in separating a set of relevant images from

irrelevant ones

3. A reasonably large number of mutually independent features must be available to

choose from to capture specific types of similarity

4. A single semantic concept can be represented by highly dissimilar images or image

features (i.e. there is not necessarily a single “best describing feature”)

Following these assumptions, a feature based query language (e.g. [96]) can be used

in machine learning. Each concept to be learned can be mapped to a query containing

low-level features only. The learned query itself would be a set of (boolean) combined

low-level characteristics extracted from a training set. The algorithm suggested in this

thesis analyses the results of CBIR queries to build a classifier. It is similar to the

Cluster Boosted Tree approach by Wu and Nevatia [143], which is based on the AdaBoost

algorithm by Freund and Schapire [42]. In their algorithm, the training set is clustered

according to the features before extracting the most suitable features for each sub cluster.

A drawback of their approach is, that complex features may not be directly suitable for

clustering, as the similarity measure is not necessarily identical to a multi-dimensional

distance.

Capturing disjunctive sample sets of a single concept can be described with a dis-

junction (OR) operator. Samples of a semantic set are likely to have different low-level

63

features. But according to the theory of feature vector based retrieval, series of samples

are expected to be organized in clusters. These clusters are bounded by the features

used. Often, a specific feature can be further optimized by removing irrelevant informa-

tion [99], making it more expressive. Yet, it should not be the task of a single low-level

feature to capture all possible samples and merge them into a single “all-knowing” de-

scriptor. Instead, a higher level descriptor should merge them into a single semantic

concept. According to Zhang and Izquierdo [148], this usually cannot be done by simply

merging low-level descriptors directly, because many low-level features show a non-linear

behaviour.

Some low-level features are very efficient in filtering a certain concept from a given

repository. But inevitably, using only a single feature, the filtered results may still be

cluttered by several false positives. Further filtering may be required and two cases

should be considered separately. If the false positives are very similar to each other,

a negated term (NOT) could remove the unwanted parts from the result. Another

approach to improve a filter is to specify further, unique features to the desired concept.

This can be modeled by a conjunction (AND) to define boundaries in multiple feature

dimensions. Rather than trying to create a single “multi-feature centroid”, the proposed

approach tries to find multiple relevant centroids, regardless of the features used.

The learning algorithm requires a training and an evaluation set. In the case of

supervised learning, both sets are identical. For each image of a concept, the suitability

as a representative query term or “centroid” is checked. This is determined by the ability

of containing many other related images in the query result set. In other words, precision

and recall should be as high as possible.

The best describing retrieval terms can then be further optimized by calculating a

suitable similarity threshold. These optimized terms are then combined in a single

query by the boolean “OR”. If the low-level features applied are suitable to capture the

relevant characteristics for the learned concept, the resulting query should be able to

return a set of concept related images with only a few errors.

In some cases, a set of unrelated images may find its way into the results. This effect

could be reduced by adding representative “AND” or “NOT” terms to a query. This

term should not be closely related to an existing feature in the positive query part to

stress the desired or to “cut out” the unwanted parts with a high accuracy.

The final classification query then needs to be tested against the remaining evaluation

set. The main target is to find the optimal balance between maximum query length and

retrieval accuracy. The more terms are used, the slower the final retrieval will be and

64

the risk of over fitting increases. The query can then be used to calculate the similarity

of any unknown input image to the query-related class, which can also be interpreted as

the probability of belonging to that particular class.

3.7.3. Semi-Supervised Learning

The transition from supervised learning to semi-supervised learning would essentially be

to shrink the labelled training set to a small size. According to Smith [126], a reasonable

size trade-off would be approximately 10%. An alternative way of testing is the leave-

one-object-out cross validation. Such a test, leaving one of the objects of a category out

has been published by Leibe and Schiele [68] using the ETH-80 dataset. A similar test

is performed in section 6.6 for direct comparison.

The semi-supervised learning generally follows the same principles as the supervised

approach section 3.7.2. The main difference is the change in the training set T and the

evaluation set E. Semi-supervised learning uses disjunct sets generated from the known

relevant images.

3.7.4. Definitions

The proposed learning algorithm uses several sets of images. A repository contains a set

of images i ∈ I. In order to start a training session, the repository is split twice. The

concept to be learned is represented by the set of relevant images R. The remaining

images N are considered to be non-relevant. For later evaluation, R is again split into

two sets: the training set T and the evaluation set E. The describing features are

contained in the feature set F .

T ∪ E = R (3.17)

T = E (supervised) (3.18)

T ∩ E = {} (semi-supervised) (3.19)

R ∪N = I (3.20)

R ∩N = {} (3.21)

65

Feature A

Feature B5 2010 2515 30

10

15

5

0

12.5

8.5

21 28.57 16

Figure 3.5.: Feature Space Separation
Description of the relevant documents (black squares) by the use of features A and B.

Irrelevant documents (white circles) should be excluded. Each box depicts a
describable cluster.

3.7.5. Example

A schematic visualization of the concept is depicted in fig. 3.5. It shows a 2 dimensional

space, where each dimension represents the similarity for a single feature. The simplified

example features A and B are extracted from each image and are represented by a single

natural number. The similarity between two feature vectors is a direct mapping from

the distance: sxy = |f(ix)− f(iy)|. The features A and B are assumed to be largely

independent, i.e. they are not (closely) related to each other. An example for sufficiently

independent features are a “colour histogram” and the “contour” of an object which have

no direct relationship among each other.

Relevant images are represented by black squares, irrelevant images by white circles.

The aim of the learning algorithm is to find a query, which contains as few parameters

as possible covering as many relevant images as possible. At the same time, the amount

of irrelevant images should be reduced to a minimum.

In the given example, the relevant images are forming clusters along certain values

of each feature. This is an expected and necessary characteristic, which is required to

learn a concept in the proposed way. It allows to describe a high-level concept with a

66

set of low-level features. The resulting optimized query could look like this:

(fA : [12.5]@1.5 NOT fB : [16]@1.5) OR

fB : [7]@1 OR

fB : [28.5]@1.5 OR

(fA : [8.5]@1.5 AND fB : [21]@1.5)

Every term of this query is used to define a bounded area, where relevant images are

located. The second and third term are the easiest ones. In both cases, they cover a

reasonable amount of hits (5 respectively 3) and only a single false positive each. The

fourth term exploits a useful coincidence, as the images satisfy both features at the same

time very well. In that case, the target area can be reduced effectively by intersecting

both features into a single result set. Term one illustrates a common problem when using

low-level features. The term fA : [12.5]@1.5 describes a large number of relevant images.

Unfortunately, about one third of the results are in fact irrelevant. A considerable part

of the unwanted result can be described by feature B. Subtracting the hits which satisfy

the term fB : [16]@1.5 removes two thirds of the false positives, boosting the precision

of the remaining cluster.

The final result set based on the assembled query contains 22 relevant images and a

single miss. In addition, this query generated only 4 false positives. This can only be

achieved by a clever combination of both features instead of using a single one. Finding

a suitable query is a typical optimization problem.

3.7.6. Interpretation as Decision Tree

Building a categorization query can be interpreted as the process of constructing a

decision tree. A single binary tree represents the likelihood that an image belongs to

the learned concept.

3.7.6.1. Nodes

Each node ν in the tree contains a set of retrieved images ι ⊆ I, which are either a

representative of the concept or not. During training, the precision π(ν) and recall ρ(ν)

of each node can be calculated, as the relevant training images Tν are known.

67

Π(ν) =
|T ∩ ι|
|ι|

(3.22)

P (ν) =
|T ∩ ι|
|T |

(3.23)

π(ν) =
|Tν ∩ ι|
|ι|

(3.24)

ρ(ν) =
|Tν ∩ ι|
|Tν |

(3.25)

λ = Fβ (3.26)

π(ν) (eq. (3.24)) is a measure for the categorization strength of a single node. If

π(ν) = 1, the node only contains relevant images and if π(ν) = 0, the node does only

contain irrelevant ones. In both cases, the nodes can be labelled as positive ν+ or

negative ν− example. In reality, the precision is likely to be somewhere between these

two extremes, which indicates an uncertainty ν? about the categorization. The precision

is interpreted as the equivalent to the local information gain in the ID3 algorithm by

Quinlan [101]. The recall ρ(ν) (eq. (3.25)) is less important for each single node, as it is

likely, that other nodes are containing some of the relevant images. A derived quality λ

(eq. (3.26)), e.g. the F-Measure by van Rijsbergen [136] can be calculated for each single

node. If it is based on the based on the precision and recall for the original training set

T , λ is a measure for the global classification strength of a single node.

3.7.6.2. Node Splitting

Each node which cannot definitely be categorized as positive or negative example needs

to be examined in more detail. A split criterion has to be found to divide the node

into two more distinctive sub nodes. This criterion can be defined by a CBIR-query q

over the still uncategorized ιparent images. The query generates a result set r(q) and the

remaining data r(q)−1 = (ιparent) \ r(q). These two sets are representing the content

of the two child nodes. Assuming a strong query q, the set r(q) should have a higher

precision and is stored in the “left” sub node. The set r(q)−1 should have a lower

precision than the original set and is stored in the “right” sub node. The aim is to push

the precision as close as possible to either 1 or 0 in order to label the nodes accordingly.

The “left” nodes should move towards 1 and the “right” ones towards 0. The splitting

can be recursively performed until one of the following situations occurs:

68

1. The node contains no more images

2. The precision π of the node either reached the upper or lower boundary

3. Generating new splitting queries is not possible

These situations are “hard boundaries”, where further splitting is not possible or

required anymore. For practical use, working against these boundaries may be unrealistic

and cause an extremely long or even infinite processing time. For that reason, a set of

arbitrary thresholds should be defined, e.g.:

1. Maximum query size

2. Maximum tree depth

3. Minimum information gain on a split

4. Upper threshold of π to flag a node as positive: ν+

5. Lower threshold of π to flag a node as negative: ν−

6. Lower threshold of similarity s to create split query q

After termination, the resulting binary tree should have all uncertainties resolved in

the leaf nodes. The “left” leaves are considered to contain positive examples and the

“right” leaves negative examples for the learned concept. A possible decision tree for

the example (section 3.7.5) is shown in fig. 3.6.

3.7.6.3. Root Node

The root node νroot contains all images used in the learning process, both relevant T

and irrelevant N ones. For this node, the precision can be calculated as follows.

π(νroot) =
|T ∩ I|
|I|

(3.27)

ρ(νroot) =
|T ∩ I|
|T |

= 1 (3.28)

69

root
root ,root ,root

q1

f
A
:[12.5]@1.5 ¬q

1
q

1

¬q1

q1.1
+ ¬q1.1

-

q
1.1 ¬q

1.1 NOT f
B
:[16]@1.5

q2
+ ¬q2

¬q
2

q
2 f

B
:[7]@1

q3
+ ¬q3

¬q
3

q
3 f

B
:[28.5]@1.5

q4 ¬q4
-

¬q
4

q
4 f

A
:[8.5]@1.5

q4.1
+ ¬q4.1

-

¬q
4.1

q
4.1 f

B
:[21]@1.5

Figure 3.6.: Decision Tree

3.7.6.4. Null Query

The learning algorithm starts with an empty query qnull. By definition, this query

is undefined and always returns an empty result set r(qnull) = {}. Splitting by qnull

generates an empty child node νqnull
and another node ν¬ qnull

containing the same images

as its parent. It follows ν = ν¬ qnull
. The root node can be interpreted as the “right”

child of a parent node. The null query is also an example for an infinite recursion that

can occur during learning.

3.7.7. Learning Algorithm

Quinlan [101] published an algorithm for building decision trees from a given training

set. These trees are based on a probabilistic model and usually have problems with

inaccurate or unclear definitions. A fuzzy approach by Yuan and Shaw [146] tries to

reduce this issue. Instead of using hard boundaries for separating nodes, a less strict

separation is used.

In comparison, the learning algorithm 2 suggested in this thesis determines boundaries

to split nodes into relevant and irrelevant data. These boundaries are represented by a

70

Algorithm 2 findClassificationQuery(T,N)

1: all A← T
2: result← {}
3: repeat
4: query q, λ, T ruePositives TP , FalsePositives FP ← findBestQuery(T,N)
5: if q = {} or |TP | < minTruePositives then
6: return result
7: end if
8: q, λ, TP , FP ← addMustClauses(q, λ, TP)
9: q, λ, TP, FP ← addMustNotClauses(q, λ, A, FP)

10: result← result ∪ q
11: T ← T \ TP
12: until (|T | < minTermSize)OR(|result| > maxQuerySize)
13: return result

single threshold which is set at a point, where the system assumes a reasonable trade-off

to get a highly relevant image set after the split. As this threshold is used to cut off less

relevant results in each single retrieval process, this boundary is not necessarily fixed. It

can easily be moved towards creating either a smaller or larger result set, if required.

The algorithm tries to find a good, but not necessarily optimal query for a given

concept. It is constructed to generate results in an acceptable amount of time that

allows for realistic testing (i.e. ideally run times not longer than a day). The main aim

of this algorithm is to examine the potential of the implemented feature vectors and the

query language for categorization tasks.

A concept is fed to the algorithm by providing a representative training set T and the

negative set N . The resulting query should return a result set with a very high precision

and recall for the target concept.

The training set T is copied to the local set of all relevant images A. Based on the

provided data, the algorithm repeatedly tries to determine the best query for T and N .

If the sub algorithm 3 is returning a query q and the true positives TP size is above

the threshold minTruePositives, it is attempted to refine it further. The corresponding

quality quality and the true and false positives TP and FP are used to search for

MUST and MUST NOT clauses that may extend q. The resulting q is then added as a

SHOULD clause to the final result and the successfully retrieved TP is removed from T .

This loop ends if the size of T reaches minTermSize or the result exceeds a previously

set maxQuerySize. The conditions introduced in this algorithm are necessary to avoid

over fitting.

71

The algorithm 3 attempts to find the best atomic query q for the given T and N . This

is done by generating all possible stub queries q for each training image t ∈ T and each

feature vector f ∈ F . The sorted retrieval results S are then analyzed to find the best

similarity threshold. Starting with a size of 2 and ending with min(|T |, |S|) (precision

is expected to drop at bigger sizes), the result set size with the highest quality (e.g.

F-Measure) is determined. The corresponding similarity value s for the lowest rank is

then set as the threshold of the optimized query q. Finally, the best query is returned.

Algorithm 3 findBestQuery(T,N)

1: qresult ← {}, λresult ← 0.0, TPresult ← {}, FPresult ← {}
2: for all t ∈ T , f ∈ F do
3: q← f(t)
4: S ← getResults(q, T ∪N)
5: s, λ, TP, FP ← calculateThreshold(S, T,N)
6: q .threshold = s
7: if λ > λresult then
8: qresult, λresult, TPresult, FPresult ← q, λ, TP, FP
9: end if

10: end for
11: return qresult, λresult, TPresult, FPresult

3.7.8. Complexity

The proposed algorithm contains 2 main loops and at least one time consuming retrieval

process. The execution of the repeat-until loop can be controlled by many factors. In

essence, every iteration adds a clause to the query and further refines the result quality.

For practical purposes, the amount of clauses should be limited to counter over fitting.

From a complexity point of view, this loop is independent of the size of the image

repository I. Thus, the runtime of this loop is considered to be constant (O(1)).

The crucial runtime is within the for loop. It iterates through all permutations of

training images and features, raising the complexity with both the amount of training

images |T | and features |F | involved. In the worst case, the complexity of this loop is

O(|T | ∗ |F |). Realistically, the amount of features used is limited and the training set

should be small. The most crucial factor in the training algorithm is the getResults()

function, which performs the CBIR queries. If this function does not use an index, the

execution time is linear, as every single image in the repository needs to be compared

to the query. The index-less complexity would be O(|I|), but in some cases, the index

72

could guarantee a complexity of O(1).

The optimization functions addMustClauses() and addMustNotClauses() both contain

a restricted version of the learning algorithm. They are only called for already found

base clauses. Thus, in the worst case, their complexity is the same, but usually a small

subset of images needs to be checked. By adding sophisticated caching mechanisms and

reuse of previous result sets, the execution time could be reduced significantly.

3.7.9. Query Descriptors

The proposed learning algorithm is one possible way to generate a feature-based query for

each category to be learned. This query can be considered to be a low-level “descriptor”

for a category. Using it in combination with an unknown image, a fuzzy probability of

belonging to a certain category could be calculated. This value could be determined

by finding the single best describing clause in the query descriptor or by applying the

whole query descriptor to the feature vectors of the unknown image. Query descriptors

are defined as:

ω = (q, category) (3.29)

Ω = {ω1, . . .} (3.30)

where ω is a tuple of the query q and the category being represented. Ω is the set of

all query descriptor tuples.

Classifying unknown images with a set of query descriptors encounters similar prob-

lems as in biometric systems with multiple sensors. Jain et al. [59] describe several types

of information fusion, split into “pre-classification” and “post-classification”.

3.7.9.1. Pre-Classification Fusion

The first stage of fusion occurs when an unknown image is fed to a single query descriptor.

This is done by a “feature level fusion” [59]. Instead of creating a simple “weighted

summation” or “concatenation” of the features, the calculations in a query descriptor

are more complex. Each descriptor contains similarity thresholds, weights and Boolean

rules to combine the results from the basic features. The resulting probability φ is a

value in the range [0.0, 1.0].

A drawback of this approach would be the use of multiple feature vectors from dif-

73

ferent domains that are insufficiently fine-tuned towards each other with respect to the

similarity measures. While certain feature vectors may rank many images with values

above 0.99, another one may only assign a value of 0.75 to highly similar images. This

problem is addressed in section 6.2.

Further, the thresholds of the Boolean clauses in the query need to be considered.

Their initial purpose is to suppress all results below that threshold from appearing in

the result set of a search. The threshold of each positive clause is chosen in a way to

be a reasonable trade-off between a high precision and recall in the remaining results.

Thus, many relevant images may still lie below this threshold which is especially true

for unknown objects from the same category. A classificator should still be able to

recognize these relevant images. The retrieval algorithm simply pulls the similarity

value of images below the threshold to 0.0, effectively removing them from the result

set. The classification is less radical and min-max normalizes the calculated similarity

according to the threshold θ.

φ(ω, i) = normalize (sq(i), θ) (3.31)

normalize (x, θ) =

 1
1−θ (x− θ) if x ≥ θ

0.5
θ

(x− θ) if x < θ
(3.32)

where sq(i) is the calculated similarity between query and image i, φ(ω, i) is the

probability of i to be a member of the category of the descriptor q and θ is the top level

similarity threshold within q. The normalized probability is set to be 0.5 at θ by using

linear interpolation. This normalization is performed recursively for each Boolean clause

in the original query. As a result, the probability value is a direct indication as to how

well an unknown item matches the descriptor. If φ ≥ 0.5, the image would appear in the

result set of the query and if φ < 0.5 it would be removed. The set of all probabilities

Φ is defined as:

Φ(i) = {φ(ω, i)|ω ∈ Ω} (3.33)

where φ(ω, i) is the probability of image i to be described by the query in ω,.

74

3.7.9.2. Post-Classification Fusion

At the second stage, multiple probabilities φq need to be considered and the system

uses the information to make a decision. In the pure classification use-case, the out-

put is a single category to describe the previously unknown object. A sophisticated

fusion of probabilities is not required and a “dynamic classifier selection” also known as

“winner-takes-all” [142] is applied. The major disadvantage of this approach is the loss

of accuracy by ignoring other categories which also may have high probability values:

category(i) =

{
category |(q, category) = ω ∧φ(ω, i) arg max

φ
(Φ(ω, i))

}
(3.34)

where category(i) is the set of categories that are assigned to the image i. In this

case, it contains the category with the highest probability.

In retrieval related use-cases, it is desirable to tag unknown images automatically with

a set of possible labels. Various systems automatically assign label sets to unknown

images, assuming that most of them are correct, allowing the user to find those images

by label while accepting a couple of false positives in the result [61, 126].

75

Chapter 4.

Design

In this chapter, a CBIR design based on a previous masters thesis of the author [90]

(see section 2.2) is presented. The existing system already allows for a retrieval by a

query string specified in a recent journal article [96]. The system has been extended to

support alternative user interfaces as well as a testing module used in the case studies

in chapter 6.

4.1. Retrieval Framework Design

Most retrieval systems follow a basic work flow cycle (see section 3.1). A successful

retrieval is performed as follows: users submit a query to the engine to trigger a search

and receive a set of results. Those results may be satisfying and the user finds the

required information. If not, the user may navigate through the results and eventually

refines the previous query to trigger a new search.

Result
viewer

Optimized
Index

FV specific
Parser

Query Parser ResultsRetrieval

Abstract View / Retrieval Workflow

Framework Components

Feature Vector Components / Plug Ins

Generic
Query Editor

Generic
Parser

OpenSearch
Results

Linear
Retrieval

FV specific
Query Editor

FV specific
Parser

Result
viewer

Optimized
Index

FV specific
Parser

Optimized
Index

Result
viewer

FV specific
Query Editor
FV specific

Query Editor

Figure 4.1.: Layers in the Retrieval Process [96]

76

«component»
ir-parser

«component»
ir-server

«component»
ir-core

«component»
ir-admin

«component»
ir-tester

«component»
ir-plugins

«component»
ir-util

«component»
ir-web

«component»
ir-client

«component»
ir-composer

Figure 4.2.: Main Components

Figure 4.1 illustrates the internal search steps performed by the retrieval engine. Three

different abstraction levels are employed [96].

At a very high abstraction level, a simple retrieval system receives a query from the

user, parses it somehow to understand the meaning, gathers the most relevant documents

and finally returns them. This work flow is very common and can be offered by a generic

framework, which simply offers all the basic functionality required. These framework

components do not have to be specialized. They only need to understand standardized

input and generate standardized output. All the details and optimizing are meant to be

implemented in exchangeable plug-ins on the use-case dependent implementation level.

4.1.1. Main Components

The main components of the system and their dependencies are presented in fig. 4.2.

This diagram is a simplification of the true dependencies to ensure readability. Every

single component makes use of “util”. Several system components developed for the

preceding master thesis have been extended within this thesis: “core”, “admin”, “client”,

“util”, “plugins”, “web” and “server”. These have mainly been extended by an optional

indexing structure for the plugins, XML support and additional interfaces. Completely

new are the components “parser”, “tester” and “composer”.

The “core” component contains all CBIR data structures. It also defines the generic

interfaces for the “Framework Components” in fig. 4.1.. The “util” is a loose collection

of several useful methods that are required in several other components. The “plugins”

77

are a collection of optional feature vector implementations. They are essential to make

the CBIR work, but the choice of these plug-ins is up to the user.

The other components provide the actual realizations for work flow and user interfaces.

“server” and “parser” are purely to provide the work flow. The “server” encapsulates

the linear retrieval work flow of fig. 4.1. It accepts queries, forwards it to the “parser”,

performs the retrieval and returns the results.

The “admin” component encapsulates the functionality to manage the image repos-

itory. The main tasks are adding new images and extracting the feature vectors. This

information is written into the repository for later use by the retrieval software.

The retrieval components usually require read-only access to the repository (without

relevance feedback). Two retrieval clients have been developed by the author of this

thesis prior to this PhD work. A fat client solution is contained in the “client” package,

containing a full graphical user interface to access the “server”. A thin client is provided

by the “web” package, allowing to use the “server” without the need of installing special

software on the client machine. The UI of this package is supposed to be minimalistic,

containing a user interface for directly submitting query strings and displaying results.

On top of this service, a graphical query building software — the “composer” — is

provided.

A special component is the “tester”. It contains a collection of time-consuming algo-

rithms for analyzing the repository and also for learning the query descriptors.

4.1.2. Speed & Quality

The earlier system developed by the author had been optimized for a high accuracy

rather than a high processing speed [90]. Each retrieval request is processed linearly by

comparing the query feature vector to each stored feature vector. To provide a better

scalability, the system is extended to support arbitrary indexes. Depending on the type

of feature vector, an extremely feature specific index is required (section 2.3.4). However,

a high accuracy is more important to optimize the feature normalization and learning

methodology than a short response time. No user is required to be operating the system

after starting a test, thus the algorithms are able to run automatically during the night.

78

4.2. Query Language

The query language in the proposed system (section 2.2.1) [96] is based on the Lucene

Query Syntax [6]. It is intentionally chosen to provide beginners with a simple and

familiar syntax.

4.2.1. Wildcards and Ranges

Wildcards and ranges can be used to express uncertainty or to allow the search engine to

be less strict during retrieval. The meaning of those concepts depends on the described

feature. Some features may well benefit, but for others they may not be required.

In text retrieval, wildcards stand for letters in a word that don’t have to match an

explicit query. In the example case of a RGB mean value, a wildcard can express, that

a certain colour channel does not need to be considered. For spatial features it can be

useful to define regions of interest as well as regions of non-interest.

Ranges are an intermediate concept between concrete queries and wildcards. They are

used to specify a certain space where parameters can be matched. Searching for images

with a creation time stamp is only feasible, if a range can be specified. It is very unlikely,

that the searcher knows the exact time, especially when it is extremely accurate (i.e.

milliseconds). In such a case, usually a time span is provided (e.g. “between 03/06/08

and 10/06/08” or “within the last week”). Analogous, image features such as the trivial

RGB mean could specify a tolerance range for each colour channel.

Unfortunately, these definitely useful concepts cannot be fully generalized. At this

point, the plug-in developer needs to decide how to address them. Taking the RGB

means of an image, the user could specify an array like “[36, 255, *]”. In this case the

results should contain some red and dominant green. The rate of blue does not matter

at all. Putting some more effort into the feature abstraction, a more convenient query

like “some red and very much green”is also possible. This lies in the responsibility of

the plug-in developer.

4.2.2. Parse Trees

Based on the grammar, the parser generates a hierarchy of sub queries wrapped up

in a single root query object. By traversing the tree, the sub results can be merged

accordingly. This section shows the decomposition on a relatively complicated query.

The images used in this example are part of the Caltech-101 collection [41].

79

((histogram:"file://query.jpg" OR rgb_mean:($[200, 50, *]$)^2.0)@0.8 -wavelet:(89 244 345)@0.9 +keywords:airplane)#100

UrlQuery FeatureVectorQuery
^2.0

BooleanClause
SHOULD

TermQuery

BooleanQuery
@0.8

IdQuery IdQuery IdQuery

BooleanClause
SHOULD

BooleanClause
SHOULD

BooleanClause
MUST

BooleanQuery
@0.9

BooleanClause
MUST NOT

BooleanQuery
#100

BooleanClause
SHOULD

BooleanClause
SHOULD

BooleanClause
SHOULD

UrlTerm
histogram:"file://query.jpg"

FeatureVectorTerm
rgb_mean:($[200, 50, *]$)

IdTerm
wavelet:89

IdTerm
wavelet:244

IdTerm
wavelet:345

Term
keywords:airplane

Figure 4.3.: Parse Tree of a complex Query

(

(

histogram:"file://query.jpg" OR

rgb_mean:($[200, 50, *]$)^2.0

)@0.8

-wavelet:(89 244 345)@0.9

+keywords:airplane

)#100

Verbally, this query can be read as follows:

“Find images, that have a similar histogram as the sample image query.jpg

OR have a mean colour close to 200 red and 50 green. The blue channel can

be anything. Rank the mean colour twice as high as normal. Both sub results

should have at least a similarity value of 0.8. Please remove any result, that

has a minimum wavelet similarity of 0.9 to the images 89, 244 and 345. Every

result must be annotated with the keyword airplane. Find not more than

100 results in total.”

After parsing, the query string is converted into a parse tree that contains all of the

relevant concepts (fig. 4.3). The root node is represented by a Query, which is the single

80

data object that is processed by the retrieval core. Each leaf is a Term, representing a

partial search, which generates a sub result. The tree structure in between represents

the rules how to merge the sub results into a final one.

The search engine then traverses the tree and generates the answer to this particular

request. At this point, it is advisable to integrate a query optimizer to reduce the

response time. In the current prototype, some straightforward query optimizing already

takes place.

First, the MUST clauses are processed, then the SHOULD and finally the MUST NOT

clauses. This allows for an early reduction of the search space, which is especially of

importance, if no index or only a slow index is available for certain features. Depending

on the availability of indexes, the terms with the shortest processing time should be

preferred. The optimization strategy should always be aimed at an early reduction of

search space as well as preferring the use of fast indexes. The strategy applied in this

case uses a strict definition of MUST and MUST NOT. If an image is not part of all

the MUST clauses or part of a MUST NOT clause, it is removed from the final result.

This approach is considered to be a useful trade-off between a perfect fuzzy algebra and

speed optimizations.

In this case, the first term to be processed is “keywords:airplane”. This triggers a

keyword search, which is backed by a fast and efficient index, resulting in a list of

matching images. As the parent BooleanClause is flagged as MUST, the final results of

the query can only be amongst those sub results. Assuming, that only about 1% of the

repository is related to the keyword “airplane”, every subsequent linear search time can

also be reduced to only 1% of the otherwise total scan time.

The second branch to be processed is the SHOULD clause on the left, that is split

into a nested boolean query.

One leaf contains a UrlTerm, pointing at an external query image and requesting a

comparison based on its histogram. To process this part, the engine reads the image

from the URL and extracts the histogram automatically. This search only needs to

compare the query histogram with the stored histograms from the previous sub result.

The other leaf contains a FeatureVectorTerm. The string embedded between the “($”

“$)” brackets is parsed by the rgb mean plug-in. In this case, the string stands for the

three mean colour values red (200), green (50) and blue (“don’t care” wildcard) of an

image. Again, the search space is drastically reduced by the first sub result.

After both terms have been processed, the sub results are merged into a single one.

Their combined similarity must be at least 0.8, otherwise the image is removed from

81

the result set. There is no “best” rule to merge the sub results. Within this thesis, the

algorithm of merging described in section 3.6.2 is used.

In this case, the rgb mean branch has a weight of 2.0 and thus gains a higher impor-

tance in the merged result.

The last main branch is flagged as MUST NOT and requires a minimum combined

similarity of 0.9. All of the three clauses contain a plain IdQuery with an IdTerm. They

require a retrieval on the wavelet feature and use sample images from the repository by

stating the image id directly. Again, the search space is already limited, not only by

the MUST branch, but also by the SHOULD branch. It is only necessary to check the

images contained in the previously retrieved sub result. The sub results of the middle

branch are merged accordingly and cropped at a minimum similarity of 0.9.

To generate the final answer, the MUST NOT results are removed from the temporary

sub result. The last step required is to cut the sorted list after the 100 best hits.

4.2.3. Browsing

This section analyses, which parts of a retrieval session can be realised with the chosen

query language described in section 4.2. For reference, the model by Garber and Grunes

[44] (fig. 2.2) is used.

To have some choice, some global features are assumed to be available. The feature

related strings are bracketed within ($ and $).

Generate criteria and weightings This can be done in several ways, depending on the

feature extensions available.

Find red images:

fv_mean:($[255,0,0]$)

Find either an orange image or a fruit with double weight on the colours:

fv_mean:($orange$)^2 keywords:"fruit"

Enter picture and similarity criteria Find similar images to 123 based on wavelets

(QBE):

fv_wavelet:123

Find similar images to the image “http://example.net/query.jpg” based on its his-

togram (QBE):

82

fv_histogram:"http://example.net/query.jpg"

Retrieve set of images This is the normal behaviour of each retrieval system. A set

of results is generated based on the query.

View images and information about the images Viewing details about images is

part of the user interface. Nevertheless, the meta information stored in the index should

be readable.

Put on or remove from light table, etc. Again, this is part of the user interface, not

of the query processing.

Add criterion This can be done by adding a boolean term to the existing query.

Find images that are orange AND are tagged with the keyword “fruit”.

fv_mean:($orange$) AND keywords:"fruit"

Add restriction Restrictions can be added by specifying a NOT term.

Find images that are wavelet-similar to image 123 and remove images that have more

than a 0.9 histogram similarity to image 987.

fv_wavelet:123 NOT fv_histogram:987@0.9

Change criterion Changing a criterion is equivalent with changing the contents of a

term. This could be the field/feature name or the data to be found.

Re-Define search Resetting the query and starting from scratch is no problem, as long

as each search request is a single transaction.

Pull target image This final step is again in the responsibility of the client software.

If the results are returned with the URL of the images, this is easy to implement.

Most of the browsing aspects by Garber and Grunes [44] can be represented by the

chosen query language. Some functionality also requires support by the browser appli-

cation itself, such as marking and remembering possible hits.

83

4.3. Learning Algorithm

The learning algorithm described in section 3.7.7 attempts to find the optimal result

within the given parameters, e.g. minTermSize, maxQuerySize. To keep the com-

plexity within reasonable boundaries and to prevent over fitting, these values are set

manually.

The weighting factor β between precision and recall to measure the quality of each

tested query (eqs. (3.4) and (3.26)) is set to β = 0.2. This effectively shifts the threshold

for each clause to a high value, resulting in small result sets with a high precision .

Concerning top-level SHOULD clauses, three parameters are set. In order to be able

to ignore outliers, the amount of true positives found by a SHOULD clause must be

|r(c)| ≥ 5 to be included in the query. Equally, the training set must have at least a size

of |T | ≥ 5. A break condition in the main loop is the maximum amount of iterations

generating positive SHOULD clauses. It is restricted to |C| ≤ 20 to keep the query

descriptors at a reasonable size and also ensuring reducing the maximum processing

time of algorithm 2.

Similar considerations are valid for the additional MUST NOT clauses. The amount

of clauses added to each top level clause must be |C−| ≤ 5 to prevent a high amount

of negative clauses. The training set must have a size of |r(c)| ≥ 2. This value has

been chosen, as tests indicated that often only a small group of related false positives

appeared within the results. Similarly, each clause must remove at least |r(c−)| ≥ 2

false hits, i.e. every negative clause must remove at least two false positives from the

intermediate result.

The last set of rules has been set for the MUST HAVE clauses. Constructing an

intersected pair of results should always happen by using an unrelated feature vectors.

Using two independent feature vectors would restrict the search space in both feature

spaces and make the resulting intersection very robust (sections 3.7.2 and 3.7.5). As a

very hard condition, not a single true positive must be lost by using a second clause.

This prevents the algorithm to accidentally cutting out relevant images. Further, the

amount of MUST HAVE clauses in the final query indicate, how well two independent

feature vectors are able to capture the same concept.

4.3.1. Multi Threaded Processing

Most tests can be parallelized. Every test with a high processing load is split into

smaller work units. Dependent on the available processor cores and memory available,

84

a semaphore (typically set to 2 ∗ cores) controls the amount of parallel threads. This is

especially necessary when having a large number of threads or resource intensive ones.

The default pattern works as follows:

1. Initialize system (e.g. CBIR service)

2. Assemble list of tasks to be done

3. Iterate through tasks

a) Create runnable object (“work unit”)

b) Initialize work unit

c) Wait for available semaphore

d) Start work unit as thread

4. Wait for all threads to finish

5. Clean up system (e.g. database connections)

85

Chapter 5.

Implementation

Most of the system is implemented in Java 1.6. The web user interfaces are based on

Servlets to generate HTML containing some JavaScript.

During the case studies, several JUnit tests were generated for quick independent test

runs. For the flexible analysis of many test results, a couple of Matlab scripts are also

used.

Below a list of the relevant sub projects. Each project is implementing a component

described in section 4.1. Several existing sub projects already implemented within the

author’s master thesis [90] are used as foundation. They are extended to meet the

additional requirements of the new methodology:

ir-core classes and interfaces to access image data and feature vectors

ir-admin tools to add new images to the repository

ir-client Java Swing based client for query composing and retrieval

ir-web Apache Tomcat based client for retrieval

ir-echo2 Echo2 Web Framework based client for query composing and retrieval (“com-

poser”)

ir-parser Apache Lucene based query parser

ir-server retrieval and ranking algorithms

ir-util collection of various utility classes

ir-tester tools for automated testing and learning algorithms

ir-plugins set of various feature vector plug-ins

86

ir-plugin-keyword keyword feature, based on the file path and name

ir-plugin-mean RGB mean value

ir-plugin-stochastic2 12 stochastic moments of image histograms [4]

ir-plugin-stochsticquad like stochastic2, image split into quad tree [92]

ir-plugin-wavelet list of the highest Haar-wavelet coefficients [58]

5.1. Query Language

The system uses a modified version of the original Lucene Query Parser [96]. The parser

analyses an input string and converts it into the corresponding Query object. Dependent

on the terms given, the Query is composed of different clauses. This could be a single

one, an array of Boolean clauses or may be even nested. The language allows queries

similar to those used in traditional search engines and the parser is generated by JavaCC.

The string representation of a query can be manipulated directly by users. This query

string can be edited in every basic text editor without the need for any extended user

interface. It also allows experienced users to access every aspect of the search engine

directly.

As the query language is based on the Lucene tool kit, it always has an object repre-

sentation of the whole query. This query object could also be created by a suitable front

end. Such a tool eliminates parsing errors, because the query structure would always be

bound to the components.

Below, two alternative representations for the query language are presented. As an

increasing amount of XML based data processing is expected — such as MPEG-7 [75] and

MRML [81] – it seems beneficial to represent queries in an Extensible Markup Language

(XML) structure also. Further, the use of QBE, QBF and especially QBS suggest the

use of a more visual query representation. Rather than being limited to a textual string,

a visual query containing actual pictures could enhance the user’s understanding of a

query.

5.1.1. XML

The parse tree containing a query (section 4.2.2) can be directly mapped to an XML

hierarchy. Plug-ins could also specify their feature conversion into XML and back. This

allows for consistent XML files and simplifies the use of the MPEG-7. Below, the XML

structure matching the example parse tree (section 4.2.2) is shown:

87

<boolean-query max-count="100">

<boolean-clause occur="SHOULD">

<boolean-query threshold="0.8">

<boolean-clause occur="SHOULD">

<url-query>

<url-term>

<field>histogram</field>

<url>file://query.jpg</url>

</url-term>

</url-query>

</boolean-clause>

<boolean-clause occur="SHOULD">

<feature-vector-query boost="2.0">

<feature-vector-term>

<field>rgb_mean</field>

<string-data>

[200, 50, *]

</string-data>

<data>

<red>200</red>

<green>50</green>

<blue>*</blue>

</data>

</feature-vector-term>

</feature-vector-query>

</boolean-clause>

</boolean-query>

</boolean-clause>

<boolean-clause occur="MUST_NOT">

88

<boolean-query threshold="0.9">

<boolean-clause occur="SHOULD">

<id-query>

<id-term>

<field>wavelet</field>

<id>3960</id>

</id-term>

</id-query>

</boolean-clause>

<boolean-clause occur="SHOULD">

<id-query>

<id-term>

<field>wavelet</field>

<id>3941</id>

</id-term>

</id-query>

</boolean-clause>

<boolean-clause occur="SHOULD">

<id-query>

<id-term>

<field>wavelet</field>

<id>3948</id>

</id-term>

</id-query>

</boolean-clause>

</boolean-query>

</boolean-clause>

<boolean-clause occur="MUST">

<term-query>

<term>

89

<field>keywords</field>

<text>airplane</text>

</term>

</term-query>

</boolean-clause>

</boolean-query>

This XML data contains the same information as the example query string. Clearly,

this format is much more verbose than the suggested query language. Being probably

less readable for humans, its advantage is the standardized format. The XML code does

not require a special parser to be processed or validated by any program.

One example of generic and specialized data representation is contained in the XML

query above. The feature-vector-term for the rgb mean plug-in shows two alternatives.

In the generic case, the string-data is left untouched. This is the output generated by

the main parser. To extract the real meaning of the data string, it needs to be processed

by the corresponding plug-in. The resulting data tag would then contain each piece of

feature data separately.

<feature-vector-term>

<field>rgb_mean</field>

<string-data>

[200, 50, *]

</string-data>

<data>

<red>200</red>

<green>50</green>

<blue>*</blue>

</data>

</feature-vector-term>

5.1.2. Visual Query

A clearly structured query language like the proposed one can be mapped to a visual

representation to guide the user. The resulting graphical user interface helps to assem-

ble queries that are syntactically correct, displays query images and provides a canvas

90

Figure 5.1.: Visual Query Composer

for QBE. Additionally, it may also support the modification of feature plug-in specific

parameters.

Figure 5.1 shows the visual query composer of the prototype, where the example query

has been assembled from multiple clauses. Every clause of the parse tree is modelled by

a window. Each clause window contains several options to choose the occurrence, the

added parameters, a field name and the query type. Textual queries usually contain a

generic term with one ore multiple keywords.

Queries for CBIR can manage a query URL, a specified feature, the id to an existing

image or a canvas to draw a query image. Clause windows specifying a query image can

directly display a small preview image to provide feedback what is going to be searched.

Windows containing a feature description can either show the data fields directly (e.g.

red, green, blue) or a convenient editor (e.g. a colour chooser).

91

5.2. Algorithms

Below, the Java code for the core changes and additions in the system are listed. For

the sake of readability, some parts of the code were omitted. These parts are marked

with /∗ ... ∗/.

5.2.1. Normalization Algorithm

The Listings 5.1 and 5.2 implement the changes required for the feature based similarity

normalization described in section 3.4.2.

The method in listing 5.1 is based on the previous ranking code. The additional code

normalizeSimilarity(rawSimilarity, fvNormValues) is to normalize the calculated

similarity from the feature vector according to a previously determined sorted set of

normalization values.

Listing 5.1: getRanking

private Resu l tL i s t getRanking (FeatureVector query , int maxSize ,

double thresho ld , I t e r a t o r<DataItem> i t) {
SortedSet<ResultItem> s o r t e r = new TreeSet<ResultItem >() ;

/∗ . . . ∗/

// compare FVs with input and add them s o r t e d to the r e s u l t

while (i t . hasNext ()) {
// g e t next s t o r e d f e a t u r e v e c t o r

FeatureVector storedFV = (FeatureVector) i t . next () ;

i f (storedFV != null){
// c a l c u l a t e ranking

double rawSim = storedFV . c a l c u l a t e S i m i l a r i t y (query) ;

// normal ize s i m i l a r i t y by fvNormValues

double normSim = n o r m a l i z e S i m i l a r i t y (rawSim , fvNormValues) ;

ResultItem ranked = new ResultItem (normSim , storedFV . get Id ()) ;

// add to s o r t e d r e s u l t s e t , i f h i g h e r or e q u a l t h r e s h o l d

i f (ranked . g e t S i m i l a r i t y () >= thre sho ld) {

92

s o r t e r . add (ranked) ;

}
/∗ . . . ∗/

i f (s o r t e r . s i z e () > maxSize) {
s o r t e r . remove (s o r t e r . l a s t ()) ;

}
/∗ . . . ∗/

}
return new Resu l tL i s t (s o r t e r) ;

}

Listing 5.2 adds the mandatory boundaries 0.0 and 1.0 to the provided normValues

and asserts that no other value exceeds them. The range between 0.0 and 1.0 is split into

equi-distant segments. The normalized similarity is interpolated from the two nearest

points of the normalization values.

Listing 5.2: normalizeSimilarity

private double n o r m a l i z e S i m i l a r i t y (double rawSimi la r i ty ,

SortedSet<Double> normValues) {
SortedSet<Double> s s = new TreeSet<Double>(normValues) ;

// d e f i n e bounds

s s . add (0 . 0) ;

s s . add (1 . 0) ;

a s s e r t s s . f i r s t () == 0 . 0 ;

a s s e r t s s . l a s t () == 1 . 0 ;

double segments i ze = 1 . 0/ (s s . s i z e ()−1);

// f i n d n e a r e s t two v a l u e s

SortedSet<Double> sma l l e r = s s . headSet (rawS imi l a r i t y) ;

SortedSet<Double> greaterOrEqual = s s . t a i l S e t (rawS imi l a r i t y) ;

double x1 = 0 . 0 ;

i f (! sma l l e r . isEmpty ())

x1 = sma l l e r . l a s t () ;

93

double x2 = 1 . 0 ;

i f (! greaterOrEqual . isEmpty ())

x2 = greaterOrEqual . f i r s t () ;

// determine f r a c t i o n s between 0.0 and 1.0

double y1 = Math . max(0 . 0 , sma l l e r . s i z e ()−1)∗ segments i ze ;

double y2 = (sma l l e r . s i z e ())∗ segments i ze ;

// Linear I n t e r p o l a t i o n

double r e s u l t = y1 + (y2−y1)/ (x2−x1) ∗ (rawSimi la r i ty−x1) ;

return r e s u l t ;

}

5.2.2. Learning Algorithm

Listing 5.3 is the implementation of algorithm 2. The matching sequence diagram is

shown in fig. 5.2. The second listing 5.4 is an implementation of algorithm 3. Figure 5.3

shows the same method formatted as a sequence diagram.

The method in listing 5.3 attempts to create a Boolean query with a set of SHOULD

clauses. The method uses training set T and the negative set N to determine the best

clause. After each clause, the set of remaining training images is reduced by the images

found.

Listing 5.3: findClassificationQuery

public Query f i n d C l a s s i f i c a t i o n Q u e r y (I d L i s t T, I d L i s t N) {
BooleanQuery r e s u l t = new BooleanQuery () ;

/∗ . . . ∗/
// REPEAT

do{
Qual ityParameters bestQP = findbestQP (T, N) ;

/∗ . . . ∗/
Query bestQuery = bestQP . getQuery () ;

Re su l tL i s t be s tRe su l t s = bestQP . g e t R e s u l t L i s t () ;

L i s t<ResultItem> so r t ed = bes tResu l t s . g e tSor t edResu l t s () ;

94

actor

bestQualityParameters:QualityParameters

<initial>:ClassificationModule

do-while(((maxIterations>iteration) && (trainingSet.size()>minTrainingSetSize)) && threadRunning)

if(bestQualityParameters == null || bestQualityParameters.getQuery()==null)

if(bestQualityParameters.getTruePositives() < bestQualityParameters.getRank())

for(int i = 0;i < bestQualityParameters.getRank();i++)

if(!relevantIdBits.containsId(ri.getItemId()))

else

for(int i = 0;i < bestQualityParameters.getRank();i++)

if(!relevantIdBits.containsId(ri.getItemId()))

else

if(!(bestQuery instanceof ParameterQuery))

if(bestResults != null)

for(int i = 0;i < bestQualityParameters.rank;i++)

1: findClassificationQuery:org.apache.lucene.
search.Query
1: findClassificationQuery:org.apache.lucene.
search.Query

1.1: bestQualityParameters:
=findBestQualityParameters:classification.
QualityParameters

1.1: bestQualityParameters:
=findBestQualityParameters:classification.
QualityParameters

1.2: getQuery:org.apache.lucene.search.
Query
1.2: getQuery:org.apache.lucene.search.
Query

1.3: bestQuery:=getQuery:org.apache.
lucene.search.Query
1.3: bestQuery:=getQuery:org.apache.
lucene.search.Query

1.4: bestResults:=getResultList:retrieval.
sqi.ResultList
1.4: bestResults:=getResultList:retrieval.
sqi.ResultList

1.5: getTruePositives:int1.5: getTruePositives:int

1.6: getRank:int1.6: getRank:int

1.7: getRank:int1.7: getRank:int

1.8: bestQualityParameters:
=addMustClauses:classification.
QualityParameters

1.8: bestQualityParameters:
=addMustClauses:classification.
QualityParameters

1.9: bestQualityParameters:
=addMustNotClauses:classification.
QualityParameters

1.9: bestQualityParameters:
=addMustNotClauses:classification.
QualityParameters

1.10: bestQuery:=getQuery:org.apache.
lucene.search.Query
1.10: bestQuery:=getQuery:org.apache.
lucene.search.Query

1.11: bestResults:=getResultList:retrieval.
sqi.ResultList
1.11: bestResults:=getResultList:retrieval.
sqi.ResultList

1.12: getRank:int1.12: getRank:int

1.13: precision:=calculatePrecision:double1.13: precision:=calculatePrecision:double

1.14: recall:=calculateRecall:double1.14: recall:=calculateRecall:double

1.15: boost:=calculateFMeasure:double1.15: boost:=calculateFMeasure:double

1.16: interruptedCheck:void1.16: interruptedCheck:void

resultresult

Figure 5.2.: findClassificationQuery - Sequence Diagram

95

actor

<initial>:ClassificationModule

bestQualityParameters:QualityParameters

ct:ClassificationTool

qp:QualityParameters

while(iter.hasNext())

for(String featureName:ct.getFeatureVectorMap().keySet())

if(qp.quality > bestQualityParameters.quality)

1: findBestQualityParameters:classification.
QualityParameters
1: findBestQualityParameters:classification.
QualityParameters

1.1: <default constructor>1.1: <default constructor>

1.2: getFeatureVectorMap:java.util.Map1.2: getFeatureVectorMap:java.util.Map

1.3: rl:=getResults:retrieval.sqi.ResultList1.3: rl:=getResults:retrieval.sqi.ResultList

1.4: qp:=calculateQualityParameters:
classification.QualityParameters
1.4: qp:=calculateQualityParameters:
classification.QualityParameters

1.5: setResultList:void1.5: setResultList:void

1.6: setQuery:void1.6: setQuery:void

bestQualityParametersbestQualityParameters

Figure 5.3.: findBestQualityParameters - Sequence Diagram

// t r y to improve query , i f too many FP are conta ined

i f (bestQP . getTP () < bestQP . getRank ()){
// TP here : amount o f newly added/ l earned documents

// a l l f a l s e p o s i t i v e s in r e s u l t s

B i t I d L i s t FP = /∗ . . . ∗/ ;

// a l l t r u e p o s i t i v e s in r e s u l t s (s h r i n k i n g t r a i n i n g s e t)

B i t I d L i s t TP = /∗ . . . ∗/ ;

// add MUST/MUST NOT c l a u s e s

bestQP = addMustNotClauses (bestQP , r e l evant Id s , FP) ;

bestQuery = bestQP . getQuery () ;

}

// determine b o o s t f o r new c l a u s e

. . .

f loat boost = (f loat) calcFMeasure (p r e c i s i o n , r e c a l l , beta) ;

// s e t b o o s t to query

/∗ . . . ∗/
((ParameterQuery) bestQuery) . setBoost (boost) ;

// add found query as OR c l a u s e to r e s u l t query

96

r e s u l t . add (new BooleanClause (bestQuery , Occur .SHOULD)) ;

// remove found IDs from T

/∗ . . . ∗/
}
// UNTIL no more improvements p o s s i b l e

while (((maxIterat ions>i t e r a t i o n)

&& (T. s i z e ()>minTSize)) && threadRunning) ;

return r e s u l t ;

}

The listing 5.4 attempts to find the query with the best quality with regard to the

provided remaining training set T and the negative set N.

Listing 5.4: findbestQP

private Qual ityParameters f indbestQP (I d L i s t T,

I d L i s t N) throws RankerException {
Qual ityParameters bestQP = new Qual ityParameters () ;

I t e r a t o r<Integer> i t e r = T. i d I t e r a t o r () ;

while (i t e r . hasNext ()){
int cur r ent Id = i t e r . next () ;

for (S t r ing featureName : getFeatureVectorMap () . keySet ()) {
Query query = new TermQuery (

new Term(featureName , I n t eg e r . t oS t r i ng (cur r ent Id))

) ;

B i t I d L i s t v a l i d I d s = new B i t I d L i s t (T) ;

v a l i d I d s . addIds (N) ;

Re su l tL i s t r l = ct . g e tResu l t s (query , v a l i d I d s) ;

L i s t<ResultItem> so r t ed = r l . g e tSor t edResu l t s () ;

// c a l c u l a t e q u a l i t y (based on F−Measure)

Qual ityParameters qp = calculateQP (sorted , T, N) ;

ParameterQuery pq = new ParameterQuery (query) ;

TermParameters tp = new TermParameters () ;

tp . se tThresho ld ((f loat) qp . th r e sho ld) ;

97

pq . setParameters (tp) ;

query = pq ;

qp . s e t R e s u l t L i s t (r l) ;

qp . setQuery (query) ;

// determine b e s t r e s u l t

i f (qp . q u a l i t y > bestQP . q u a l i t y){
bestQP = qp ;

}
}

}
return bestQP ;

}

5.2.3. Multi Threaded Processing

In this section, an example is given for the calculation of query descriptors (fig. 5.4). It

follows the generic pattern to assemble work units in a loop and starting a thread for

each unit as described in section 4.2.

As soon as the ClassificationTool is initialized with working database access, the

method buildDescriptors() can be triggered externally. In the FOR loop, all feature

vectors to be used are cached in the memory to provide fast access. The following

WHILE loop then collects all available IPTC keywords from the textual search index.

Each available keyword is used as a category name, i.e. is a work unit to create a query

descriptor. The resulting list contains all time consuming tasks to be done.

The final FOR loop is now responsible for creating and starting the threads. For

each category, a new ClassificationModule is created and initialized with an individual

category string. Before starting a new thread, the loop locks at the semaphore.

After starting all threads, the system waits for them to finish. A small shut-down

thread is used to clean up all open handles as soon as the last work unit terminates.

98

<initial>:ClassificationTool

actor

cm:ClassificationModule

thread:Thread

try

for(String fvName:metaDataStorage.getFVStorageMap().keySet())

while(iter.hasNext())

try

catch(NoLuceneIndexException e)

for(String c:category)

try

catch(InterruptedException e)

catch(IOException e1)

1: buildDescriptors:void1: buildDescriptors:void

1.2: keywords:=getLuceneData:java.util.List1.2: keywords:=getLuceneData:java.util.List

1.3: <constructor>1.3: <constructor>

1.4: setBeta:void1.4: setBeta:void

1.5: setRankWeight:void1.5: setRankWeight:void

1.6: <constructor>1.6: <constructor>

1.7: start:void1.7: start:void

Figure 5.4.: buildDescriptors - Sequence Diagram

99

Chapter 6.

Case Studies

This chapter discusses several case studies to evaluate the methods introduced in chap-

ter 3. Each case study focuses on a specific issue and the advanced cases build up on

previous findings. The first ones are dealing with the low-level feature vectors directly

and then the scope widens to the interrelationship of multiple feature vectors until their

combination within a single query is used as a mapping rule for higher-level semantics

(i.e. categories).

In section 6.1, some individual properties of the feature vectors used are benchmarked

in an exemplary way. The methodology is described in section 3.4.1. The aim is to

analyze the robustness of the single feature vector according to the image size used in

simple QBE queries.

Section 6.2 investigates the feasibility of an empirical feature normalization as pro-

posed in section 3.4.2. The normalization is expected to reduce the differences in

similarity calculations among the implemented feature vectors, resulting in compara-

ble similarity profiles. This is especially required for the interpretation of similarities

as probabilities and thus a more accurate fusion when using the query descriptors for

categorization tasks (see section 3.7.9).

Section 6.3 describes a way to estimate the discriminative power of each single feature

vector for all of the given categories within a repository. The derived improvement factor

is supposed to indicate which feature vector is expected to be most powerful for use in

a query descriptor to be learnt. It basically represents the first iteration of the learning

algorithm in section 3.7.7, generating a query only containing a single term.

In section 6.4, a machine learning algorithm based on DTs (section 3.7.2) is applied

to construct a set of category related queries. This case study is used to fine-tune

the behaviour of the algorithm and to find reasonable parameters to find a reasonable

balance between precision and recall and to avoid over fitting.

100

The descriptors constructed during the learning are used for a simple categorization in

section 6.5. Other than performing a full retrieval on the database, the query is only used

to categorize a single image into a fixed category. Instead of using a fast fusion approach

(section 3.6.2), a more accurate approach is applied (section 3.7.9) to determine the most

likely category. The results are not expected to be highly influenced by the similarity

characteristics of distinct features, as they have been already normalized (section 3.4.2).

The final case study in section 6.6 wraps up the findings of all previous ones into the

semi supervised learning approach described in section 3.7.3. It directly compares the

proposed learning approach to an existing one on the same data. A leave-one-object-out

cross validation is performed to evaluate, how well an unknown object can be categorized.

6.1. Impact of Query Image Size on Features and

Similarity Measures

When performing QBE queries, it is not feasible to always send a high-resolution image

to the retrieval service. Thus, the amount of submitted data needs to be reduced. The

most efficient way would be to extract the relevant feature vectors on the client-side.

This requires to transfer the corresponding executable code to the client. This is difficult

to achieve for several reasons. This approach requests additional processing resources

from the client and the code must be runnable on the target platform. Further, security

concerns may occur.

Another way is to use existing and more generic client-side software to reduce the size

of the original image by compression or a lower resolution. The effect of the query image

size is evaluated to find practical limitations of downscaling.

6.1.1. Requirements

• default image datasets

6.1.2. Testing

In this study, the Caltech-101 image collection is used for measurements. For every

single image (total of 9144), the original image and respectively downscaled variations

(160x160, 80x80, 40x40, 20x20) are used for querying. To minimize the information loss,

the slow but relatively accurate Lanczos 3 down sampling algorithm is used. For each

101

query, the first 100 hits of the result sets are stored in a database, containing both image

id and calculated similarity. Especially the changes in the ranking position of the target

image can give some indication of the remaining result quality.

6.1.3. Results

Using the original image for querying in a full retrieval (without restricting the search

space by indexes) causes almost perfect results, i.e. the target image is usually the

first hit. Yet, it needs to be pointed out that in some cases the features used are not

distinctive enough and other images also get the same similarity of a 100% match. This

is causing slight but negligible disturbances in the ranking order.

Figure 6.1 provides an overview of all results for the downscaled query images. The

x-axis shows the achieved ranking position of the target image. The expected position

would always be 1. The logarithmic y-axis displays the normalized average of target

images at a given rank. The optimal case would be to have an amount of 1.0 for ranking

position 1 without any image in worse ranking positions. Due to the loss of information

in the query, several target images gradually drop within the ranking to lower positions,

resulting in scatter plots with visible trends.

The downscaled 160x160 in fig. 6.1(a) already show a difference to the optimal results.

The Wavelet feature shows a few outliers, where the original image is ranked slightly

lower, but still among the first 10 hits. In comparison, the Spatial Histogram feature

has much more outliers. The RGB Mean and the Histogram features perform relatively

similar, with a slight advantage of the Histogram feature.

The scaling to 80x80 pixels indicates the sensitivity of the Spatial Histogram feature

to downscaling (fig. 6.1(b)). The ranking quality moves closer towards the values of

RGB Mean and Histogram until it is worse than the Histogram results.

In the 40x40 and 20x20 cases figs. 6.1(c) and 6.1(d), the above trends continue. The

peak values of the RGB Mean and the Histogram features for the highest ranking position

keep dropping, especially for the Histogram feature. In the end, the Spatial Histogram

profile is similar to the profile of RGB Mean.

6.1.4. Discussion

The results show that the Wavelet feature seems to be most robust against resizing of

the query image. As this is the only tested feature that uses image texture information,

it seems that the down sampling preserves texture information better than the colours.

102

P
o

si
ti

o
n

 o
f

ta
rg

et
 im

ag
e

w
it

h
in

 f
ir

st
 1

0
0

 h
it

s,
 (

q
u

er
y

sc
al

e:
 1

6
0

)

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

10
0

ra
n

k

0.
00

01

0.
00

03

0.
00

10

0.
00

32

0.
01

00

0.
03

16

0.
10

00

0.
31

62

1.
00

00

relative amount of target images (rank)

R
G

B
M

ea
n

H
is

to
gr

am
Sp

at
ia

l H
is

to
gr

am
W

av
el

et

(a
)

16
0x

16
0

q
u

er
y

im
ag

e

P
o

si
ti

o
n

 o
f

ta
rg

et
 im

ag
e

w
it

h
in

 f
ir

st
 1

0
0

 h
it

s,
 (

q
u

er
y

sc
al

e:
 8

0
)

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

10
0

ra
n

k

0.
00

01

0.
00

03

0.
00

10

0.
00

32

0.
01

00

0.
03

16

0.
10

00

0.
31

62

1.
00

00

relative amount of target images (rank)

R
G

B
M

ea
n

H
is

to
gr

am
Sp

at
ia

l H
is

to
gr

am
W

av
el

et

(b
)

8
0
x
8
0

q
u

er
y

im
a
g
e

P
o

si
ti

o
n

 o
f

ta
rg

et
 im

ag
e

w
it

h
in

 f
ir

st
 1

0
0

 h
it

s,
 (

q
u

er
y

sc
al

e:
 4

0
)

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

10
0

ra
n

k

0.
00

01

0.
00

03

0.
00

10

0.
00

32

0.
01

00

0.
03

16

0.
10

00

0.
31

62

1.
00

00

relative amount of target images (rank)

R
G

B
M

ea
n

H
is

to
gr

am
Sp

at
ia

l H
is

to
gr

am
W

av
el

et

(c
)

40
x
40

q
u

er
y

im
ag

e

P
o

si
ti

o
n

 o
f

ta
rg

et
 im

ag
e

w
it

h
in

 f
ir

st
 1

0
0

 h
it

s,
 (

q
u

er
y

sc
al

e:
 2

0
)

R
G

B
M

ea
n

H
is

to
gr

am
Sp

at
ia

l H
is

to
gr

am
W

av
el

et

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

10
0

ra
n

k

0.
00

01

0.
00

03

0.
00

10

0.
00

32

0.
01

00

0.
03

16

0.
10

00

0.
31

62

1.
00

00

relative amount of target images (rank)

(d
)

2
0
x
2
0

q
u

er
y

im
a
g
e

F
ig
u
re

6
.1
.:

Im
p
ac

t
of

q
u
er

y
im

ag
e

si
ze

s

103

Further, the Wavelet feature always uses a downscaled 100x100 pixel image to extract

the feature vector instead of using the original image. The RGB Mean feature with only

3 moments performs slightly better than the Histogram feature which has 12 moments.

An explanation for the bad performance of the Spatial Histogram feature for 20x20 query

images could be the way it is extracting the histograms. By dividing the original image

into 4x4 sub images on the 3rd level, each remaining sub image has merely a size of

5 ∗ 5 = 25 pixels to extract histograms.

6.1.5. Summary

This case study investigated the impact of downscaled QBE images in the retrieval

process. The robustness against downscaling depends on the feature vector used. Thus,

it is advisable to be careful when attempting to reduce the size of the queries to be

transmitted. Otherwise, the loss of information may render the results useless.

6.2. Feature Normalization

As mentioned in section 3.4.2, each feature vector creates a different similarity curve

between 100% match and the least relevant document. Similarities of features are not

comparable to other features. For that reason, it is attempted to capture the feature

vector specific similarity profiles and use them to normalize the similarity values within

each retrieval.

6.2.1. Requirements

• default image database with use-case related content (e.g. photographs)

6.2.2. Testing

First, the original similarity profile of each feature vector plug-in is determined for both

image repositories (ETH-80 and Caltech-101). For each ranking position, the average,

minimum and maximum value are collected. These profiles are used as reference to cre-

ate the normalization functions and to measure the changes according to the normalized

profiles. Each average curve is split into 20 segments of equal size. The selected bound-

aries are 1.0 for rank0 and 0.0 for rank|I|+1. In between, the average similarity of each

104

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y
Average
Max
Min

(a) RGB Mean

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y

Average
Max
Min

(b) Histogram

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y

Average
Max
Min

(c) Spatial Histogram

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y

Average
Max
Min

(d) Wavelet

Figure 6.2.: Similarities Cumulated by Rank (ETH-80)

of the 19 equidistant ranking positions are used as reference points for the later normal-

ization. The feature vector modules used: RGB Mean, Histogram, Spatial Histogram,

Wavelet

The normalized similarity profiles are expected to be close to the desired function in

section 3.4.2.2. Especially for the dataset specific normalizations, the average values

should produce only a small error. Normalization parameters extracted from a different

image set are expected to result at least in a better profile than without normalization.

6.2.3. Results

This section presents the similarity profiles of the two image collections. In section 6.2.3.1,

the original profiles are listed. Section 6.2.3.2 and section 6.2.3.3 contain the normalized

profiles according to the original profiles of each collection.

6.2.3.1. Original Profiles

Figures 6.2 and 6.3 show the similarity profiles for the four feature vector plug-ins in

the ETH-80 image set containing 3280 images and the Caltech-101 image set containing

9144 images. Comparing the profiles for both datasets shows similar characteristics for

each feature. Every single curve starts with a similarity of 1.0 (identity), as each query

105

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y
Average
Max
Min

(a) RGB Mean

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y

Average
Max
Min

(b) Histogram

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y

Average
Max
Min

(c) Spatial Histogram

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y

Average
Max
Min

(d) Wavelet

Figure 6.3.: Similarities Cumulated by Rank (Caltech-101)

contains one of the images from the repository. Generally, all profiles are relatively

smooth without obvious steps inside.

The RGB Mean produces a convex average profile with a relatively shallow decline

until about 90% of the repository size. In the final part, the curve drops quickly to

similarities near 0.2. The maximum value shows a similar trend, but on a slightly higher

level. The minimum value drops quickly in the beginning and then the decline of the

slope decreases. In general, the sections near the boundaries show a steep slope, which

is even more evident in the Caltech-101 profile (figs. 6.2(a) and 6.3(a)).

The Histogram profiles are similar (figs. 6.2(b) and 6.3(b)). In the ETH-80 profile,

the decline of the three values is less steep in the central part compared to the ones of

RGB Mean. In the Caltech-101 profile, the slope of average and max values is steeper

than for the RGB Mean. Further, the minimum value drops very quickly below 0.1 (at

rank 150).

The third pair of profiles shows the behaviour of the Spatial Histogram (figs. 6.2(c)

and 6.3(c)), forming roughly an “S”-shape. The central section of these profiles is

relatively linear (approx. 80%). In contrast to the previous feature vectors, the average

value very quickly declines in the first 10% of the profile below a sinilarity of 0.8 before

entering the linear section. After reaching a similarity about 0.4, the average similarity

starts dropping quickly again. For both data sets, the maximum and minimum profiles

106

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y
Average
Max
Min

(a) RGB Mean

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y

Average
Max
Min

(b) Histogram

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y

Average
Max
Min

(c) Spatial Histogram

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y

Average
Max
Min

(d) Wavelet

Figure 6.4.: Similarities Cumulated by Rank (ETH-80, normalized by ETH-80)

are roughly of the same shape as the average profile, whereas the extreme values of the

Caltech-101 dataset are further apart.

The last feature vector to be tested is the Wavelet . Again, the profiles resemble an “S”

(figs. 6.2(d) and 6.3(d)). Compared to the Spatial Histogram, the slope of the central

section is shallower. For the ETH-80, most values lie in the corridor with a similarity

between 0.6 and 0.8 and for the Caltech-101, the corridor is between 0.7 and 0.5. The

maximum values are mostly 0.1 above the average values. For the minimum values, the

ETH-80 profile is not much below the average profile, but on the Caltech-101 dataset,

the gap between average and minimum values is about 0.5

6.2.3.2. Normalized by ETH-80

In figs. 6.4 and 6.5, the similarity profiles are normalized according to the normalization

function described in section 3.4.2.2. The parameters used are extracted from the original

similarity profile of the ETH-80 dataset.

As intended, the average values of the normalized ETH-80 (fig. 6.4) profile form a

relatively straight line from (rank1/similarity 1.0) down to (rank|I|/similarity 0.0). Ex-

cept from a slightly too quick drop near the first ranks and some minor bulges in the

central section for RGB Mean (fig. 6.4(a)) and Histogram (fig. 6.4(b)), the normalized

average values are close to the desired shape. In the central section, the extreme values

107

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y
Average
Max
Min

(a) RGB Mean

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y

Average
Max
Min

(b) Histogram

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y

Average
Max
Min

(c) Spatial Histogram

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y

Average
Max
Min

(d) Wavelet

Figure 6.5.: Similarities Cumulated by Rank (Caltech-101, normalized by ETH-80)

are further apart from the averages than in the original profile.

The same normalization applied to the Caltech-101 image dataset is much less fitting

the desired function fig. 6.5. Nevertheless, at least the actively used similarity range is

clearly more evenly distributed between 1.0 and 0.0 than before (fig. 6.3). The average

values of three profiles are closer to the intended function, but in the case of the Wavelet

feature (fig. 6.5(d)), the profile is too steep in the beginning and too shallow in the second

half. In all four profiles, the minimum drops to similarities below 0.1 very quickly.

6.2.3.3. Normalized by Caltech 101

In figs. 6.6 and 6.7, the similarity profiles are also normalized according to the normal-

ization function described in section 3.4.2.2. The parameters used are extracted from

the original similarity profile of the Caltech-101 dataset.

Applying the Caltech-101 normalization on the ETH-80 images generates profile not

quite fitting the desired function (fig. 6.6). The average similarities take advantage of

the full range from 0.0 to 1.0, but the curves are much less straight than in the ETH-80

normalized casefig. 6.4. Especially the Wavelet feature profile is not close to the intended

function, but lies far above it (fig. 6.6(d)). The average similarity for rank|I| is 0.33.

As intended, the average values of the normalized Caltech-101 (fig. 6.7) profile form a

relatively straight line from (rank1/similarity 1.0) down to (rank|I|/similarity 0.0). The

108

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y

Average
Max
Min

(a) RGB Mean

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y

Average
Max
Min

(b) Histogram

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y

Average
Max
Min

(c) Spatial Histogram

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y

Average
Max
Min

(d) Wavelet

Figure 6.6.: Similarities Cumulated by Rank (ETH-80, normalized by Caltech-101)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y

Average
Max
Min

(a) RGB Mean

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y

Average
Max
Min

(b) Histogram

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y

Average
Max
Min

(c) Spatial Histogram

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y

Average
Max
Min

(d) Wavelet

Figure 6.7.: Similarities Cumulated by Rank (Caltech-101, normalized by Caltech-101)

109

0 500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y
Reference
similarity (RGB Mean)
error (RGB Mean)
similarity (Histogram)
error (Histogram)
similarity (Spatial Histogram)
error (Spatial Histogram)
similarity (Wavelet)
error (Wavelet)

Figure 6.8.: Error of Original Similarity Profiles for ETH-80 Images

most prominent deviations are the initial quick drop to similarities around 0.95 for the

highest ranks. The maximum values do not show any special behaviour. Again, the

minimum values drop extremely quick below a similarity of 0.1.

6.2.4. Analysis

Below, the results of the testing procedure are being analyzed. Especially the deviation

from the reference function is is calculated to determine the individual error for each

test case. The figures below plot the four similarity profiles of the feature vectors and

their absolute error compared to the reference function (dotted line). In the summary

(section 6.2.4.4), the errors of all features are compared to each other.

The error ε for each rank and the cumulated error E are defined as

εrank =

∣∣∣∣(1− rank

|I|

)
− s(rank)

∣∣∣∣ (6.1)

E =
∑

εrank (6.2)

where s(rank) is the average similarity of all results at position rank.

110

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y
Reference
similarity (RGB Mean)
error (RGB Mean)
similarity (Histogram)
error (Histogram)
similarity (Spatial Histogram)
error (Spatial Histogram)
similarity (Wavelet)
error (Wavelet)

Figure 6.9.: Error of Original Similarity Profiles for Caltech-101 Images

6.2.4.1. Original Profiles

Figure 6.8 contains all similarity profiles for the average values for the ETH-80 image

repository. In the range up to approximately rank 400 (≈ 12% of |I|), the Spatial

Histogram and Wavelet features reach an error of about 0.2 because of their initial steep

drop. With a growing rank, the error drops to 0 and then rises up to 0.57 (W) and 0.277

(SH). The error of the other features RGB Mean and Histogram ascend much slower

and peak in the less relevant ranks around 3000 (≈ 90% of |I|).
In fig. 6.9, all similarity profiles for the average of the Caltech-101 repository are

contained. The error graphs have comparable characteristics to the previous profiles.

Below the 2000 (≈ 22% of |I|) Spatial Histogram and Wavelet both show their first error

peak above 0.2 and their second one around rank 8500 (≈ 93% of |I|). Again, the error

of the other features RGB Mean and Histogram ascend much slower and peak in the

less relevant ranks around 8500.

6.2.4.2. Normalized by ETH-80

In fig. 6.10, the error for the optimized ETH-80 dataset is depicted. It shows a very

low error for all four features, whereas the Histogram feature vector shows a small error

bulge around rank 2000 (≈ 60% of |I|) with a peak deviation of 0.1.

Figure 6.11 is based on the Caltech-101 images, optimized by the ETH-80 parameters.

Most features have an error below 0.1 for the first 2000 (≈ 22% of |I|) ranked results.

On later ranking positions, the error of the RGB Mean feature keeps increasing, while

111

0 500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y

Reference
similarity (RGB Mean)
error (RGB Mean)
similarity (Histogram)
error (Histogram)
similarity (Spatial Histogram)
error (Spatial Histogram)
similarity (Wavelet)
error (Wavelet)

Figure 6.10.: Error of Normalized (ETH-80) Similarity Profiles for ETH-80 Images

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y

Reference
similarity (RGB Mean)
error (RGB Mean)
similarity (Histogram)
error (Histogram)
similarity (Spatial Histogram)
error (Spatial Histogram)
similarity (Wavelet)
error (Wavelet)

Figure 6.11.: Error of Normalized (ETH-80) Similarity Profiles for Caltech-101 Images

112

0 500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y
Reference
similarity (RGB Mean)
error (RGB Mean)
similarity (Histogram)
error (Histogram)
similarity (Spatial Histogram)
error (Spatial Histogram)
similarity (Wavelet)
error (Wavelet)

Figure 6.12.: Error of Normalized (Caltech-101) Similarity Profiles for ETH-80 Images

Histogram and Spatial Histogram remain below 0.1. The worst performing feature is the

Wavelet . At rank 2000, the error peaks at about 0.5 and then decreases again.

6.2.4.3. Normalized by Caltech 101

In the opposite way — the ETH-80 images profiled with the Caltech-101 function

(fig. 6.12) — the results are less convincing than in fig. 6.11. While the Spatial His-

togram always remains below 0.1, the RGB Mean and Histogram exceed the 0.2 in the

second half of the results. Again, the worst normalized feature vector is the Wavelet .

Opposed to the ETH-80 normalized Caltech-101 profile, the average similarity slope of

the Wavelet feature is too shallow in the first half.

In fig. 6.13, the error for the optimized Caltech-101 dataset are plotted. As intended,

the error for all four features is very low and always remains below 0.1. The strongest

deviations can be seen for the Spatial Histogram and Wavelet features in the first 2000

results (≈ 22% of |I|) where the average similarity is below the reference.

6.2.4.4. Summary

A concise overview of the results described above is given in table 6.1 and fig. 6.14. In

most test cases, the normalized similarities push the total error E below 50% of the

original results. The only exception to this rule are the two Wavelet based errors while

using the normalization parameters from the opposing image repository. If the matching

normalisation parameters are chosen, E always remains below 0.056 (highest value for

113

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

ranking position

si
m

ila
rit

y

Reference
similarity (RGB Mean)
error (RGB Mean)
similarity (Histogram)
error (Histogram)
similarity (Spatial Histogram)
error (Spatial Histogram)
similarity (Wavelet)
error (Wavelet)

Figure 6.13.: Error of Normalized (Caltech-101) Similarity Profiles for Caltech-101 Im-
ages

Table 6.1.: Cumulated Average Error

dataset feature original normalized normalized
vector ETH-80 Caltech-101

ETH-80 RGB Mean 0.28085 0.0173 0.11572
Histogram 0.33513 0.040525 0.14398
Spatial Histogram 0.14362 0.014856 0.044396
Wavelet 0.24816 0.028131 0.35692

Caltech-101 RGB Mean 0.37754 0.055727 0.17042
Histogram 0.26203 0.031286 0.075503
Spatial Histogram 0.15737 0.03166 0.064893
Wavelet 0.19342 0.031768 0.33909

114

RGB Mean Histogram Spatial Histogram Wavelet
0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40
ETH-80 original

ETH-80 Normalized (ETH-80)

ETH-80 Normalized (Caltech-101)

Caltech-101 original

Caltech-101 Normalized (ETH-80)

Caltech-101 Normalized (Caltech-101)

Feature Vector

E
rro

r

Figure 6.14.: Cumulated Average Error

Caltech-101, RGB Mean). Using the “wrong” parameters, the best performing features

generate an error twice above the optimized ones. The best improvement has been

achieved for the RGB Mean feature in the ETH-80 dataset where the error is reduced

to 6% of the original error.

6.2.5. Discussion

Generally, the expectations were satisfied by the test. Using database specific normal-

ization parameters, the total error could be reduced in every case. This leads to much

easier comparable feature vectors. The normalized similarity value between query and

repository image is now roughly indicating the relative position of the image in the

ranking independently from the feature vector used.

Using the normalization parameters of a different image set worked surprisingly well.

At least, the similarity range [0.0, 1.0] is used more evenly than before. The only real

exception is the Wavelet feature. The main reason for this behaviour lies in the similarity

calculation that returns values above 0.5 in almost any case (see figs. 6.2(d) and 6.3(d)).

This causes the normalization function to be inaccurate for values between 0.0 and 0.5

where in this case 1
2

= 50% of the original range are mapped to only 1
20

= 5% of the

normalized range. Also, the lower boundary for rank|I|+1 is arbitrarily mapped to 0.0

even if the similarity between two feature vectors may never be close to this value.

Another problem becomes evident in the highest ranks. Especially the features with

higher dimensionality (i.e. Spatial Histogram and Wavelet) tend to drop too quickly at

115

high similarities. A finer granularity of the normalization function in this range might

reduce this effect. This issue also raises the question, if it is necessary to normalize the

similarities at less relevant ranks. A retrieval system is supposed to return a relatively

small set of highly relevant results rather than a fully sorted list of all known documents.

Even for the highly unclear boundaries of CBIR, it usually makes no sense to return

everything. Instead of separating the whole range into equi-distant segments to deter-

mine the normalization function, another approach may be more useful. One possible

approach would be a logarithmic segmentation by recursive binary splitting of the re-

spective “upper” half of the ranking. This would easily scale to large databases without

losing accuracy or storing too many normalization points. Also the error function should

treat deviation in the highly relevant sections more than in the less relevant ones.

The minimum values have a tendency to be extremely low, especially in the Caltech-

101 dataset (fig. 6.3). This can be explained by a collection containing at least one

image having no similarity to any other image. As the minimum profile is generated by

using each image of the repository, such an outlier far away from any cluster of similar

images easily pulls the boundary down. Thus, the minimum values don’t have a very

high expressiveness for this case study except from showing the extremes. More useful

for future testing could be a set of given confidence intervals to determine statistical

boundaries of how many similarity values are below or above a given threshold.

6.2.6. Summary

The above testing procedure can be applied during the development of new feature vec-

tors. In multi-feature applications, the similarity function for each pair of vectors may

not easily be constructed to generate homogeneous distribution of similarities. Gener-

ating a set of normalization parameters would simplify this task and it would also allow

for a use case specific optimization.

6.3. Estimating the Improvement Capabilities of

Different Features

This section evaluates the estimated improvement capabilities of each implemented fea-

ture vector. It is calculated, by which factor a feature vector can improve the retrieval

performance for various categories. This information is a valuable help to select a certain

feature vector to be used for searching a category.

116

6.3.1. Requirements

• default image database with annotated categories

6.3.2. Data Preparation

The feature vectors used have various levels of complexity. The simplest one is a trivial

RGB mean value, previously used for tests in a query language [96] (mean). Much more

sophisticated is the use of 12 stochastic moments from the image histograms by Al-Omari

and Al-Jarrah [4] (stochastic2). The same feature is also used in feature vector with

added spatial awareness, by splitting the original image into a quad tree of histograms

[92] (stoch quad). Finally, a wavelet based feature is used [58] (wavelet). It is expected

that the measured quality of the four feature vectors is related to the complexity level.

These feature vectors are applied on the Caltech 101 image repository [40]. This

collection consists of 101 categories with |I| = 9144 images, each one depicting a specific

object. The images are reasonably well normalised by scaling, centring and rotating the

objects into comparable positions. A set of more or less random background images is

also included.

The testing has been carried out on a PC with “Intel Core2 Duo” CPU (2 * 2.33

GHz). A data collection run took approximately 4 hours. During this time, no speed-

optimizing indexing has been used by the CBIR search engine and each query has been

compared to every available image in the repository. Thus, the retrieval results represent

the “optimal” quality without any loss caused by indexing techniques. Further, this case

study does not use the normalized similarities.

6.3.3. Data Collection

For the benchmark preparation, the whole repository is imported into the CBIR system,

extracting the image features and the category keywords. Then every single image

feature is used as a query and the first 50 ranked results of each retrieval are stored

in a database. Among the first 50 hits should be as many related images from the

same category as possible. The higher the recall for the target category, the higher the

measured quality of the feature vector used.

117

6.3.4. Data Normalization

A known issue of the Caltech 101 dataset is the strong variation of category sizes

|Rcategory|. Some of which are under-represented with only as much as 31 images and

others contain 800 samples. Therefore, the collected data needs to be normalized.

First of all, the under-represented images have to be adjusted to the other categories.

This is done by calculating a normalized recall value 0 ≤ ρ ≤ 1 for the first 50 results:

ρnormalized =
tp

min {|Rcategory|; 50}
(6.3)

The second necessary step is the normalization of these recall values according to

the size of each category set. The random precision πrandom of picking an image of the

required category depends both on the repository size n and the amount of samples for

a category |Rcategory|:

πrandom =
tp+ fn

tp+ tn+ fp+ fn
=
|Rcategory|
|I|

(6.4)

With this data, the result quality of every single query can be directly compared to

random picking, calculating an improvement factor τ .

τ =
ρnormalized
πrandom

(6.5)

Values below 1 should never occur in realistic scenarios, as this would indicate that ran-

domly choosing images from the repository performs better than using the benchmarked

feature vector. The higher the improvement factor, the better. For each category, the

averages and the standard deviation of the improvement factor are calculated.

6.3.5. Results

The findings of testing the 9144 images in 102 categories are visualized in fig. 6.15 and

summarized in table 6.2. Also, a couple of sample images from various categories are

presented (figs. 6.16 - 6.20).

Figure 6.15 visualizes the strength of every feature to recognize a specific category.

Each bar represents a single category, sorted alphabetically by the given folder name of

the collection. The height of a bar represents the average improvement τ that has been

achieved by using the corresponding feature vector. The standard deviation is indicated

by a vertical H-shaped line on top of each bar.

118

Improvement Factor

fv_mean fv_stochastic2 fv_stoch_quad fv_wavelet

Category

0

25

50

75

100

a)
 m

ea
n

0

25

50

75

100

b
)

st
o

ch
as

ti
c2

0

25

50

75

100

c)
 s

to
ch

_
q

u
ad

0

25

50

75

100

d
)

w
av

el
et

(5) BACKGROUND_Google
(17) car_side

(19) cellphone
(30) dollar_bill

(52) inline_skate (71) pagoda
(90) stop_sign

im
p

ro
ve

m
en

t
fa

ct
o

r
im

p
ro

ve
m

en
t

fa
ct

o
r

im
p

ro
ve

m
en

t
fa

ct
o

r
im

p
ro

ve
m

en
t

fa
ct

o
r

(66) minaret

Figure 6.15.: Improvement Factor

119

6.3.6. Analysis

Table 6.2.: Summarized Improvement

Feature Average Standard Deviation
avg min max avg ≥ 10 avg min max

mean 7.37 1.69 37.4 20 4.51 1.14 22.3
stochastic2 6.81 1.46 27.11 17 4.01 0.72 29.73
stoch quad 11.57 2.25 85.04 37 7.89 1.32 50.48
wavelet 14.0 1.34 71.23 50 9.07 1.09 41.04

The results for the 102 categories is summarized even further in table 6.2. It compares

some highly condensed characteristics of each feature vector, i.e. the average, minimum

and maximum for both improvement factor average and standard deviation.

In many cases the average improvement factor is close to 5. For some categories, the

average value ranges from 10 to 85. These peaks depend on the feature vector used

and do not occur in every diagram equally. The amount of peaks is relatively low with

the mean (fig. 6.15 a) and the stochastic2 (fig. 6.15 b) feature vector. The number

increases with the stoch quad (fig. 6.15 c) and wavelet (fig. 6.15 d) feature vectors. The

standard deviation of each category/feature pair varies from about 10% of the average

to more than 100%. The feature vectors used do not seem to have a large impact on this

behaviour and the standard deviation seems to be closely related to the average with a

factor of average
standard deviation

≈ 1.5.

In comparison, the average improvement of the more sophisticated feature vectors

(wavelet: 14.0, stoch quad: 11.57) is by a factor of 2 higher than that of the simpler

ones (mean: 7.37, stochastic2: 6.81) in relation to a random result. The amount of

categories above a threshold of 10 shows a similar tendency. According to these numbers,

the histogram based feature vector stochastic2 with 12 parameters seems to perform

slightly worse than the trivial RBG mean with only 3 parameters, which is an unexpected

outcome.

(a) (b) (c) (d) (e) (f)

Figure 6.16.: Caltech 101 - category subset: BACKGROUND Google

120

The worst performing category is the “BACKGROUND Google” (fig. 6.16). The av-

erage improvement factor of all four feature vectors represents the minimum in table 6.2.

All four values lie very close to 1. This means, there is almost no improvement com-

pared to random picking at all. As this specific category is defined by being an unsorted

collection of random images with no particular semantics, the algorithms cannot find

any useful information that links any two of these images together.

(a) (b) (c) (d) (e) (f)

Figure 6.17.: Caltech 101 - category subset: car side

One of the best recognized categories is the “car side” (fig. 6.17). With some knowl-

edge about the contained images and the feature vectors used, the reason becomes

obvious immediately. Every feature vector used in this investigation is analysing the

image colours and this category is the only one which consists completely of gray scale

images. Thus, each feature vector is able to cope with it very well.

(a) (b) (c) (d) (e) (f)

Figure 6.18.: Caltech 101 - category subset: inline skate

The most prominent feature-dependent results are found in the category “inline skate”

(fig. 6.18). This is probably due to the fact that the samples this category are very ho-

mogeneous. With only 31 images, this is one of the smallest categories, but the object,

background and orientation of most representations is very similar (mostly gray, white,

front points to the left). While the purely colour based feature vectors generate reason-

able results, the ones which consider spatial information too are capable of retrieving

most related images directly (stoch quad: 85.04, wavelet: 71.23). The large standard

deviation is caused by the few outliers, where background or orientation differ. Some

other categories, such as “cellphone”, “minaret” and “pagoda” benefit also from the

spatial information and especially very similar backgrounds.

A category with a very high standard deviation is the “stop sign” (fig. 6.19). This set

121

(a) (b) (c) (d) (e) (f)

Figure 6.19.: Caltech 101 - category subset: stop sign

contains 64 samples of an highly iconic motive. All over the world, stop signs look almost

identical, especially according to shape and colours. Approximately half of the samples

show a stop sign with only very small portions of background (e.g. figs. 6.19(a), 6.19(c),

6.19(e), 6.19(f)). These images form a very compact cluster in th feature space. On the

other hand, several images show the sign embedded in scenery or from an angle. These

samples form a less defined cluster, where the feature vectors have far less distinction to

samples from other categories.

In general, higher bars indicate a better performing feature vector for a specific cat-

egory. Also, the standard deviation should be relatively low. In that case, a CBIR

system would return a large set of highly similar images for every existing query image

for a category. This benchmark approach could be beneficial to compare the perfor-

mance of various feature vectors and for fine tuning new ones. It compensates most of

the imbalance in category sizes and also takes the repository size into account. It also

indicates, which image categories can be handled easily and where the feature vector

specific problems lie. The further summarized parameters (table 6.2) can be used as a

more general benchmark.

6.3.7. Limitations

This case study uses the well known image Caltech 101 repository [40], which has certain

weaknesses. Due to limited resources, the investigation did use the complete image to

extract a feature vector instead of applying a sophisticated regional clustering algorithm.

Thus, the background of the images may have a strong influence on the results.

(a) (b) (c) (d) (e) (f)

Figure 6.20.: Caltech 101 - category subset: airplanes

122

Also, some categories contain several sub-categories of very similar objects. The “air-

planes” (fig. 6.20) with 800 samples contains military jets, commercial and private planes

of all sizes on different backgrounds (e.g. sky, grass, concrete). These sub-categories may

cause a very strong recall among each other, but other semantically related images could

not be retrieved, causing a low average improvement. Very small classes with a homo-

geneous image set easily achieve a much better recall . Picking a more homogeneous

repository would probably help to overcome these fundamental issues.

The amount of feature vectors tested was relatively small. Each one used colour

information, but not a single one is capable of extracting and matching certain objects

and their shapes. In future benchmarks, additional feature vector implementations are

going to be tested and compared.

As the benchmark performs a retrieval query with every single image in the repository

and for every feature vector to be assessed, this benchmarking approach does not scale

very well. Without further optimizations, the run time is at least linearly increasing

with the repository size. If non-ideal results are also acceptable, the use of dedicated

indexing structures for each feature vector could largely increase the scalability of this

approach.

6.3.8. Discussion

The case study shows up a way of comparing several feature vectors according to their

classification abilities. It was attempted to minimize the influence of the inhomogeneous

Caltech 101 image collection [40] in the results. The final normalized data indicated that

the complex stoch quad and wavelet features are suitable to retrieve several image cate-

gories in this repository very well. Other categories may require another feature vector

or are simply too inhomogeneous to be retrieved. The benchmark provides feedback of

how homogeneous the samples of a category are. In some cases, it might be beneficial

to split a category into more detailed sub parts with additional semantic value.

6.3.9. Summary

The average provides evidence of how well a given category can be clustered by using the

feature vector and its similarity function. The average improvement factor ranges from

1.34 up to 71.23 (both for the wavelet feature). In this case study, a suitable threshold

seems to be 10. The total amount of categories above this threshold correlates with the

average improvement factor and is another quality indicator.

123

The standard deviation visualizes, how the clusters of highly similar images are com-

posed. A low deviation (i.e. / 2) indicates clusters of similar size. A high deviation

(i.e. ' 10) in contrast indicates clusters of unequal size. This can be a problem, if for

example single images of a category contain a very special representation. Then these

special instances cannot be retrieved easily with the system.

6.4. Supervised Learning

In this section, the learning algorithm described in section 3.7.7 is evaluated. This

section mentions some results published in a recent conference paper [91].

The testing has been carried out on a Solaris 10 x86 server system with 4 CPU-cores

used in parallel.

6.4.1. Requirements

• Image set of annotated categories

6.4.2. Preparation & Implementation

The image collection used is the ETH-80 collection from the ETH CogVis project [67, 68].

It contains in total 3280 images of 8 different annotated object categories. Each category

contains 10 different objects and have an equal size of 410 images. Each object is

available from several angles and is located in front of a blue background. Additional

data about the object boundaries are also available from black and white mapping files.

This collection is sufficient to test the already available feature vector modules without

the additional need of segmentation algorithms. Further advantages of using this image

set are:

1. Each image represents a single object/concept

2. The object/concept to be learned fills most of the image area, is centred and

completely visible

3. The ETH-80 collection provides additional mask files which define the relevant

segment

In this case study, a set of relatively simple feature vectors is used, which are described

in [96]. Both the RGB Mean (RGB) and the Histogram (H) module are also extended

124

and only use the relevant pixels defined by the provided map files. Both Spatial His-

togram (SH) and Wavelet (W) remain unchanged. They are expected to be sufficient

for evaluating the learning algorithm, as they usually return better results than random

guessing (see. [113]). More advanced feature vectors are currently not available for

testing, but could easily be added to the system in the future, as this learning approach

allows for modular extensions.

Prior to running the learning algorithm, all images were imported into the CBIR

repository. At that stage, the time consuming feature extraction takes part once. The

remaining computation then relies on these stored feature vectors. To eliminate the

influence of non-optimal indexing structures, a full scan over all existing feature vectors

is performed for each single retrieval step.

For each of the eight categories, the given 410 images are used as training set. To

prevent over fitting, the algorithm is manually limited to a maximum of 20 SHOULD

clauses and at most 3 additional MUST/MUST NOT clauses for each positive one.

6.4.3. Testing

The testing process is split into several steps, adding more detail information each time.

This is achieved by enabling more options in the learning algorithm.

1. Single Clauses

2. Multiple SHOULD Clauses

3. Additional MUST/MUST NOT Clauses

4. Additional Boost Parameter

Every test run generates a query for each category. These queries are then analyzed

in detail by calculating the results they produce in the CBIR environment. For those

results, Precision/Recall diagrams are generated. The result set size in the diagrams

is normalized by the category size 410 and in some cases by twice that size (820) to

the range [0.0, 1.0]. Results above that size are not considered to be of high interest.

The optimal retrieval would achieve a precision of π = 1.0 among the first 410 images

and a precision of π = 0.5 for this result size is assumed to be reasonable in difficult

cases. A searcher should browse at least these results in order to find a suitable image,

simply because the repository contains that much relevant images. After this threshold,

determined users should also find more relevant hits. Thus, the recall ρ should still

125

increase, even though the precision is less crucial. If the precision is not very good for

the minimum result size of 410, it is aimed to achieve an improved recall until 820.

The results of each test run are used to fine tune some learning parameters, such as

the α of the F-Measure and combination rules. These parameters are also used in the

subsequent runs. Further, this case study does not use the normalized similarities.

6.4.4. Results

6.4.4.1. Effect of Single Clauses

As already discussed in section 6.3, each feature vector has unique strengths and weak-

nesses. For each category, the best available feature vector may vary.

The precision-recall diagrams in fig. 6.21 visualize the discriminative power of the

single best feature vector found for querying each category. It is a first indication of

how well a category can be learned with the available feature vectors. The categories

“apple”, “pear” and “tomato” (fig. 6.21(a), fig. 6.21(g), fig. 6.21(h)) indicate a high

achievable precision with short queries. As the category “cow” performs worst, it is

used for assessing the optimization steps.

The F-Measure parameter α = 0.2 appears to be a reasonable trade-off between

precision and recall. By favouring the precision, the learning algorithm is forced to

find more restrictive thresholds, filtering out more irrelevant results. This allows more

complex queries to focus on multiple highly relevant clusters instead of trying to fit as

much as possible into a single clause.

6.4.4.2. Effect of Additional Clauses and Tolerance

The detailed Precision/Recall and F-Measure values for four “cow” related queries are

shown in fig. 6.22. The x-axis of the diagrams are normalized to the size of each category,

i.e. 410 images. Lines ending earlier indicate result sets smaller than the expected 410

images.

Figure 6.22(a) represents the results for the single best clause. The precision drops

relatively constantly with the increasing result set size towards a value of 0.35. The

maximum quality (i.e. F-Measure) has been found at a minimum similarity of 0.823. At

that point, the precision is 0.84. The resulting query for the first split is:

W:1750@0.823

126

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.21.: Precision/Recall of ETH-80 categories, single feature

127

precision recall quality

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Result Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

V
al

u
e

(a) Single Clause

precision recall quality

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Result Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

V
al

u
e

(b) 20 SHOULD Clauses

precision recall quality

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Result Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

V
al

u
e

(c) 20 SHOULD Clauses with MUST NOT

precision recall quality

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Result Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

V
al

u
e

(d) Most Relevant Clauses have Tolerance

Figure 6.22.: Precision, Recall and Quality (F-Measure) for “cow” related queries

128

(a) rank 77 (b) rank 80 (c) rank 81 (d) rank 82 (e) rank 84

(f) rank 89 (g) rank 98

Figure 6.23.: Highest Ranked False Positives for “cow”, 20 SHOULD (first 100 hits)

fig. 6.22(b) shows the results for a query containing a set of several SHOULD clauses.

Until a size of 76 images, the precision achieves the optimal value of 1.0. After that

threshold, it quickly drops to 0.95 and after that then the precision slowly descends. The

maximum result set size with this query is 360 images, containing tp = 304 true positives,

fp = 56 false positives and the not retrieved false negatives fn = 106. The resulting

precision (eq. (3.2)) is π = 304
304+56

= 0.844 and the recall (eq. (3.3)) is ρ = 304
304+106

= 0.741

More images cannot be retrieved, as the query contains a minimum similarity for each

clause.

The highest ranked false positives are displayed in fig. 6.23. The first false positive is a

black and white dog from different perspectives, followed by black cars with white/grey

interior.

The query containing the 20 most relevant query features is:

W:1750@0.823 SH:2150@0.863 W:2333@0.833 W:1818@0.803

SH:1665@0.857 W:2143@0.804 W:1838@0.809 W:2083@0.773

W:2316@0.806 SH:2302@0.773 W:1921@0.814 RGB:2399@0.999

SH:1922@0.856 W:1811@0.824 W:1650@0.793 SH:1734@0.864

SH:1670@0.927 RGB:2405@0.999 W:1985@0.804 W:2151@0.799

Figure 6.22(c) is based on the full retrieved query containing additional negative

clauses. In comparison to the previous query, the first false positive is already ranked at

position 31, followed by a couple of other false positives. Again, the same dog and cars

as from above are included in the results. As a first difference, the precision remains

129

(a) rank 35 (b) rank 37 (c) rank 41 (d) rank 48 (e) rank 55

(f) rank 63 (g) rank 68 (h) rank 74 (i) rank 94

Figure 6.24.: Highest Ranked False Positives for “cow”, MUST NOT (first 100 hits)

quite stable at a level of 0.9. Out of 323 retrieved images, tp = 286 are true positives,

fp = 37 are false positives and fn = 124 related images are missing. The resulting

precision is π = 286
286+37

= 0.885 and the recall (eq. (3.3)) is ρ = 286
286+124

= 0.698. Thus,

the precision is slightly better at the expense of the recall.

Figure 6.22(d) is based on an attempt to manually improve the calculated descriptor.

The similarity thresholds for the first two positive clauses have been lowered by 10% in

order to increase the result size and implicitly the recall rate.

(W:1750@0.741 -H:2908@0.988) (SH:2150@0.776 -H:1560@0.970)

...

At a result size of 410 images, the precision is π = 0.74 and the recall is ρ = 0.74.

While the precision is lower than for the other queries above, the recall is similar to the

20 SHOULD clauses. Yet, the total possible result set is about twice as large as for the

restricted ones. Thus, the full result set contains 884 retrieved images and is separately

depicted in fig. 6.25. The total amount of true positives is increased to tp = 356 and the

still not retrieved false negatives are reduced to fn = 54. Thus, the final precision for

the complete retrieved result is π = 356
356+528

= 0.403 and the recall is ρ = 356
356+54

= 0.868.

The highest ranked false positives up to rank 100 are shown in fig. 6.26. The amount

of false positives is reduced from 9 to 5. Especially the black car is ignored in this case.

130

Precision/Recall (cow) - series:
05_20SHOULD+MUST_NOT_900xN_x0.9s(decreasing)

precision recall quality

P=0.402715
R=0.868293
Q=0.451090

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Result Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

V
al

u
e

Figure 6.25.: Precision/Recall of Manually Edited Query for “cow” up to Rank 900

(a) rank 14 (b) rank 31 (c) rank 35 (d) rank 60 (e) rank 97

Figure 6.26.: Highest Ranked False Positives for “cow”, modified MUST NOT (first
100 hits)

131

Figure 6.27.: Precision/Recall of ETH-80 “cow”, max 20 SHOULD clauses, variations
of “slack”

6.4.4.3. Effect of Boost Parameter

The previous section indicates limitations of the retrievable results. This is mainly

caused by the strict application of the similarity threshold. It is simply cutting away

further relevant images with a lower similarity to the query.

This effect can be attenuated by lowering the threshold for the most expressive query,

allowing more hits to be considered. In order to enhance the query descriptor automat-

ically, the quality of each positive top level clause is added as boost parameter. When

merging multiple of those clauses, the more relevant sub results are expected to gain

better ranks than the less relevant ones.

Figure 6.27 displays the impact of simply reducing the similarity threshold for all

clauses. In this case, only the best 20 SHOULD clauses are used. The result size is

|r| = 2|R| to show the effects for a case, where the precision is not near 1.0.

In the upper left example, precision and recall of the result set are very good up to

132

Equal application of slack

Figure 6.28.: Equal Application of Slack

the point, where the query cuts off all following results. From a result size of about 0.45,

no more additional data is available. The maximum recall is 0.74

The upper right result uses similarity thresholds reduced by a factor of 0.99. The

precision is much lower than in the first case. The recall increases in several steps until

it reaches a slightly higer value than previously (ρ = 0.75).

The results of the lower left diagram are generated with thresholds reduced to 0.95.

This leads to a decrease of precision between the former two tests. The recall keeps

increasing until it seems to reach a limit at about 0.95 of the result size. The final value

is ρ = 0.81.

In the lower right diagram, the thresholds are reduced by a factor of 0.9. The precision

drops very quickly to a value of about 0.5 where it remains until about a size of 0.5.

Then it starts decreasing further at an almost constant rate. The recall increases more

slowly than before, but relatively steadily. At a result size of 1.0, it is still increasing

and reaches a value of ρ = 0.73.

133

In fig. 6.28 the full queries containing also negative clauses and a boost are tested.

Again, the similarity threshold of each top-level Boolean clause is reduced by different

amounts.

On the upper left, the diagram shows precision and recall for a threshold reduction by

0.999. The precision slowly decreases and the recall slowly increases until it is slightly

higher than the precision (ρ = 0.78). At 425 results, the curves stop.

The upper right diagram is based on a query with reduced thresholds of 0.99. Again,

the precision drops much faster than previously below 0.5. When reaching the size of

the relevant set (≈ 410), there are two more points, where the precision increases again.

The final recall is 0.77.

When using a factor of 0.95 (lower left), the precision does not drop as much as before

and with less obvious steps. The recall reaches a maximum of ρ = 0.84.

In the last case, with a factor of 0.9, the precision drops very quickly towards 0.5 from

where it rises up to 0.6 and then keeps dropping steadily. The best recall possible is

ρ = 0.86.

When adding a “slack” to the thresholds of each query, the boost is used to alter its

percentage. Clauses with a boost of 1.0 would be treated with the maximum additional

slack and clauses with 0.0 with none at all. In between, a linear interpolated value is

used.

σc = 1.0− ((1.0− σmax) ∗ βc) (6.6)

where σc is the factor to modify a single clause c, σmax is the maximum factor to be

added and βc is the boost factor assigned to clause c.

The last testing series (fig. 6.29) is the boost dependent variation of similarity thresh-

olds. In this case, the new similarity threshold of each clause is reduced by the full

amount of “slack ” with a boost of 1.0 and with no modification for a boost of 0.0.

In the upper left case (factor 0.999), the results are comparable to the previous series,

but with a slightly worse recall (ρ = 0.77).

The upper right diagram with a factor of 0.99, shows the same steps as in the former

series with the equal decrease of the threshold. The final recall of 0.8 indicates an

improvement.

The lower left test case plots the results for a factor of 0.95. Again, the steps are

mostly gone. The recall curve starts relatively steep and then becomes more and more

shallow with a short increase at the end. This case reaches a recall of 0.73.

134

Boost dependent application of slack

Figure 6.29.: Boost Dependent Application of Slack

135

W:1750@0.823

¬CH:2908@0.988 SH:2150@0.863

 ¬CH:1560@0.970 SH:1665@0.857

W:2143@0.804

¬RGB:2738@0.912

W:2084@0.743

¬ CH:4859@0.991

W:1989@0.824

...

Figure 6.30.: Decision Tree for concept ”cow” (most relevant clauses)
For each node split, the decision query term is specified.

In the final test with 0.9, the precision drops more quickly to 0.6 than the other curves

in this series. The maximum recall is ρ = 0.81 with a more or less steady increase.

6.4.4.4. Constructed Category Queries

The categories “tomato”, “pear” and “apple” have successfully been categorized with at

most 3 to 10 positive clauses. Adding more clauses would not have had any noteworthy

effect on the results, e.g. only adding a single image. The most complex queries were

generated for the animals “cow”, “horse” and “dog”.

The full generated descriptor for the concept “cow”, defined in the query language, is:

(W:1750@0.823 -H:2908@0.988) (SH:2150@0.863 -H:1560@0.970)

SH:1665@0.857 W:2143@0.804 (W:2084@0.743 -RGB:2738@0.912)

(W:1989@0.824 -H:4859@0.991) SH:2302@0.773 W:1839@0.834

RGB:2399@0.999 W:1811@0.824 SH:1670@0.926 W:1985@0.799

SH:1816@0.886 W:1662@0.817 SH:1922@0.866 W:1827@0.844

W:1980@0.857 W:2151@0.799 RGB:2055@0.999 SH:1657@0.920

In comparison, the descriptor for the concept “tomato” only requires 3 clauses:

H:5793@0.988527 H:6031@0.999211 SH:6377@0.952435

136

Figure 6.30 shows the decision tree for the first half of the query for the learned

concept “cow”. The first split of the image set I is the query W:1750@0.823. It has

been identified as the single query with the highest gain possible. As a result, the new

left node contains a result set with an F-Measure of 0.67 and a precision of 0.84 for

“cow”.

As the retrieved results still contain several false positives, the query is refined by

adding the negative clause -H:2908@0.988. This addition is filtering out a cluster of

irrelevant images, i.e. a set of red cups. This second split generates a left leaf with

a further improved precision and a right leaf with only irrelevant images. The node

splitting is performed in the same way for the right node on the 2nd level, generating

more left nodes with the highest precision possible. The right nodes contain less relevant

training images for each split until the remaining training set is too small for learning

or the maximum learning depth (i.e. 20 positive clauses) is reached.

6.4.5. Analysis

The extracted descriptors for each category show different characteristics (table 6.3).

The categories “tomato”, “pear” and “apple” can be described with short queries. The

“apple” and “tomato” queries have an emphasis on simple colour based features. The

samples in the ETH-80 collection have relatively uniform colours (i.e. red and green),

distinct from the other categories. The “pear” has similar colours, but it’s unique shape

seems to be even more distinctive, whereas the descriptor is composed of the spatially

aware features. Similarly, the “cup” descriptor takes advantage of the unique handle

shape, but also the distinctive plain white and brown colours can be used. The “car”

seems to be much more challenging, as the colours are different for each sample, but the

relatively uniform shape and size clearly favourizes the spatially aware features. The

most complex shapes involved are the animals. It varies depending on the point of

view, and even the colours change for each single sample object. Further, the shapes of

different animals are very similar from the same angle, making it even more difficult to

find a suitable feature.

An obvious property of all queries is the complete lack of MUST HAVE clauses in

the results. Obviously, this is caused by the strict rule in the design section 4.3. By

protecting every single true positive in combination with only a small set of feature

vectors, there was no valid combination of two MUST HAVE clauses available.

Being one of the most difficult categories in the collection (24 clauses in total table 6.3),

the “cow” queries are examined in more detail (table 6.4). The precision for the best

137

Table 6.3.: Query Composition

Category SHOULD MUST NOT RGB H SH W
clauses clauses

apple 10 1 8 2 1 0
car 20 0 0 0 15 5
cow 20 4 3 3 7 11
cup 15 3 1 5 4 8
dog 20 3 0 6 11 6

horse 20 4 2 9 2 11
pear 8 0 0 0 3 5

tomato 3 0 0 2 1 0

Table 6.4.: Query Quality Parameters

Precision Recall F-Measure
fig. 6.22(a) 0.341463 0.341463 0.341463
fig. 6.22(b) 0.843137 0.734146 0.838350
fig. 6.22(c) 0.875000 0.682927 0.865636
fig. 6.22(d) 0.739024 0.739024 0.739024

single clause (fig. 6.22(a)) is almost constantly dropping towards 0.35 for a result set of

the size 410. This can be explained by the high diversity of relevant samples and a large

number of similar images from other categories. Using 20 different clauses for retrieval

(fig. 6.22(b)) results in a very high precision in the beginning. This effect is caused by

the query images that usually achieve the highest possible similarity of 1.0 for at least

one sub query. The precision then drops to 0.9, but the recall keeps climbing until the

threshold is cutting off the less relevant images at a recall of 0.734146. A similar effect

can be seen after introducing MUST NOT clauses (fig. 6.22(c)), where the final precision

is higher, but the achieved recall is lower.

To overcome the limited result set size, the thresholds for the most expressive clauses

are lowered by 10%. The final recall is the highest of all tests and can still increase

with larger result sets. The last query appears to be the most appropriate for CBIR

applications, where several results can be displayed and quickly manually scanned. In

this scenario, a relatively constantly increasing recall rate is considered more important

than having an extremely high precision for only the few highest ranks.

138

6.4.6. Discussion

Using the existing ranking methods of the retrieval systems indicates certain limits of

this learning approach. The main issue to be solved is the cut off result set at a given

threshold. In many cases, the strict similarity thresholds may be sufficient in order

to generate results with a high precision. The remaining relevant images can only be

found by lowering the clause thresholds which unfortunately has a negative effect on the

precision of the higher ranked images. An alternative ranking approach could be derived

from the category descriptor described in sections 3.7.9 and 6.5. This way, not a single

result is cut off and at the same time, the meaning of each single threshold of being the

best trade-off, remains.

The learning algorithm is based on Decision Trees to find a suitable set of query

terms, describing a concept as good as possible. As with most learning algorithms,

the problems of over-fitting and unpredictable run times have to be addressed. Thus,

suitable heuristics for this learning scenario need to be developed.

6.4.7. Summary

The DT based learning approach investigated above is capable of determining a set of

suitable QBE clauses. It automatically chooses the best describing feature vector in each

case and combines them into a single human-readable query. The main challenges are

to achieve a better scalability and to find a reasonable trade-off between query size and

over fitting.

6.5. Query Descriptors

The category-related queries learned in section 6.4 can be used for categorization tasks.

Yet, the CBIR ranking algorithm is unsuitable for direct use, as it would only return

similarities above 0.0 for images within the similarity tolerance specified for the clauses.

Unknown images with a low similarity could not be classified at all. Thus, a category

probability must be defined even for those cases section 3.7.9.

Query descriptors derived from the prototype suffer from the problem of using highly

different feature vectors. Dependent on the feature used in classification, the extracted

raw probability from a single positive term may vary largely. Thus, it is required to

adjust the similarity curves for each feature type to a similar behaviour (see section 6.1).

139

The testing has been carried out on a Solaris 10 x86 server system with 4 CPU-cores

used in parallel.

6.5.1. Requirements

• Image set of annotated categories

• Normalized feature vectors

• Set of descriptors, one for each category

6.5.2. Testing

The test is performed on the ETH-80 image set, containing 8 equally sized categories. In

order to categorize a single image, the normalized probabilities for this image of belonging

to each category are calculated (eq. (3.31)), resulting in a list of values between 0.0 and

1.0.

At the first stage, these raw probabilities are used for a first descriptor-wise catego-

rization. To reduce the amount of ambiguous categorizations, the range φ = [0.45, 0.55]

is considered as being “unsure”. Probabilities above 0.55 are interpreted as positive

classification and values below 0.45 are negatives. At the second stage, all probabilities

Φ(i) for a single image are merged. Out of these probabilities the highest one is selected

eq. (3.34) and the “unknown” image is categorized this way. In both cases, the catego-

rizations are compared to the real category of this image and the correctness rate for

each category is calculated.

6.5.3. Results

The scatter plots in fig. 6.31 visualizes all probabilities for the learned descriptors. The

horizontal axis stands for the respective image id. These ids are sorted by category and

every section contains the 410 images of the same category1. The relevant images for

the respective category are highlighted by a different colour.

Generally, the plots in fig. 6.31 show similar characteristics. Usually, the true positives

achieve probability values above the normalized threshold of 0.5. In some cases, false

positives are clearly below. The negatives show similar patterns:

1Due to parallel threads during the image import, image 410 is a “car” and 411 is an “apple”. In the
diagram, the wrong horizontal locations are barely noticeable and the colours are correct. In the
summary, the category names were used instead of the ids.

140

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

image id

pr
ob

ab
ili

ty

(a) apple

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

image id

pr
ob

ab
ili

ty

(b) car

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

image id

pr
ob

ab
ili

ty

(c) cow

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

image id

pr
ob

ab
ili

ty

(d) cup

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

image id

pr
ob

ab
ili

ty

(e) dog

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

image id

pr
ob

ab
ili

ty

(f) horse

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

image id

pr
ob

ab
ili

ty

(g) pear

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

image id

pr
ob

ab
ili

ty

(h) tomato

Figure 6.31.: Category Probabilities for ETH-80 Images

141

(a) The probabilities are aggregated very close to 0.5. This is the only case, where

false positives appear.

(b) The probabilities are mostly lower than 0.5 but still aggregated.

(c) The probabilities are spread across the whole range [0.0, 0.5].

Figure 6.31(a) is generated with the “apple” descriptor. The apple related images

achieve a φ value in the upper half of the scale, in most cases clearly above the threshold

of 0.5. None of the other images is located in the upper half. The images of four

categories (“car”, “cow”, “dog” and “horse”) are relatively evenly spread across the

range [0.0, 0.5]. The three remaining categories are mostly close to the central region

around 0.5.

In fig. 6.31(b), the “car” related images are largely located in the upper half with a

certain amount close to the threshold. Except from the “cup”, which achieves several

probabilities down to 0.2, most irrelevant images are located near 0.5. A few images

from “apple”, “cow”, “dog” and “horse” achieved a φ clearly above 0.5.

The “cow” descriptor (fig. 6.31(c)) calculated about half of the relevant images close

to 0.5 and quite a few irrelevant images from “car”, “dog” and “horse” achieved a value

above 0.5. The two results from “dog” (fig. 6.31(e)) and “horse” (fig. 6.31(f)) are similar.

For the category “cup”, fig. 6.31(d) indicates neither clear false negatives nor false

positives. The categories “apple”, “pear” and “tomato” are located close to the 0.5,

while the remaining ones may drop down below φ = 0.1.

The last two categories “pear” (fig. 6.31(g)) and “tomato” (fig. 6.31(h)) again share

similar profiles with no false positives. Most “pear” probabilities are between 0.5 and

0.75 and “tomato”, “apple” and “cup” are the categories with many values near 0.5.

The “tomato” descriptor achieves more true positive probabilities up to 1.0. Again, the

other fruits and “cup” are scattered around the central area.

6.5.4. Analysis

To provide an overview of the probability values achieved by the descriptors, table 6.5

summarizes the raw probabilities for each class and descriptor. The results for every

descriptor are summarized in three rows. The eight category columns represent the

sets of 410 images of each category. Each box contains the amount of raw positives

(φ >0.55), negatives (φ <0.45) and unclear (φ ∈ [0.45, 0.55]) summed up to 100%.

The bold numbers highlight the true positives. These values do not consider the other

142

Table 6.5.: Raw Categorization Summary
(%) by real category

descriptor φ apple car cow cup dog horse pear tomato total
apple >0.55 97.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.13

[0.45, 0.55] 2.93 12.20 4.88 79.76 26.34 10.24 57.80 95.12 36.16
<0.45 0.00 87.80 95.12 20.24 73.66 89.76 42.20 4.88 51.71

car >0.55 0.24 77.56 0.49 0.00 0.24 0.24 0.00 0.00 9.85
[0.45, 0.55] 81.71 22.44 90.49 28.05 90.24 89.27 94.15 51.46 68.48
<0.45 18.05 0.00 9.02 71.95 9.51 10.49 5.85 48.54 21.68

cow >0.55 0.00 1.95 45.61 0.00 1.22 2.68 0.00 0.00 6.43
[0.45, 0.55] 4.63 90.73 53.66 31.22 85.85 90.00 50.73 14.15 52.62
<0.45 95.37 7.32 0.73 68.78 12.93 7.32 49.27 85.85 40.95

cup >0.55 0.00 0.00 0.00 93.66 0.00 0.00 0.00 0.00 11.71
[0.45, 0.55] 25.85 22.44 32.44 6.34 24.63 17.32 75.12 99.27 37.93
<0.45 74.15 77.56 67.56 0.00 75.37 82.68 24.88 0.73 50.37

dog >0.55 0.00 0.24 0.49 0.00 60.49 2.20 0.00 0.00 7.93
[0.45, 0.55] 90.73 90.73 97.32 45.85 39.51 94.88 99.27 6.83 70.64
<0.45 9.27 9.02 2.20 54.15 0.00 2.93 0.73 93.17 21.43

horse >0.55 0.00 1.71 2.20 0.00 3.66 53.66 0.49 0.00 7.71
[0.45, 0.55] 1.22 80.98 93.90 19.27 86.10 44.88 76.59 0.24 50.40
<0.45 98.78 17.32 3.90 80.73 10.24 1.46 22.93 99.76 41.89

pear >0.55 0.00 0.00 0.00 0.00 0.00 0.00 85.61 0.00 10.70
[0.45, 0.55] 49.51 14.88 18.05 17.32 29.02 14.88 14.39 31.22 23.66
<0.45 50.49 85.12 81.95 82.68 70.98 85.12 0.00 68.78 65.64

tomato >0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 96.83 12.10
[0.45, 0.55] 29.76 0.98 0.00 18.29 0.00 0.00 3.41 3.17 6.95
<0.45 70.24 99.02 100.00 81.71 100.00 100.00 96.59 0.00 80.95

descriptors. The table shows the discriminative power of each single descriptor on its

own.

The descriptors for “apple” (97.07%), “cup” (93.66%) and “tomato” (69.83%) and

“pear” (85.61%) achieve a recognition rate of over 85% without any false positive. The

remaining positive images are all in the “unsure” area, close to φ = 0.5. All the images

from other categories are either located in the “unsure” or the negative area.

The “car” descriptor is still in a relatively convenient area. With a rate of 77.56% of

correctly categorized positives, this descriptor is quite good. A few false positives are

contained (“apple”, “cow”, “dog” and “horse”), but the total rate is only about 1.25%.

Again, all of the remaining positives are categorized as “unsure”.

The animal descriptors achieve the worst results. The recognition rate for “cow”

(45.61%), “dog”(60.49%) and “horse” (53.66%) are the lowest ones in the test. Also the

amount of false positives reaches up to ≈ 8%5. Also, the categories “cow” and “horse”

are the only ones where relevant images were categorized as irrelevant.

The amount of correct categorizations is summarized in table 6.6. The decision for a

single category is defined in eq. (3.34), which is determined by the highest probability for

each image to be categorized. The recognition rate by the combined approach is higher

than for the raw values, because no area of uncertainty has been defined. Because of

merging the results of all eight descriptors, it is much easier to deal with probabilities

143

Table 6.6.: Categorization Summary

category apple car cow cup dog horse pear tomato total
size 410 410 410 410 410 410 410 410 3280
correct 408 393 351 409 346 316 406 410 3024
rate (%) 99.51 95.85 85.61 99.76 84.39 77.07 99.02 100.00 92.65

close to 0.5. Even if the probability of a relevant image is below 0.5, it can still be

categorized correctly, if the other descriptors return an even lower value.

6.5.5. Discussion

The testing results indicate that the queries generated by the learning algorithm 3.7.7

do in fact have sufficient discriminative power to be used as category descriptors. The

repository specific normalization of the feature vectors (section 3.4.2), the conversion of

similarities to probabilities (section 3.7.9) and choosing the maximum category seem to

be sufficient to achieve reasonable recognition rates. In CBIR scenarios, these descriptors

could also be applied to automatically assign a small set of labels to unknown images.

The probability calculations within the descriptor may also be an alternative to the

current ranking algorithm which is cutting of all results below a certain similarity. The

new approach takes this similarity threshold into account and also allows for expanding

the results to any size. This behaviour would overcome the problems about the altered

thresholds, discussed in section 6.4.

A conspicuous amount of probabilities are very close to the threshold of 0.5. This

behaviour is linked to be amount of clauses in the query and the normalization based on

the clause thresholds. The more clauses are in a descriptor, the more irrelevant images

are close to the determined thresholds. Equation (3.31) needs to be refined further in

the future and also make use of the boost parameter.

Some descriptors still struggle to capture a category while others work well. This is

likely to be caused by two factors. First, the query descriptors have a strictly limited

size. Having a total of only 20 positive examples and a maximum of 60 (less important)

negative examples restricts the system to capture at most 20 distinct clusters in the

optimal case. Allowing for more clauses may improve the recognition rates, but this

also bears the risk of over fitting. The second factor to be considered is the small set of

relatively simple feature vectors provided. The system could only analyze the colours and

histograms as well as a single wavelet approach to recognize textures. All these features

are global and do not take real advantage of the additional shape information provided.

144

The only two features using the provided pixel maps are the RGB Mean (3 dimensions)

and the Histogram (12 dimensions) to ignore the blue background area. The use of

additional, more sophisticated feature vectors is expected to boost the performance of

the system.

6.5.6. Summary

Using the retrieval queries from the supervised learning for shows a high recognition

rate (92.65%). This expressiveness has been achieved by using only four global feature

vectors. It is expected, that this accuracy level within a CBIR system is more than

sufficient.

6.6. Semi-Supervised Learning

This section deals with semi-supervised learning. It compares the results of the previous

section 6.4 to learning process with a reduced training set. A leave-one-object-out cross

validation on the ETH-80 dataset has been published by Leibe and Schiele [68]. This

case study compares the outcome of the semi-supervised learning within this thesis to

the reference approach. Their categorization attempt uses seven different methods:

1. Colour – 3 colour channel histograms [129]

2. Texture – first derivates in x/y direction [115]

3. Texture – gradient magnitude and Laplacian [115]

4. Global Shape – single, global eigenspace for all categories [82]

5. Global Shape – class specific eigenspaces [135]

6. Local Shape – “dynamic programming” contour matching [10]

7. Local Shape – greedy one-to-one contour matching Leibe and Schiele [68]

The testing has been carried out on a Solaris 10 x86 server system with 4 CPU-cores

used in parallel.

145

6.6.1. Requirements

• Image set of annotated categories

• Annotated set of objects for each category

• Normalized feature vectors to calculate probability for an item to belong to a given

descriptor

6.6.2. Testing

Data set sized for the leave-one-object-out cross validation for each single object:

• Evaluation set: 41

• Training set: 41 ∗ 9 = 369

• Negative set: 410 ∗ 7 = 2870

Evaluation steps:

1. Learn a descriptor for 9 out of 10 objects

2. calculate probability of 10th object of belonging to descriptor

3. compare probabilities for all classes/descriptors

The learning algorithm is run for each single object from the image set. The evaluation

set E is the collection of 41 images for the single object to be left out. The training set

T consists of the remaining 41 ∗ 9 = 369 images of the same category. As negative set

N , the 410 ∗ 7 = 2870 images from the other 7 categories are used. This results in a set

of 80 descriptors, each one based on learning 9
10

of a single category.

As in section 6.5, each image is fed into 8 descriptors, one for each category. The

category with the best calculated probability is selected. The difference to the descriptors

from the supervised learning is the use of the new descriptors where the object to be

identified is missing from the training set.

The reference results by Leibe and Schiele [68] would require the system to learn for

each single object to learn a full set of descriptors because of the negative set. Because

of the large overhead, only the 80 descriptors for the modified categories to be learnt

are calculated. The remaining 7 descriptors are replaced from the pool of the 8 generic

146

descriptors. To allow for a better comparison, two separate test runs are performed. In

the first one, the existing descriptors are used and in the second one, only the positive

clauses from the existing descriptors are applied. This simulated loss of accuracy is

expected to be larger than the benefit from having the negative sets with all 10 objects

during learning.

6.6.3. Results

In general, the scatter plots of the 80 object specific runs are comparable to those in

section 6.5.3. To provide a flavour of the differences, fig. 6.32 shows all 10 plots for the

category “cow”. The amount of false positives changes form object to object, especially

in the already error-prone categories “car”, “dog” and “horse”. Another change is the

amount of false negatives. The plots in figs. 6.32(c) and 6.32(i) reveal quite a few relevant

images with low probabilities. Nevertheless, most of the other plots show a smaller

amount of those low values than in the fully supervised learning approach (fig. 6.31(c)).

6.6.3.1. Impact of removed MUST NOT

In a second test run, all “MUST NOT” clauses were removed from the 80 descriptors

and the new categorization results are compared to the previous ones. In addition to

the originally wrong assigned categories, 6 additional images were mis-categorized. The

total amount of traceable changes were 33 cases.

All critical changes are listed in table 6.7. The table compares the original descriptor

to the modified one. The first column contains the image id as well as the name of

the unknown object. The second one indicates whether the following results are based

on the original of the modified descriptor. The eight subsequent columns contain the

probabilities for each one of the descriptors used for categorization. The last column

lists the categorization result. The bold numbers highlight the changes in probability

leading to the categorization error.

In four out of the six cases, the original probability for the correct class lies above 0.5.

In the other two cases, it is slightly below but still above 0.49, indicating that the image

is just below the threshold of the descriptor. All increased probabilities for the wrong

category are above 0.5.

In 12 further cases, the result category also changed. Yet, these changes do not appear

in the final result as the original results were also wrong in the first place. Finally, in 15

cases, the numerical probabilities changed, but these differences are too small to have

147

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

image id

pr
ob

ab
ili

ty

(a) cow1

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

image id

pr
ob

ab
ili

ty

(b) cow2

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

image id

pr
ob

ab
ili

ty

(c) cow3

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

image id

pr
ob

ab
ili

ty
(d) cow4

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

image id

pr
ob

ab
ili

ty

(e) cow5

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

image id

pr
ob

ab
ili

ty

(f) cow6

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

image id

pr
ob

ab
ili

ty

(g) cow7

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

image id

pr
ob

ab
ili

ty

(h) cow8

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

image id

pr
ob

ab
ili

ty

(i) cow9

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

image id

pr
ob

ab
ili

ty

(j) cow10

Figure 6.32.: Category Probabilities for ETH-80 Images (all cows)

148

Table 6.7.: Additional False Categorizations
object series apple car cow cup dog horse pear tomato result
776 original 0.014 0.670 0.485 0.367 0.477 0.475 0.109 0.015 car
car7 modified 0.014 0.670 0.485 0.367 0.477 0.848 0.109 0.015 horse
813 original 0.229 0.494 0.480 0.468 0.480 0.476 0.454 0.355 car
car9 modified 0.229 0.494 0.510 0.468 0.480 0.476 0.454 0.355 cow
1104 original 0.050 0.489 0.498 0.487 0.481 0.496 0.436 0.077 cow
cow6 modified 0.050 0.489 0.498 0.487 0.545 0.496 0.436 0.077 dog
2114 original 0.473 0.443 0.468 0.429 0.590 0.611 0.417 0.385 horse
horse10 modified 0.473 0.443 0.468 0.429 0.662 0.611 0.417 0.385 dog
2248 original 0.293 0.483 0.493 0.422 0.487 0.498 0.417 0.354 horse
horse4 modified 0.293 0.483 0.606 0.422 0.487 0.498 0.417 0.354 cow
2348 original 0.248 0.490 0.498 0.396 0.495 0.577 0.437 0.319 horse
horse7 modified 0.248 0.490 0.498 0.396 0.638 0.577 0.437 0.319 dog

Table 6.8.: Recognition Results for the categorization of unknown objects [68]
Color DxDy Mag- PCA PCA Cont. Cont. Avg.

Lap Masks Gray Greedy DynProg

apple 57.56% 85.37% 80.24% 78.78% 88.29% 77.07% 76.34% 77.66%
pear 66.10% 90.00% 85.37% 99.51% 99.76% 90.73% 91.71% 89.03%
tomato 98.54% 94.63% 97.07% 67.80% 76.59% 70.73% 70.24% 82.23%
cow 86.59% 82.68% 94.39% 75.12% 62.44% 86.83% 86.34% 82.06%
dog 34.63% 62.44% 74.39% 72.20% 66.34% 81.95% 82.93% 67.84%
horse 32.68% 58.78% 70.98% 77.80% 77.32% 84.63% 84.63% 69.55%
cup 79.76% 66.10% 77.80% 96.10% 96.10% 99.76% 99.02% 87.81%
car 62.93% 98.29% 77.56% 100.0% 97.07% 99.51% 100.0% 90.77%

total 64.85% 79.79% 82.23% 83.41% 82.99% 86.40% 86.40% 80.87%

any effect on the result.

6.6.3.2. Reference System

Table 6.8 summarizes the results of the reference system by Leibe and Schiele [68] to

allow for a direct comparison with the approach proposed in this thesis. These values

are used in the analysis section below.

6.6.4. Analysis

Table 6.9 is constructed in the same way as described in section 6.5.4, giving an impres-

sion of how good a single descriptor is able to categorize the unknown images.

In the cross validation, the amount of false negatives is increased in comparison to the

fully supervised learning (table 6.5). Only the categories “car”, “pear” and “tomato”

149

Table 6.9.: Raw Categorization Summary
(%) by real category

descriptor φ apple car cow cup dog horse pear tomato total
apple >0.55 77.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.66

[0.45, 0.55] 20.73 12.20 4.88 79.76 26.34 10.24 57.80 95.12 38.38
<0.45 1.95 87.80 95.12 20.24 73.66 89.76 42.20 4.88 51.95

car >0.55 0.24 55.85 0.49 0.00 0.24 0.24 0.00 0.00 7.13
[0.45, 0.55] 81.71 44.15 90.49 28.05 90.24 89.27 94.15 51.46 71.19
<0.45 18.05 0.00 9.02 71.95 9.51 10.49 5.85 48.54 21.68

cow >0.55 0.00 1.95 24.88 0.00 1.22 2.68 0.00 0.00 3.84
[0.45, 0.55] 4.63 90.73 73.90 31.22 85.85 90.00 50.73 14.15 55.15
<0.45 95.37 7.32 1.22 68.78 12.93 7.32 49.27 85.85 41.01

cup >0.55 0.00 0.00 0.00 71.22 0.00 0.00 0.00 0.00 8.90
[0.45, 0.55] 25.85 22.44 32.44 24.88 24.63 17.32 75.12 99.27 40.24
<0.45 74.15 77.56 67.56 3.90 75.37 82.68 24.88 0.73 50.85

dog >0.55 0.00 0.24 0.49 0.00 32.93 2.20 0.00 0.00 4.48
[0.45, 0.55] 90.73 90.73 97.32 45.85 66.59 94.88 99.27 6.83 74.02
<0.45 9.27 9.02 2.20 54.15 0.49 2.93 0.73 93.17 21.49

horse >0.55 0.00 1.71 2.20 0.00 3.66 20.24 0.49 0.00 3.54
[0.45, 0.55] 1.22 80.98 93.90 19.27 86.10 79.02 76.59 0.24 54.66
<0.45 98.78 17.32 3.90 80.73 10.24 0.73 22.93 99.76 41.80

pear >0.55 0.00 0.00 0.00 0.00 0.00 0.00 83.17 0.00 10.40
[0.45, 0.55] 49.51 14.88 18.05 17.32 29.02 14.88 16.83 31.22 23.96
<0.45 50.49 85.12 81.95 82.68 70.98 85.12 0.00 68.78 65.64

tomato >0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 94.88 11.86
[0.45, 0.55] 29.76 0.98 0.00 18.29 0.00 0.00 3.41 5.12 7.20
<0.45 70.24 99.02 100.00 81.71 100.00 100.00 96.59 0.00 80.95

150

Table 6.10.: Categorization Summary (Leave-One-Object-Out)

category apple car cow cup dog horse pear tomato total
size 410 410 410 410 410 410 410 410 3280

results
correct 366 353 279 340 270 211 404 410 2639
rate (%) 89.27 86.10 68.05 82.93 65.85 51.46 98.54 100.00 80.27

reference (Leibe and Schiele [68])
avg.(%) 77.66 90.77 82.06 87.81 67.84 69.55 89.03 82.23 80.87
best (%) 88.29 100.00 94.39 99.76 82.93 84.63 99.76 98.54 93.54

are not missing any relevant images. The highest rate for false positives is the “horse”

descriptor dealing with “dog” images (3.66%).

The “tomato” loses about 5% and the pear 2.5% of their previous recognition rate.

A clear decrease for the “apple” and “cup” descriptors can be observed, dropping from

97.07% to 77.32%, and from 93.66% to 71.22% respectively. Most of the missing ones

have been moved to the area of uncertainty around the threshold. For the “cup”, a large

set of 3.9% relevant images are considered to be irrelevant.

Amongst the more difficult categories, the rate for the car dropped to 55.85% but all

remaining ones are located in the area of uncertainty. The remaining animal categories

share the lowest positive rates, ranging from 32.93% (“dog”) down to 20.24% (“horse”).

Table 6.10 provides an overview of the final categorization results compared to the

reference by Leibe and Schiele [68]. The table shows the category-wise recognition rates

as well as both the average and best results from the reference.

In two cases, the proposed learning approach slightly outperforms the best results of

the reference (“apple”, “tomato”) and in one case, the results are close together (“pear”).

For all other classes, is more or less below the average recognition rate. In total, the

results are close to the average, both slightly above 80%. In case of the modified queries

with the negative clauses missing, the total result would be 6
3280

100% ≈ 0.182% lower

than the current value.

Table 6.11 and fig. 6.33 analyze in detail, which particular objects caused most errors.

These objects are collected in fig. 6.34.

The “apple” category was misclassified 44 times. From these errors, 30 were caused

by a single object, namely “apple10” (fig. 6.34(a)).

The errors for each “car” are distributed between 1 and 11. “car1” (fig. 6.34(b)) is

the one causing most errors, but there is no highly specific problem with this one. In

general, the cars have much variation in colours and the features used are all related to

151

Table 6.11.: Wrong Classification by Object

category objects total

apple 3 30 0 7 0 0 4 0 0 0 44
car 11 1 2 3 6 7 9 10 1 7 55
cow 10 10 6 9 11 31 16 7 16 15 131
cup 0 19 0 0 0 17 13 1 9 11 70
dog 14 11 17 19 14 18 26 6 9 6 140
horse 16 22 21 25 31 13 23 14 11 23 199
pear 0 0 3 0 0 0 0 2 0 1 6
tomato 0 0 0 0 0 0 0 0 0 0 0

apple car cow cup dog horse pear tomato
0

50

100

150

200

category

er
ro

rs

Figure 6.33.: Wrong Classification by Object

(a) apple10 (b) car1 (c) cow5 (d) cup10 (e) dog6 (f) horse4

Figure 6.34.: Most Difficult Objects

152

colours, making it hard to find suitable sample images.

For the “cow”, the most difficult object is “cow5” (fig. 6.34(c)) with 31 relevant images

missing, probably caused by two reasons. First, other than the other ones, this cow is

lying on the ground and thus has a different shape. Also, the black-and-white pattern

is similar to a dog’s pattern.

In the “cup” category, the object “cup10” (fig. 6.34(d)) was missed 19 times. This

is probably due to the specific shape and unique gray/green color. The side views of

this cup only achieved a probability below 0.4. In 14 of these cases, the object has bee

mistaken as “cow”.

Similar to the “cow” category, the “dog” contains multiple difficult objects. The

worst one with 26 errors is “dog6” (fig. 6.34(e)), with a black and white pattern. Not

surprisingly, it has been mistaken as a cow 15 times.

The most difficult category is the “horse”. Every single object has at least 11 errors

out of 41 samples. The highest error of 31 is caused by “horse4” fig. 6.34(f). Again,

the high variation of colour patterns and a missing shape/contour feature seem to be

responsible for these results.

The last two categories “pear” and “tomato” performed best. While the “pear” only

caused 6 false results, the “tomato” has been recognized correctly always. In both cases,

the highly homogeneous colours and the simple shapes could be captured by the system.

6.6.5. Discussion

In the direct comparison with the reference system, the results are very similar. Thus, the

proposed learning algorithm generating a low-level query can compete with the learning

approach used in the reference. This outcome is satisfying, as the main purpose of the

learning algorithm was to provide evidence for the capabilities of the query language in

general.

The leave-one-object-out cross validation suffers from the same weaknesses as the

supervised test (section 6.4). The feature vectors currently available are simply not

capable to distinguish between the complex “animal” categories. In the reference system,

these categories as well as “car” and “cup” achieved high recognition rates with the

“Contour” features that were not available for this test.

Further, only having a set of existing images available for querying, restricts the

possibilities of learning. Modern machine learning usually heavily relies on complex

structures such as neural networks or support vector machines to learn a given concept.

These approaches allow a fine grained approximation of the desired feature without the

153

need of finding suitable query images from the existing training set. On the other hand,

they usually require defined types of feature vectors and a reasonable understanding of

the particular meaning.

6.6.6. Summary

The semi-supervised learning outcome cannot compete with recent SVM approaches (e.g.

[117]). Yet, it is comparable to earlier studies that are several more complex features,

such as shape information Leibe and Schiele [68].

It is expected that adding new feature vector plug-ins to the proposed system makes it

much more competitive without modifying the underlying theory and the need of feature

specific optimizations. At the same time, the queries used within the categorization

remain understandable by experienced users. This allows for subsequent and target-

oriented modifications of an existing categorization query.

6.7. Discussion

Before tackling the research question itself, several preconditions had to be met. Each

case study described above investigates one essential aspect of CBIR. Building up on

top of each other, the case studies finally allow for an analysis of how good the query

language can map a set of given low-level features to a higher semantic concept. Every

query descriptor learnt by the system represents a possible semantic mapping for the

related category.

In section 6.1, it is examined, how each feature vectors reacts to changes of QBE

images. A reduction of the image size has an impact on the result whereas the robustness

of each single feature vector varies.

The extracted normalization functions in section 6.2 are found to be relatively accurate

for the related repository, but may be unsuitable for others. The main advantage of this

normalization is the better comparability of distinct feature vectors, allowing for a more

accurate fusion, which is necessary for the learning and classification tasks.

It is shown in section 6.3, that some categories are relatively easy to be learnt (e.g. the

grayscale cars), while others cannot be captured (e.g. the mostly random background

images) with the feature vector set used. Further, particular strengths and weaknesses

of each feature vector can be pointed out before the actual learning process.

The supervised machine learning in section 6.4 works well, as long as the feature

154

vectors have a sufficient discriminative power, as mentioned in section 6.3. In some

cases (i. e. the animals), the feature vectors used prove to be not capable of capturing

highly discriminative features for a high result quality. This still seems to be sufficient

for most retrieval tasks. The first 410 results can easily reach a precision of π > 0.5 and

in several set-ups even π > 0.8. This can be tolerated, as users could easily filter out

the false positives and only persevering users are expected to keep searching beyond this

amount of images.

Section 6.5 shows that the categorization is more challenging than a retrieval, where

the user itself is part of the final “filter”. As the categorization results in a single

category estimate, errors become more severe. Thus, the computation should be more

accurate than during retrieval, where many true positives may well be mixed with a few

false positives. An accurate calculation requires normalized feature vectors to have the

different features comparable in a comparable range. Further, the thresholds must not

be used too restrictively (i.e. cutting off results with lower similarity) to acknowledge

relevant images with a slightly lower similarity. To achieve this, second normalization

step according to the thresholds (see eq. (3.31)) proved to be vital.

In direct comparison of the final case study (section 6.6) to the supervised learning

(section 6.4), the recognition performance dropped clearly. This seems mostly to be

caused by sample objects with many differences to the training set used. It is found,

that the combination of feature vectors used in the prototype can in average compete

with each training on a single feature vector from the reference system. In the reference

system, each feature vector performed differently well for each category.

In comparison, the relatively weak feature vectors of the proposed system are in com-

bination as good as the average of the reference system. The recognition rate has been

achieved with a limited set of positive and negative examples (i.e. a maximum of 20 dis-

tinct clusters for a category) and without further low-level optimization of the features

themselves.

155

Chapter 7.

Conclusion

In order to investigate the research hypothesis from section 1.1 several case studies have

been carried out (chapter 6). Each single case study is required to support parts of the

methodology in chapter 3. The final evaluation has been carried out by comparing the

expressiveness of the descriptors learnt in a leave-one-object-out scenario to a traditional

machine learning approach (section 6.6).

It is found, that the query language used can be as powerful as a feature vector derived

from a traditional machine learning algorithm. A Boolean query descriptor can be used

to describe a single category relatively precisely. Further, it does not matter, if the

category to be learnt is located in multiple disjunct clusters in the feature space, as the

Boolean join can handle it easily. The weakest part of the proposed learning approach

are the feature vectors themselves. If they are not powerful enough to capture distinctive

properties for a category, the whole learning process for the given category cannot be

successful. Yet, as long as there is a feature vector available giving a slight improvement

towards a random search, it is spotted by the algorithm and is used to improve the

results.

In conclusion: a high-level mapping of semantics (i.e. a semantic category) can only

be as good as the low-level feature vectors are capable to distinguish positive samples

from unrelated categories.

7.1. Achieved

The proposed query language seems to be powerful enough to describe most common

retrieval tasks. The search for virtually any feature vector is possible as long as they

can be mapped to a normalized similarity of [0, 1] between two feature vectors of the

same kind. Further, merging multiple sub queries is achieved by boolean operators

156

and parameters. Complex queries containing low-level features only, are a possible way

of expressing higher-level semantics, at least to a certain extent. The query descriptors

generated by the learning algorithm are mapping semantic categories to the most efficient

image features available.

The tests indicated that the feature vector modules applied in this thesis are too

few and not diverse enough to fully compete with recent machine learning systems.

Being independent from the feature vectors used, the results are still promising. The

results indicate that by adding further plug-ins the recognition rate of the system will

be improved without changing the underlying methodology. The learning algorithm has

been developed as a tool to automatically generate meaningful queries. This way, it was

possible to evaluate the query language in depth. Further, several techniques applied

during the development and evaluation of the learning algorithm are useful in retrieval,

too. One example is the feature vector normalization. Is important to make features

of different kinds comparable. This allows for a more efficient combination of arbitrary

features into a single result.

Traditional machine learning approaches often encode the derived knowledge in com-

plex and difficult to understand data. For SVMs this could be concatenating several

feature vectors into a single big data set. ANNs usually create a set of weights with no

obvious meaning to human perception. Unlike that, the presented DT approach gener-

ates a set of comprehensible clauses. This allows experienced users to manually modify

the classification queries, e.g. to remove a set of undesired positives.

7.2. Future Work

The theoretical foundations of the thesis indicate several opportunities for further related

research, e.g.:

• Development of an intuitive CBIR user interface

• Support for spatial information integrated into the query language handle local

objects

• Integration of an efficient image segmentation algorithm

• Implementation of powerful feature vectors, such as shape matching

• Focus on higher scalability, e.g. stronger use of index structures and heuristics

157

• Application of other efficient learning techniques to build query descriptors

• Use of query descriptors to replace keywords in CBIR queries or to label images

with unknown content

• Improvement of the Boolean ranking mechanisms, e.g. by applying Bayesian com-

bination rules

158

Bibliography

[1] A9.com. OpenSearch, 2006. URL http://www.opensearch.org/Home.

[2] S. Agarwal and D. Roth. Learning a sparse representation for object detection.

In Proceedings of the European Conference on Computer Vision, volume 4, pages

113–130, Copenhagen, Denmark, May 2002. Springer-Verlag.

[3] S. Agarwal, A. Awan, and D. Roth. Learning to detect objects in images via a

sparse, part-based representation. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 26(11):1475–1490, November 2004.

[4] Faruq A. Al-Omari and Mohammad A. Al-Jarrah. Query by image and video

content: a colored-based stochastic model approach. Data Knowl. Eng., 52(3):313–

332, 2005. ISSN 0169-023X. doi: http://dx.doi.org/10.1016/j.datak.2004.06.008.

[5] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram. TeXQuery: A Full-Text

Search Extension to XQuery. In WWW ’04: Proceedings of the 13th international

conference on World Wide Web, pages 583–594, New York, NY, USA, 2004. ACM.

ISBN 1-58113-844-X. doi: http://doi.acm.org/10.1145/988672.988751.

[6] Apache Software Foundation. Apache Lucene, 2006. URL http://lucene.

apache.org/.

[7] Apache Software Foundation. Apache Lucene Query Syntax, 2008. URL http:

//lucene.apache.org/java/2_3_1/queryparsersyntax.html.

[8] J. Bach, C. Fuller, A. Gupta, A. Hampapur, B. Gorowitz, R. Humphrey, R. Jain,

and C. Shu. Virage image search engine: an open framework for image manage-

ment. In I. K. Sethi and R. C. Jain, editors, SPIE, Storage and Retrieval for Image

and Video Databases IV, pages 76–87, February 1996.

[9] M. Beigi, A. B. Benitez, and S. F. Chang. MetaSEEk: a content-based metasearch

engine for images. In I. K. Sethi and R. C. Jain, editors, Storage and Retrieval

159

http://www.opensearch.org/Home
http://lucene.apache.org/
http://lucene.apache.org/
http://lucene.apache.org/java/2_3_1/queryparsersyntax.html
http://lucene.apache.org/java/2_3_1/queryparsersyntax.html

for Image and Video Databases VI, volume 3312 of Presented at the Society of

Photo-Optical Instrumentation Engineers (SPIE) Conference, pages 118–128, dec

1997. doi: 10.1117/12.298436.

[10] S. Belongie, J. Malik, and J. Puzicha. Matching Shapes. In International Confer-

ence on Computer Vision (ICCV), 2001.

[11] S. Belongie, J. Malik, and J. Puzicha. Shape Matching and Object Recognition

Using Shape Contexts. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 24(4):509–522, 2002. ISSN 0162-8828. doi: http://doi.ieeecomputersociety.

org/10.1109/34.993558.

[12] A. B. Benitez, M. Beigi, and S.-F. Chang. Using relevance feedback in content-

based image metasearch. IEEE Internet Computing, 2(4):59–69, July 1998.

[13] J. Berens, G.D. Finlayson, and G. Qiu. Image indexing using compressed colour

histograms. Vision, Image and Signal Processing, IEE Proceedings -, 147(4):349–

355, Aug 2000. ISSN 1350-245X. doi: 10.1049/ip-vis:20000630.

[14] Andreas D. Blaser and Max. J. Egenhofer. A visual tool for querying geographic

databases. In AVI ’00: Proceedings of the working conference on Advanced visual

interfaces, pages 211–216, New York, NY, USA, 2000. ACM. ISBN 1-58113-252-2.

doi: http://doi.acm.org/10.1145/345513.345318.

[15] Martijn Bosma, Remco C. Veltkamp, and Frans Wiering. Muugle: A Modular

Music Information Retrieval Framework. In ISMIR, pages 330–331, 2006.

[16] Jean Marie Buijs and Michael S. Lew. Visual Learning of Simple Semantics in

ImageScape. In VISUAL ’99: Proceedings of the Third International Conference

on Visual Information and Information Systems, pages 131–138, London, UK,

1999. Springer-Verlag. ISBN 3-540-66079-8.

[17] D. Calcinelli and M. Mainguenaud. Cigales, a Visual Query Language for a Ge-

ographical Information System - the User Interface. Journal of Visual Languages

and Computing, 5:113–132, 1994.

[18] K. Selçuk Candan, Eric Lemar, Eric Lemar, V. S. Subrahmanian, and V. S. Sub-

rahmanian. View management in multimedia databases. The VLDB Journal, 9

(2):131–153, 2000. ISSN 1066-8888. doi: http://dx.doi.org/10.1007/PL00010673.

160

[19] A. F. Cardenas, I. T. Ieong, R. Barker, R. K. Taira, and C. M. Breant. The

Knowledge-Based Object-Oriented PICQUERY+ Language. IEEE Trans. on

Knowl. and Data Eng., 5(4):644–657, 1993. ISSN 1041-4347. doi: http://dx.

doi.org/10.1109/69.234776.

[20] Don Chamberlin, James Clark, Daniela Florescu, Jonathan Robie, Jérôme Siméon,

and Mugur Stefanescu. XQuery 1.0: An XML Query Language, 2001. W3C

Working Draft 07 June 2001.

[21] Donald D. Chamberlin and Raymond F. Boyce. SEQUEL: A structured English

query language. In FIDET ’74: Proceedings of the 1974 ACM SIGFIDET (now

SIGMOD) workshop on Data description, access and control, pages 249–264, New

York, NY, USA, 1974. ACM. doi: http://doi.acm.org/10.1145/800296.811515.

[22] Krishna Chandramouli and Ebroul Izquierdo. Image Classification Using Self Or-

ganizing Feature Maps and Particle Swarm Optimization. In 7th International

Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS ’06),

pages 313–316, 2006.

[23] Shih-Fu Chang, John R. Smith, Mandis Beigi, and Ana Benitez. Visual information

retrieval from large distributed online repositories. Commun. ACM, 40(12):63–71,

1997. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/265563.265573.

[24] Cheng-Chieh Chiang, Li-Wei Chan, Yi-Ping Hung, and Greg C. Lee. Content-

based object movie retrieval and relevance feedbacks. EURASIP J. Adv. Signal

Process, 2007(2):24–24, 2007. ISSN 1110-8657. doi: http://dx.doi.org/10.1155/

2007/89691.

[25] Paul Clough, Michael Grubinger, Thomas Deselaers, Allan Hanbury, and Henning

Müller. Evaluation of Multilingual and Multi-modal Information Retrieval, volume

4730/2007, chapter Overview of the ImageCLEF 2006 Photographic Retrieval and

Object Annotation Tasks, pages 579–594. Springer, 2007. doi: 10.1007/11878773.

[26] Tammara T. A. Combs and Benjamin B. Bederson. Does zooming improve im-

age browsing? In DL ’99: Proceedings of the fourth ACM conference on Digital

libraries, pages 130–137, New York, NY, USA, 1999. ACM. ISBN 1-58113-145-3.

doi: http://doi.acm.org/10.1145/313238.313286.

[27] CompuServe Incorporated. Graphics Interchange Format. Specification, 1990.

URL http://www.w3.org/Graphics/GIF/spec-gif89a.txt.

161

http://www.w3.org/Graphics/GIF/spec-gif89a.txt

[28] Ritendra Datta, Jia Li, and James Z. Wang. Content-based image retrieval:

approaches and trends of the new age. In MIR ’05: Proceedings of the 7th

ACM SIGMM international workshop on Multimedia information retrieval, pages

253–262, New York, NY, USA, 2005. ACM. ISBN 1-59593-244-5. doi: http:

//doi.acm.org/10.1145/1101826.1101866.

[29] Ritendra Datta, Dhiraj Joshi, Jia Li, and James Z. Wang. Computer Vision

ECCV 2006, volume 3953/2006 of Lecture Notes in Computer Science, chapter

Studying Aesthetics in Photographic Images Using a Computational Approach,

pages 288–301. Springer Berlin / Heidelberg, July 2006. doi: 10.1007/11744078.

[30] Ritendra Datta, Dhiraj Joshi, Jia Li, and James Z. Wang. Image Retrieval: Ideas,

Influences, and Trends of the New Age. ACM Transactions on Computing Surveys,

40(2):1–60, April 2008.

[31] David Duce, editor. Portable Network Graphics (PNG): Functional specification.

ISO/IEC 15948:2003 (E). Technical report, World Wide Web Consortium (W3C),

November 2003. URL http://www.w3.org/TR/2003/REC-PNG-20031110/. W3C

Recommendation.

[32] M.N. Do and M. Vetterli. Wavelet-based texture retrieval using generalized Gaus-

sian density and Kullback-Leibler distance. Image Processing, IEEE Transactions

on, 11(2):146–158, Feb 2002. ISSN 1057-7149. doi: 10.1109/83.982822.

[33] N.D. Doulamis, A.D. Doulamis, and S.D. Kollias. A neural network approach to

interactive content-based retrieval of video databases. Image Processing, 1999.

ICIP 99. Proceedings. 1999 International Conference on, 2:116–120, 1999. doi:

10.1109/ICIP.1999.822866.

[34] J.P. Eakins and M.E. Graham. Content-based Image Retrieval. A Report to

the JISC Technology Applications Programme. Technical report, University

of Northumbria at Newcastle, January 1999. URL http://www.jisc.ac.uk/

uploaded_documents/jtap-039.doc.

[35] Earth Resource Mapping Pty Ltd. Using and distributing ECW V2.0 wavelet

compressed imagery. White Paper, 1999.

[36] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-

man. The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results.

162

http://www.w3.org/TR/2003/REC-PNG-20031110/
http://www.jisc.ac.uk/uploaded_documents/jtap-039.doc
http://www.jisc.ac.uk/uploaded_documents/jtap-039.doc

http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html,

2007.

[37] Ronald Fagin. Combining fuzzy information from multiple systems (extended

abstract). In PODS ’96: Proceedings of the fifteenth ACM SIGACT-SIGMOD-

SIGART symposium on Principles of database systems, pages 216–226, New York,

NY, USA, 1996. ACM. ISBN 0-89791-781-2. doi: http://doi.acm.org/10.1145/

237661.237715.

[38] Vincenzo Del Fatto, Luca Paolino, and Fabio Pittarello. A usability-driven ap-

proach to the development of a 3D web-GIS environment. Journal of Visual Lan-

guages and Computing, 18:280314, 2007. doi: 10.1016/j.jvlc.2007.02.007.

[39] Tom Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27:

861874, 2006.

[40] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few

training examples: an incremental Bayesian approach tested on 101 object cate-

gories. In International Conference on Computer Vision and Pattern Recognition

(CVPR’04), 2004. Workshop on Generative-Model Based Vision.

[41] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised

scale-invariant learning. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, volume 2, pages 264–271, Madison, Wisconsin,

June 2003.

[42] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-

line learning and an application to boosting. Journal of Computer and System

Sciences, 55:119–139, 1997.

[43] David Frohlich, Allan Kuchinsky, Celine Pering, Abbe Don, and Steven Ariss. Re-

quirements for photoware. In CSCW ’02: Proceedings of the 2002 ACM conference

on Computer supported cooperative work, pages 166–175, New York, NY, USA,

2002. ACM. ISBN 1-58113-560-2. doi: http://doi.acm.org/10.1145/587078.587102.

[44] Sharon R. Garber and Mitch B. Grunes. The art of search: a study of art directors.

In CHI ’92: Proceedings of the SIGCHI conference on Human factors in computing

systems, pages 157–163, New York, NY, USA, 1992. ACM. ISBN 0-89791-513-5.

doi: http://doi.acm.org/10.1145/142750.142780.

163

[45] Elisa Drelie Gelasca, Pratim Ghosh, Emily Moxley, Joriz De Guzman, JieJun Xu,

Zhiqiang Bi, Steffen Gauglitz, Amir M. Rahimi, and B. S. Manjunath. CORTINA:

Searching a 10 Million + Images Database. In Very Large Data Base Endowment,

2007.

[46] Google, Inc. Google Query Syntax, 2008. URL http://code.google.com/apis/

base/query-lang-spec.html.

[47] Google, Inc. Picasa, 2008. URL http://picasa.google.com/.

[48] G. Griffin, A. Holub, and P. Perona. Caltech-256 Object Category Dataset.

Technical Report 7694, California Institute of Technology, 2007. URL http:

//authors.library.caltech.edu/7694.

[49] N. Gunther and G. Beretta. Benchmark for image retrieval using distributed

systems over the Internet: BIRDS-I, 2001. URL citeseer.ist.psu.edu/

gunther00benchmark.html.

[50] Amarnath Gupta and Ramesh Jain. Visual information retrieval. Commun. ACM,

40(5):70–79, 1997. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/253769.

253798.

[51] A. Guttman. R-trees: a dynamic index structure for spatial searching. In ACM

SIGMOD Conf. on the Management of Data, pages 47–57, 1984.

[52] Alexander G. Hauptmann and Michael G. Christel. Successful approaches in the

TREC video retrieval evaluations. In MULTIMEDIA ’04: Proceedings of the 12th

annual ACM international conference on Multimedia, pages 668–675, New York,

NY, USA, 2004. ACM. ISBN 1-58113-893-8. doi: http://doi.acm.org/10.1145/

1027527.1027681.

[53] S. Hibino and E.A. Rundensteiner. A Visual Query Language for Identifying

Temporal Trends in Video Data. iw-mmdbms, 00:0074, 1995. doi: http://doi.

ieeecomputersociety.org/10.1109/MMDBMS.1995.520425.

[54] Chu-Hong Hoi and M.R. Lyu. Group-based relevance feedback with support vector

machine ensembles. Pattern Recognition, 2004. ICPR 2004. Proceedings of the

17th International Conference on, 3:874–877, Aug 2004. ISSN 1051-4651. doi:

10.1109/ICPR.2004.1334667.

164

http://code.google.com/apis/base/query-lang-spec.html
http://code.google.com/apis/base/query-lang-spec.html
http://picasa.google.com/
http://authors.library.caltech.edu/7694
http://authors.library.caltech.edu/7694
citeseer.ist.psu.edu/gunther00benchmark.html
citeseer.ist.psu.edu/gunther00benchmark.html

[55] David F. Huynh, Steven M. Drucker, Patrick Baudisch, and Curtis Wong. Time

quilt: scaling up zoomable photo browsers for large, unstructured photo collec-

tions. In CHI ’05: CHI ’05 extended abstracts on Human factors in computing

systems, pages 1937–1940, New York, NY, USA, 2005. ACM. ISBN 1-59593-002-

7. doi: http://doi.acm.org/10.1145/1056808.1057061.

[56] IPTC [International Press Telecommunications Council]. IPTC Standard - Photo

Metadata 2008. Specification, 2008.

[57] Yoshiharu Ishikawa, Ravishankar Subramanya, and Christos Faloutsos. Min-

dReader: Querying Databases Through Multiple Examples. In Ashish Gupta,

Oded Shmueli, and Jennifer Widom, editors, VLDB’98, Proceedings of 24rd In-

ternational Conference on Very Large Data Bases, August 24-27, 1998, New York

City, New York, USA, pages 218–227. Morgan Kaufmann, 1998. ISBN 1-55860-

566-5.

[58] Charles E. Jacobs, Adam Finkelstein, and David H. Salesin. Fast Multiresolu-

tion Image Querying. Computer Graphics, 29(Annual Conference Series):277–286,

1995. URL citeseer.ist.psu.edu/jacobs95fast.html.

[59] Anil Jain, Karthik Nandakumar, and Arun Ross. Score normaliza-

tion in multimodal biometric systems. Pattern Recognition, 38(12):2270–

2285, 2005. ISSN 0031-3203. doi: DOI:10.1016/j.patcog.2005.01.012.

URL http://www.sciencedirect.com/science/article/B6V14-4G0DDW4-1/2/

d922960ee7ed8928744113dd9494d37a.

[60] Kalervo Järvelin, Timo Niemi, and Airi Salminen. The visual query language

CQL for transitive and relational computation. Data & Knowledge Engineering,

35:39–51, 2000.

[61] Yohan Jin, Latifur Khan, Lei Wang, and Mamoun Awad. Image annotations by

combining multiple evidence & wordNet. In MULTIMEDIA ’05: Proceedings of

the 13th annual ACM international conference on Multimedia, pages 706–715, New

York, NY, USA, 2005. ACM. ISBN 1-59593-044-2. doi: http://doi.acm.org/10.

1145/1101149.1101305.

[62] Jean-Michel Jolion. Principles of Visual Information Retrieval, chapter Feature

similarity, pages 121–143. Advances in Pattern Recognition. Springer-Verlag, Lon-

don, UK, 2001. ISBN 1-85233-381-2.

165

citeseer.ist.psu.edu/jacobs95fast.html
http://www.sciencedirect.com/science/article/B6V14-4G0DDW4-1/2/d922960ee7ed8928744113dd9494d37a
http://www.sciencedirect.com/science/article/B6V14-4G0DDW4-1/2/d922960ee7ed8928744113dd9494d37a

[63] Dhiraj Joshi, Ritendra Datta, Ziming Zhuang, W. P. Weiss, Marc Friedenberg,

Jia Li, and James Z. Wang. PARAgrab: a comprehensive architecture for web

image management and multimodal querying. In VLDB ’06: Proceedings of the

32nd international conference on Very large data bases, pages 1163–1166. VLDB

Endowment, 2006.

[64] Daniel A. Keim and Vincent Lum. Visual query specification in a multimedia

database system. In VIS ’92: Proceedings of the 3rd conference on Visualization

’92, pages 194–201, Los Alamitos, CA, USA, 1992. IEEE Computer Society Press.

ISBN 0-8186-2896-0.

[65] Deok-Hwan Kim and Chin-Wan Chung. QCluster: relevance feedback using adap-

tive clustering for content-based image retrieval. In SIGMOD ’03: Proceedings

of the 2003 ACM SIGMOD international conference on Management of data,

pages 599–610, New York, NY, USA, 2003. ACM. ISBN 1-58113-634-X. doi:

http://doi.acm.org/10.1145/872757.872829.

[66] Longin Jan Latecki and Rolf Lakämper. Shape Similarity Measure Based on Cor-

respondence of Visual Parts. IEEE Trans. Pattern Anal. Mach. Intell., 22(10):

1185–1190, 2000. ISSN 0162-8828. doi: http://dx.doi.org/10.1109/34.879802.

[67] B. Leibe, A. Leonardis, and B. Schiele. Combined object categorization and seg-

mentation with an implicit shape model. In Proceedings of the Workshop on Sta-

tistical Learning in Computer Vision, Prague, Czech Republic, May 2004.

[68] Bastian Leibe and Bernt Schiele. Analyzing Appearance and Contour Based Meth-

ods for Object Categorization. In International Conference on Computer Vision

and Pattern Recognition (CVPR’03), June 2003.

[69] A. Leuski and J. Allan. Improving interactive retrieval by combining ranked

lists and clustering. In Proceedings of RIAO’2000, pages 665–681, 2000. URL

citeseer.ist.psu.edu/leuski00improving.html.

[70] Michael S. Lew, Nicu Sebe, Chabane Djeraba, and Ramesh Jain. Content-based

multimedia information retrieval: State of the art and challenges. ACM Trans.

Multimedia Comput. Commun. Appl., 2(1):1–19, 2006. ISSN 1551-6857. doi: http:

//doi.acm.org/10.1145/1126004.1126005.

166

citeseer.ist.psu.edu/leuski00improving.html

[71] Hao Liu, Xing Xie, Xiaoou Tang, Zhi-Wei Li, and Wei-Ying Ma. Effective browsing

of web image search results. In MIR ’04: Proceedings of the 6th ACM SIGMM

international workshop on Multimedia information retrieval, pages 84–90, New

York, NY, USA, 2004. ACM. ISBN 1-58113-940-3. doi: http://doi.acm.org/10.

1145/1026711.1026726.

[72] LizardTech, Inc. MrSID Technology Primer, 2004. URL http://www.

lizardtech.com/files/geo/techinfo/MrSID_Tech_Primer.pdf.

[73] Fariborz Mahmoudi, Jamshid Shanbehzadeh, Amir-Masoud Eftekhari-Moghadam,

and Hamid Soltanian-Zadeh. Image retrieval based on shape similarity by edge

orientation autocorrelogram. Pattern Recognition, 36:1725–1736, 2003.

[74] B.S. Manjunath, J.-R. Ohm, V.V. Vasudevan, and A. Yamada. Color and texture

descriptors. Circuits and Systems for Video Technology, IEEE Transactions on,

11(6):703–715, Jun 2001. ISSN 1051-8215. doi: 10.1109/76.927424.

[75] J.M. Martinez, R. Koenen, and F. Pereira. MPEG-7: The Generic Multimedia

Content Description Standard, Part 1. IEEE MultiMedia, 09(2):78–87, 2002. ISSN

1070-986X. doi: http://doi.ieeecomputersociety.org/10.1109/MMUL.2002.10016.

[76] George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and

Katherine J. Miller. Introduction to WordNet: An On-line Lexical Database. In-

ternational Journal of Lexicography, 3(4):235–244, 1990. doi: 10.1093/ijl/3.4.235.

[77] H. Müller, W. Müller, S. Marchand-Maillet, T. Pun, and D.M. Squire. Strategies

for positive and negative relevance feedback in image retrieval. Pattern Recogni-

tion, 2000. Proceedings. 15th International Conference on, 1:1043–1046 vol.1, 2000.

doi: 10.1109/ICPR.2000.905650. URL citeseer.ist.psu.edu/327327.html.

[78] Henning Müller, Wolfgang Müller, David McG. Squire, Zoran Pečenović, Stéphane

Marchand-Maillet, and Thierry Pun. An Open Framework for Distributed

Multimedia Retrieval. In Recherche d’Informations Assistée par Ordinateur

(RIAO’2000) Computer-Assisted Information Retrieval, Paris, France, April 2000.

[79] Henning Müller, Wolfgang Müller, Stéphane Marchand-Maillet, Thierry Pun, and

David McG. Squire. A Framework for Benchmarking in CBIR. Multimedia Tools

and Applications, 21(1):55–73, September 2003. doi: 10.1023/A:1025034215859.

167

http://www.lizardtech.com/files/geo/techinfo/MrSID_Tech_Primer.pdf
http://www.lizardtech.com/files/geo/techinfo/MrSID_Tech_Primer.pdf
citeseer.ist.psu.edu/327327.html

[80] Henning Müller, Paul Clough, William Hersh, Thomas Deselaers, Thomas

Lehmann, and Antoine Geissbuhler. Evaluation axes for medical image retrieval

systems: the imageCLEF experience. In MULTIMEDIA ’05: Proceedings of the

13th annual ACM international conference on Multimedia, pages 1014–1022, New

York, NY, USA, 2005. ACM. ISBN 1-59593-044-2. doi: http://doi.acm.org/10.

1145/1101149.1101358.

[81] Wolfgang Müller, Henning Müller, Stéphane Marchand-Maillet, Thierry Pun,

David McG. Squire, Zoran Pečenović, Christoph Giess, and Arjen P. de Vries.

MRML: A Communication Protocol for Content-Based Image Retrieval. In Inter-

national Conference on Visual Information Systems (Visual 2000), Lyon, France,

November 2000.

[82] H. Murase and S.K. Nayar. Visual Learning and Recognition of 3D Objects from

Appearance. International Journal of Computer Vision, 14:5–24, 1995.

[83] S. Nepal, M.V. Ramakrishna, and J.A. Thom. A fuzzy object query language

(FOQL) for image databases. Database Systems for Advanced Applications, 1999.

Proceedings., 6th International Conference on, pages 117–124, 1999. doi: 10.1109/

DASFAA.1999.765743.

[84] Surya Nepal and M.V. Ramakrishna. Query Processing Issues in Im-

age(Multimedia) Databases. International Conference on Data Engineering, 00:

22–29, 1999. ISSN 1063-6382. doi: http://doi.ieeecomputersociety.org/10.1109/

ICDE.1999.754894.

[85] W. Niblack, X. Zhu, J. Hafner, T. Breuel, D. Ponceleón, D. Petkovic, M. Flickner,

E. Upfal, S. Nin, S. Sull, B. Dom, B.-L. Yeo, S. Srinivasan, D. Zivkovic, and

M. Penner. Updates to the QBIC system. Retrieval for Image and Video Databases

VI, 3312:150–161, 1998.

[86] A. Opelt and A. Pinz. Object localization with boosting and weak supervision for

generic object recognition. In Proceedings of the 14th Scandinavian Conference on

Image Analysis (SCIA), 2005.

[87] A. Opelt, A. Pinz, M. Fussenegger, and P. Auer. Generic object recognition with

boosting. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28

(3):416–431, March 2006. ISSN 0162-8828. doi: 10.1109/TPAMI.2006.54.

168

[88] Luca Paolino, Genoveffa Tortora, Monica Sebillo, Giuliana Vitiello, and Robert

Laurini. Phenomena: a visual query language for continuous fields. In GIS ’03:

Proceedings of the 11th ACM international symposium on Advances in geographic

information systems, pages 147–153, New York, NY, USA, 2003. ACM. ISBN

1-58113-730-3. doi: http://doi.acm.org/10.1145/956676.956696.

[89] Raoul Pascal Pein. Multi-Modal Image Retrieval - A Feasibility Study, 2005.

Diplomarbeit.

[90] Raoul Pascal Pein. Hot-Pluggable Multi-Feature Search Engine. Master’s thesis,

Hamburg University of Applied Sciences, 2008.

[91] Raoul Pascal Pein and Joan Lu. Multi-feature query language for image classifica-

tion. In International Conference on Computational Science, ICCS 2010. Elsevier,

2010. Accepted for publication.

[92] Raoul Pascal Pein and Zhongyu Lu. Content Based Image Retrieval by Combining

Features and Query-By-Sketch. In Hamid R. Arabnia and Ray R. Hashemi, editors,

International Conference on Information & Knowledge Engineering (IKE), pages

49–55, Las Vegas, USA, June 2006. CSREA Press. ISBN 1-60132-003-5.

[93] Raoul Pascal Pein and Zhongyu Lu. A Flexible Image Retrieval Framework. In

Yong Shi, G. Dick van Albada, Jack Dongarra, and Peter M. A. Sloot, editors,

International Conference on Computational Science (3), volume 4489 of Lecture

Notes in Computer Science, pages 754–761. Springer, may 2007. ISBN 978-3-540-

72587-9. doi: 10.1007/978-3-540-72588-6\ 124.

[94] Raoul Pascal Pein, Milton Amador, Joan Lu, and Wolfgang Renz. Using CBIR

and Semantics in 3D-Model Retrieval. In Computer and Information Technology,

2008. CIT 2008. 8th IEEE International Conference on, pages 173–178, July 2008.

doi: 10.1109/CIT.2008.4594669.

[95] Raoul Pascal Pein, Joan Lu, and Wolfgang Renz. An Extensible Query Language

for Content Based Image Retrieval based on Lucene. In Computer and Information

Technology, 2008. CIT 2008. 8th IEEE International Conference on, pages 179–

184, July 2008. doi: 10.1109/CIT.2008.4594670.

[96] Raoul Pascal Pein, Joan Lu, and Wolfgang Renz. An Extensible Query Language

for Content Based Image Retrieval. The Open Information Systems Journal, 17:

81–97, July 2008. doi: 10.1109/CIT.2008.4594670. Bentham Open.

169

[97] W.S. Peng and N. DeClaris. Heuristic similarity measure characterization for

content-based image retrieval. Systems, Man, and Cybernetics, 1997. ’Computa-

tional Cybernetics and Simulation’., 1997 IEEE International Conference on, 1:

7–12, Oct 1997. doi: 10.1109/ICSMC.1997.625710.

[98] Kriengkrai Porkaew, Kaushik Chakrabarti, and Sharad Mehrotra. Query Refine-

ment for Multimedia Similarity Retrieval in MARS. In Proceedings of ACM Mul-

timedia, pages 235–238, 1999.

[99] P. Praks, E. Izquierdo, and R. Kucera. The sparse image representation for au-

tomated image retrieval. In IEEE International Conference on Image Processing,

pages 25–28, October 2008.

[100] Till Quack, Ullrich Mönich, Lars Thiele, and B. S. Manjunath. Cortina: a sys-

tem for large-scale, content-based web image retrieval. In MULTIMEDIA ’04:

Proceedings of the 12th annual ACM international conference on Multimedia,

pages 508–511, New York, NY, USA, 2004. ACM. ISBN 1-58113-893-8. doi:

http://doi.acm.org/10.1145/1027527.1027650.

[101] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, March

1986. doi: 10.1007/BF00116251. Computer Science.

[102] J. Quinonero-Candela, I. Dagan, B. Magnini, and F. d’Alch Buc, editors. Machine

Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classifi-

cation, and Recognising Textual Entailment, volume 3944/2006 of Lecture Notes

in Computer Science, chapter The 2005 PASCAL Visual Object Classes Chal-

lenge, pages 117–176. Springer-Verlag, 2006. doi: 10.1007/11736790. URL

http://eprints.pascal-network.org/archive/00001212/01/voc11.uk.pdf.

[103] M. V. Ramakrishna, S. Nepal, and P. K. Srivastava. A heuristic for combining

fuzzy results in multimedia databases. In ADC ’02: Proceedings of the 13th Aus-

tralasian database conference, pages 141–144, Darlinghurst, Australia, Australia,

2002. Australian Computer Society, Inc. ISBN 0-909925-83-6.

[104] David Riecks. ”IPTC Core” Schema for XMP - Version 1.0. Technical report,

International Press Telecommunications Council, 2005.

[105] Joseph John Rocchio. Relevance feedback in information retrieval. In Gerard

Salton, editor, The SMART Retrieval System: Experiments in Automatic Docu-

ment Processing, pages 313–323. Prentice-Hall, Englewood Cliffs, NJ, USA, 1971.

170

http://eprints.pascal-network.org/archive/00001212/01/voc11.uk.pdf

[106] Kerry Rodden. Evaluating similarity-based visualisations as interfaces for image

browsing. PhD thesis, University of Cambridge, September 2002.

[107] Kerry Rodden and Kenneth R. Wood. How do people manage their digital pho-

tographs? In CHI ’03: Proceedings of the SIGCHI conference on Human factors

in computing systems, pages 409–416, New York, NY, USA, 2003. ACM. ISBN

1-58113-630-7. doi: http://doi.acm.org/10.1145/642611.642682.

[108] Kerry Rodden, Wojciech Basalaj, David Sinclair, and Kenneth Wood. Does or-

ganisation by similarity assist image browsing? In CHI ’01: Proceedings of the

SIGCHI conference on Human factors in computing systems, pages 190–197, New

York, NY, USA, 2001. ACM. ISBN 1-58113-327-8. doi: http://doi.acm.org/10.

1145/365024.365097.

[109] Yong Rui and Thomas Huang. Optimizing Learning in Image Retrieval. cvpr,

01:1236, 2000. ISSN 1063-6919. doi: http://doi.ieeecomputersociety.org/10.1109/

CVPR.2000.855825.

[110] Bryan C. Russell, Antonio Torralba, Kevin P. Murphy, and William T. Freeman.

LabelMe: A Database and Web-Based Tool for Image Annotation. Int. J. Comput.

Vision, 77(1-3):157–173, 2008. ISSN 0920-5691. doi: http://dx.doi.org/10.1007/

s11263-007-0090-8.

[111] Simone Santini and Ramesh Jain. Similarity Measures. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 21(9):871–883, 1999. ISSN 0162-8828.

doi: http://doi.ieeecomputersociety.org/10.1109/34.790428.

[112] Bertrand Le Saux and Nozha Boujemaa. Unsupervised Robust Clustering for

Image Database Categorization. icpr, 01:10259, 2002. ISSN 1051-4651. doi: http:

//doi.ieeecomputersociety.org/10.1109/ICPR.2002.1044678.

[113] Robert E. Schapire. The Strength of Weak Learnability. Machine Learning, 5:

197–227, 1990.

[114] Robert E. Schapire and Yoram Singer. Improved boosting algorithms using

confidence-rated predictions. Machine Learning, 37(3):Jonathan BaxterNicol‘o

Cesa-Bianchi, December 1999. doi: 10.1023/A:1007614523901.

171

[115] B. Schiele and J.L. Crowley. Recognition without correspondence using multidi-

mensional receptive field histograms. International Journal of Computer Vision,

36(1):31–52, 2000.

[116] Jan Schietse, John P. Eakins, and Remco C. Veltkamp. Practice and challenges in

trademark image retrieval. In CIVR ’07: Proceedings of the 6th ACM international

conference on Image and video retrieval, pages 518–524, New York, NY, USA,

2007. ACM. ISBN 978-1-59593-733-9. doi: http://doi.acm.org/10.1145/1282280.

1282355.

[117] P. Schnitzspan, M. Fritz, S. Roth, and B. Schiele. Discriminative Structure Learn-

ing of Hierarchical Representations for Object Detection. In Computer Vision and

Pattern Recognition (CVPR), Miami, USA, 2009.

[118] E. Di Sciascio, G. Mingolla, and M. Mongiello. Content-based image retrieval over

the web using query by sketch and relevance feedback. In D. P. Huijsmans and

A. W. M. Smeulders, editors, Visual Information and Information Systems, pages

123–130, June 1999.

[119] Thomas Seidl and Hans-Peter Kriegel. Efficient User-Adaptable Similarity Search

in Large Multimedia Databases. In VLDB ’97: Proceedings of the 23rd Interna-

tional Conference on Very Large Data Bases, pages 506–515, San Francisco, CA,

USA, 1997. Morgan Kaufmann Publishers Inc. ISBN 1-55860-470-7.

[120] G. Sheikholeslami, S. Chatterjee, and A. Zhang. NeuroMerge: an approach for

merging heterogeneous features in content-based image retrieval systems. Multi-

Media Database Management Systems, 1998. Proceedings. International Workshop

on, pages 106–113, Aug 1998. doi: 10.1109/MMDBMS.1998.709516.

[121] B. Shneiderman and H. Kang. Direct annotation: a drag-and-drop strategy for

labeling photos. Information Visualization, 2000. Proceedings. IEEE International

Conference on, pages 88–95, 2000. doi: 10.1109/IV.2000.859742.

[122] Ben Shneiderman, Benjamin B. Bederson, and Steven M. Drucker. Find that

photo!: interface strategies to annotate, browse, and share. Commun. ACM, 49(4):

69–71, 2006. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/1121949.1121985.

[123] Alan F. Smeaton, Paul Over, and Wessel Kraaij. Evaluation campaigns and

TRECVid. In MIR ’06: Proceedings of the 8th ACM International Workshop

172

on Multimedia Information Retrieval, pages 321–330, New York, NY, USA, 2006.

ACM Press. ISBN 1-59593-495-2. doi: http://doi.acm.org/10.1145/1178677.

1178722.

[124] Arnold W.M. Smeulders, Marcel Worring, Simone Santini, Amarnath Gupta, and

Ramesh Jain. Content-Based Image Retrieval at the End of the Early Years.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(12):1349–

1380, 2000. ISSN 0162-8828. doi: http://doi.ieeecomputersociety.org/10.1109/34.

895972.

[125] J. R. Smith and S.-F. Chang. Querying by color regions using the VisualSEEk

content-based visual query system. In M. T. Maybury, editor, Intelligent Multi-

media Information Retrieval. AAAI Press, 1997.

[126] John R. Smith. MARVEL: Multimedia Analysis and Retrieval System. Whitepa-

per, Intelligent Information Management Dept., IBM T. J. Watson Research Cen-

ter, 19 Skyline Drive, Hawthorne, NY 10532 USA, 2004.

[127] Christoph Stamm. PGF - A new progressive file format for lossy and lossless

image compression. Technical report, ETH Zurich, Institute of Theoretical Com-

puter Science, 2002. URL http://www.libpgf.org/uploads/media/PGF_stamm_

wscg02.pdf.

[128] Bongwon Suh, Haibin Ling, Benjamin B. Bederson, and David W. Jacobs. Au-

tomatic thumbnail cropping and its effectiveness. In UIST ’03: Proceedings

of the 16th annual ACM symposium on User interface software and technology,

pages 95–104, New York, NY, USA, 2003. ACM. ISBN 1-58113-636-6. doi:

http://doi.acm.org/10.1145/964696.964707.

[129] M. J. Swain and D.H. Ballard. Color Indexing. International Journal of Computer

Vision, 7(1):11–32, 1991.

[130] David S. Taubman and Michael W. Marcellin. JPEG 2000: Image Compression

Fundamentals, Standards and Practice. Kluwer Academic Publishers, Norwell,

MA, USA, 2001. ISBN 079237519X.

[131] Leonid Taycher, Marco La Cascia, and Stan Sclaroff. Image Digestion and Rel-

evance Feedback in the ImageRover WWW Search Engine. In 2nd International

Conference on Visual Information Systems, pages 85–94, December 1997.

173

http://www.libpgf.org/uploads/media/PGF_stamm_wscg02.pdf
http://www.libpgf.org/uploads/media/PGF_stamm_wscg02.pdf

[132] A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing features: efficient boost-

ing procedures for multiclass object detection. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, volume 2, pages 762–769,

Washington, DC, June 2004.

[133] Ricardo S. Torres, Celmar G. Silva, Claudia B. Medeiros, and Heloisa V. Rocha.

Visual structures for image browsing. In CIKM ’03: Proceedings of the twelfth

international conference on Information and knowledge management, pages 49–

55, New York, NY, USA, 2003. ACM. ISBN 1-58113-723-0. doi: http://doi.acm.

org/10.1145/956863.956874.

[134] C. Town and D. Sinclair. Ontological query language for content based image

retrieval. In Content-Based Access of Image and Video Libraries, 2001. (CBAIVL

2001). IEEE Workshop on, pages 75–80, 14 Dec. 2001. doi: 10.1109/IVL.2001.

990859.

[135] M. Turk and A. Pentland. Eigenfaces for Recognition. Journal of Cognitive Neu-

roscience, 3:71–86, 1991.

[136] C.J. van Rijsbergen. Information Retrieval. Butterworths, London, 1979.

[137] Gregory K. Wallace. The JPEG Still Picture Compression Standard. Technical

report, Multimedia Engineering Digital Equipment Corporation Maynard, Mas-

sachusetts, 1991.

[138] James Z. Wang, Jia Li, and Gio Wiederhold. SIMPLIcity: Semantics-Sensitive

Integrated Matching for Picture LIbraries. IEEE Trans. Pattern Anal. Mach.

Intell., 23(9):947–963, 2001. ISSN 0162-8828. doi: http://dx.doi.org/10.1109/34.

955109.

[139] James Z. Wang, Nozha Boujemaa, Alberto Del Bimbo, Donald Geman, Alexan-

der G. Hauptmann, and Jelena Tesić. Diversity in multimedia information retrieval

research. In MIR ’06: Proceedings of the 8th ACM international workshop on Mul-

timedia information retrieval, pages 5–12, New York, NY, USA, 2006. ACM. ISBN

1-59593-495-2. doi: http://doi.acm.org/10.1145/1178677.1178681.

[140] James Z. Wang, Nozha Boujemaa, and Yixin Chen. High diversity transforms mul-

timedia information retrieval into a cross-cutting field: report on the 8th Workshop

174

on Multimedia Information Retrieval. SIGMOD Rec., 36(1):57–59, 2007. ISSN

0163-5808. doi: http://doi.acm.org/10.1145/1276301.1276315.

[141] Jason Weston, Sayan Mukherjee, Olivier Chapelle, Massimiliano Pontil, Tomaso

Poggio, and Vladimir Vapnik. Feature Selection for SVMs. In NIPS, pages 668–

674, 2000. URL citeseer.ist.psu.edu/article/weston01feature.html.

[142] Kevin Woods, Kevin Bowyer, and W. Philip Kegelmeyer Jr. Combination of

multiple classifiers using local accuracy estimates. In CVPR ’96: Proceedings of

the 1996 Conference on Computer Vision and Pattern Recognition (CVPR ’96),

page 391, Washington, DC, USA, 1996. IEEE Computer Society. ISBN 0-8186-

7258-7.

[143] Bo Wu and R. Nevatia. Cluster boosted tree classifier for multi-view, multi-pose

object detection. In Computer Vision, 2007. ICCV 2007. IEEE 11th International

Conference on, pages 1–8, Oct. 2007. doi: 10.1109/ICCV.2007.4409006.

[144] Yi Wu, Edward Y. Chang, Kevin Chen-Chuan Chang, and John R. Smith. Op-

timal multimodal fusion for multimedia data analysis. In MULTIMEDIA ’04:

Proceedings of the 12th annual ACM international conference on Multimedia,

pages 572–579, New York, NY, USA, 2004. ACM. ISBN 1-58113-893-8. doi:

http://doi.acm.org/10.1145/1027527.1027665.

[145] Yahoo! Inc. Flickr - Photo Sharing, 2006. URL http://www.flickr.com/.

[146] Yufei Yuan and Michael J. Shaw. Induction of fuzzy decision trees. Fuzzy

Sets and Systems, 69(2):125–139, 1995. ISSN 0165-0114. doi: DOI:10.

1016/0165-0114(94)00229-Z. URL http://www.sciencedirect.com/science/

article/B6V05-4007D5X-C/2/62fa7de5b67d27ad22a38a1f4e6ba0e6.

[147] Lotfi A. Zadeh. Fuzzy sets. World Scientific Publishing Co., Inc., River Edge, NJ,

USA, 1996. ISBN 981-02-2422-2.

[148] Q. Zhang and E. Izquierdo. A New Approach to Image Retrieval in a Multi-Feature

Space. In International Workshop on Image Analysis for Multimedia Interactive

Services, April 2006.

[149] Rong Zhao and William I. Grosky. Bridging the semanitic gap in image retrieval.

Distributed multimedia databases: techniques & applications, pages 14–36, 2002.

175

citeseer.ist.psu.edu/article/weston01feature.html
http://www.flickr.com/
http://www.sciencedirect.com/science/article/B6V05-4007D5X-C/2/62fa7de5b67d27ad22a38a1f4e6ba0e6
http://www.sciencedirect.com/science/article/B6V05-4007D5X-C/2/62fa7de5b67d27ad22a38a1f4e6ba0e6

[150] Xiang Sean Zhou and Thomas S. Huang. Comparing discriminating transfor-

mations and SVM for learning during multimedia retrieval. In MULTIME-

DIA ’01: Proceedings of the ninth ACM international conference on Multimedia,

pages 137–146, New York, NY, USA, 2001. ACM. ISBN 1-58113-394-4. doi:

http://doi.acm.org/10.1145/500141.500163.

[151] Xiang Sean Zhou and Thomas S. Huang. Relevance feedback in image retrieval:

A comprehensive review. Multimedia Systems, 8(6):536–544, April 2003. doi:

10.1007/s00530-002-0070-3.

176

Appendix A.

Definitions

tp True Positives

fp False Postives

tn True Negatives

fn False Negatives

I set of all images i in a repository

R set of all relevant images (Positives)

Rx set of all relevant images (Positives) of category x

N set of all non-relevant images (Negatives)

E evaluation set

T training set

F feature vector set

f feature vector

i single image

ι set of retrieved images

r(q) result set of query q

q query

π precision

177

ρ recall

ν node in decision tree

c[+|−] boolean clause [MUST |MUST NOT]

C [+|−] set of boolean clauses [MUST |MUST NOT]

t term

fx(i) feature vector x of image i

s(f(i1), f(i2)) similarity of i1 and i2 based on feature vector f

178

Appendix B.

Descriptors

This table lists all query descriptors generated in the supervised learning on the ETH-

80 images (section 6.4). The threshold and boost values are cut off after 3 decimal places.

179

apple RGB:124ˆ0.978@0.918 H:237ˆ0.819@0.975 RGB:215ˆ0.680@0.915 RGB:281ˆ0.655@0.971

RGB:264ˆ0.393@0.981 RGB:68ˆ0.311@0.989 RGB:76ˆ0.311@0.993

car W:684ˆ0.898@0.951 SH:556ˆ0.804@0.967 H:460ˆ0.720@0.944 SH:634ˆ0.658@0.961

SH:525ˆ0.583@0.962 W:700ˆ0.583@0.954 SH:751ˆ0.542@0.978 W:654ˆ0.496@0.954

W:501ˆ0.459@0.933 SH:540ˆ0.439@0.973 W:422ˆ0.368@0.951 W:427ˆ0.311@0.956

W:442ˆ0.311@0.954 SH:484ˆ0.278@0.972 W:705ˆ0.278@0.950 W:438ˆ0.242@0.957

SH:620ˆ0.242@0.960 SH:435ˆ0.222@0.986 H:667ˆ0.222@0.978 H:703ˆ0.213@0.987

cow (W:856@0.953 -SH:1300@0.973 -W:2130@0.969 -H:2245@0.998)ˆ0.665

SH:1085ˆ0.667@0.971 W:979@0.951ˆ0.592 SH:845ˆ0.526@0.970 H:1127ˆ0.483@0.988

W:1006ˆ0.487@0.950 (W:1018@0.951 -RGB:813@0.969)ˆ0.416 W:1058ˆ0.417@0.901

SH:1153ˆ0.435@0.953 W:846ˆ0.417@0.951 SH:873ˆ0.379@0.972 SH:849ˆ0.389@0.984

RGB:1209ˆ0.404@0.997 W:909ˆ0.354@0.958 W:1168ˆ0.311@0.956 W:875ˆ0.341@0.955

W:852ˆ0.278@0.957 SH:1054ˆ0.278@0.979 RGB:947ˆ0.242@0.998 W:1000ˆ0.242@0.951

cup H:1244ˆ0.982@0.844 H:1572ˆ0.720@0.985 W:1635ˆ0.672@0.953 W:1299ˆ0.529@0.959

RGB:1463ˆ0.459@0.978 RGB:1603ˆ0.459@0.985 SH:1454ˆ0.340@0.858

RGB:1293ˆ0.278@0.974

dog (W:1963@0.888 -SH:2193@0.975 -SH:2348@0.981)ˆ0.721 (SH:2038@0.962 -SH:1104@0.997

-H:2121@0.995)ˆ0.683 (H:2004@0.990 -RGB:2100@0.998)ˆ0.582 SH:2033ˆ0.577@0.966

H:1804ˆ0.544@0.992 W:1913ˆ0.544@0.923 W:1707ˆ0.528@0.943 SH:1650ˆ0.463@0.959

SH:1809ˆ0.463@0.972 W:1665ˆ0.393@0.950 W:1754ˆ0.410@0.956 SH:1647ˆ0.311@0.967

H:1781ˆ0.311@0.997 SH:2002@0.964ˆ0.325 H:1727ˆ0.278@0.998 SH:1941ˆ0.278@0.978

SH:1696ˆ0.242@0.986 SH:2023ˆ0.242@0.965 SH:1793ˆ0.266@0.969 W:1867ˆ0.275@0.965

horse (H:2267@0.725 -H:776@0.996)ˆ0.663 (SH:2201@0.966 -SH:1873@0.977)ˆ0.614

W:2165ˆ0.554@0.927 W:2281ˆ0.513@0.950 W:2153ˆ0.526@0.950 H:2348ˆ0.478@0.994

W:2259ˆ0.481@0.944 H:2357ˆ0.475@0.979 W:2071ˆ0.424@0.950 W:2304ˆ0.451@0.902

RGB:2136ˆ0.368@0.998 SH:2073ˆ0.379@0.970 (H:2256@0.971 -RGB:1805@0.998

-SH:1697@0.988)ˆ0.366 H:2360ˆ0.353@0.976 W:2115ˆ0.278@0.961 H:2181ˆ0.278@0.998

H:2223ˆ0.318@0.986 W:2155ˆ0.266@0.955 W:2082ˆ0.242@0.950 H:2221ˆ0.242@0.997

pear W:2770ˆ0.995@0.952 W:2860ˆ0.583@0.958 W:2465ˆ0.544@0.957

tomato H:2882ˆ0.997@0.955 RGB:3178ˆ0.583@0.961

180

Glossary

boost Factor for a clause or sub query to increase or lower its weight in a boolean query.

130, 132, 142, 177

Caltech-101 The Caltech-101 image repository contains 9144 images with 101 cate-

gories. Each category holds 31 to 800 representative images. 58, 109, 111–114

clause Single component (term or sub query) of a boolean query that is either tagged

as SHOULD, MUST or MUST NOT. 60, 69–72, 79, 80, 82, 85, 89, 92, 123, 124,

127, 130, 132, 135–137, 142, 145, 149

ETH-80 The ETH-80 image repository contains 3280 images. The images show 10

representative objects for each of the 8 categories. It is known as the TU Darmstadt

Database (formerly the ETHZ Database) [67, 68]. 58, 109, 111–113, 138, 177

F-Measure The F-Measure combines precision and recall into a single value. It is defined

by van Rijsbergen [136] as: Fβ = (1 + β2) ∗ π∗ρ
β2∗π+ρ . 58

feature vector A feature vector is a set of data, describing a certain image feature.

This data is highly condensed and comparable to other feature vectors of the same

kind. Normally, it does not contain enough information to reconstruct the original

image. 11, 13–15, 29, 31, 35, 38–43, 45, 46, 54, 55, 57, 62, 64, 69–72, 76, 82, 84,

90, 96, 98, 99, 102–105, 108, 109, 111, 113–116, 118–124, 135, 137, 138, 142–144,

151–155, 175, 176

Histogram Feature vector “Histogram”, using 12 stochastic RGB histogram moments

for mean, variance, skwness and colour correlation. The identifier within the soft-

ware is “fv stochastic2”. 100, 102–105, 109, 111, 112, 143, 180

precision Fraction of retrieved documents that are relevant to the search: π = tp
tp+fp

[136]. 11, 57, 58, 62, 65–67, 69, 70, 72, 82, 98, 116, 123, 124, 127, 130–132, 179

181

recall Fraction of the documents that are relevant to the query that are successfully

retrieved: ρ = tp
tp+fn

[136] . 11, 57, 58, 62, 65, 66, 69, 72, 82, 98, 115, 116, 121,

123, 124, 127, 128, 130–132, 134, 136, 179

RGB Mean Feature vector “RGB-Mean”, using the average red green and blue values.

The identifier within the software is “fv mean”. 100, 102–105, 109, 111–113, 143

semantic gap The term “semantic gap” stands for a core problem of CBIR. It is caused

by the difficulty for machines to map visual content (e.g. from pixel images) to a

semantic concept. 11–14, 16, 45, 61

slack Additional fraction by which the strict thresholds of clauses are lowered to increase

the result set size. This usually increases recall on the expense of precision. 132

Spatial Histogram Feature vector “Spatial Histogram”, using a 3 level quad tree di-

vided image, where each sub image is represented by the same 12 moments as in

Histogram. The identifier within the software is “fv stoch quad”. 100, 102–105,

109, 111–113

thumbnail A thumbnail image is a downscaled version of an image. It is often used to

preview many images on a limited display area. 20, 21, 41

Wavelet Feature vector “Wavelet”, using the RGB average and especially the 80 highest

coefficients from a Haar wavelet transformation. The identifier within the software

is “fv wavelet”. 100, 102, 103, 105, 106, 109, 111–113

182

Acronyms

ANN Artificial Neural Network. 37, 155

BNF Backus-Naur Form. 23

CBIR Content-Based Image Retrieval. 11–14, 16–18, 23, 24, 26–29, 31–34, 38, 41–46,

48, 50, 52–54, 59, 61, 66, 70, 74–76, 89, 114, 115, 120, 123, 136, 137, 142, 143, 152,

155, 156, 180

CLIR Cross-Language Information Retrieval. 33

CQL Classification Query Language. 27

DBMS Database Management System. 21, 27

DT Decision Tree. 37, 98, 137, 155

EBNF Extended Backus-Naur Form. 39

ECW Enhanced Compression Wavelet. 21–23

Exif Exchangeable image file format. 38

FOQL Fuzzy Object Query Language. 24, 26, 42

GIF Graphics Interchange Format. 22

GIFT GNU Image Finding Tool. 34

GIS Geographic Information System. 12, 27

H Histogram. 103–107, 122

183

IPTC International Press Telecommunications Council - Information Interchange Model

(IIM). 32, 38, 96

JPEG Joint Photographic Experts Group. 21–23

JPEG 2000 Joint Photographic Experts Group 2000. 21–23

KLD Kullback-Leibler divergence. 30, 31

LGPL GNU Lesser General Public License. 22, 23

MDBMS Multimedia Database Management System. 27

MIR Multimedia Information Retrieval. 12, 13, 16, 17, 41

MRML Multimedia Retrieval Markup Language. 37, 85

MrSID Multiresolution Seamless Image Database. 21–23

ODMG Object Data Management Group. 24

OQL Object Query Language. 24

OQUEL Ontological Query Language. 24–26, 42

PGF Progressive Graphics File. 21–23

PNG Portable Network Graphics. 21–23

PR Precision-Recall. 33

QBE Query-By-Example. 14, 26, 52, 53, 80, 85, 89, 98, 99, 102, 137, 152

QBF Query-By-Feature. 52, 85

QBS Query-By-Sketch. 52, 85

RGB RGB Mean. 103–107, 122

ROC Receiver Operating Characteristic. 33

SEQUEL Structured English Query Language. 24

184

SH Spatial Histogram. 103–107, 109, 123

SOFM Self Organizing Feature Map. 37

SQL Structured Query Language. 24, 27

SVM Support Vector Machine. 37, 152, 155

URI Uniform Resource Identifier. 38, 40

URL Uniform Resource Locator. 26, 52, 79, 81, 89

VIR Visual Information Retrieval. 13

W Wavelet. 103–107, 109, 123

W3C World Wide Web Consortium. 24

XML Extensible Markup Language. 24, 37, 85, 88

XMP Extensible Metadata Platform. 32, 38

185

Copyright Statement

i The author of this thesis (including any appendices and/or schedules to this thesis)

owns any copyright in it (the “Copyright”) and s/he has given The University of

Huddersfield the right to use such Copyright for any administrative, promotional,

educational and/or teaching purposes.

ii Copies of this thesis, either in full or in extracts, may be made only in accordance

with the regulations of the University Library. Details of these regulations may be

obtained from the Librarian. This page must form part of any such copies made.

iii The ownership of any patents, designs, trade marks and any and all other intellec-

tual property rights except for the Copyright (the “Intellectual Property Rights”)

and any reproductions of copyright works, for example graphs and tables (“Re-

productions”), which may be described in this thesis, may not be owned by the

author and may be owned by third parties. Such Intellectual Property Rights and

Reproductions cannot and must not be made available for use without the prior

written permission of the owner(s) of the relevant Intellectual Property Rights

and/or Reproductions.

186

	List of Tables
	List of Figures
	Abstract
	Introduction
	Research Hypothesis
	Contribution
	Roadmap

	Background Research
	Related Work
	Browsing
	Browsing Strategies
	Visual Arrangement of Search Results
	Thumbnail Format

	Query Language
	Textual
	Visual

	Relevance Feedback in Search Results
	Features and Similarity Measures
	Annotation
	Evaluation of Retrieval Systems
	Benchmarks
	Metrics and Analysis

	Retrieval Frameworks
	Merging/Fusion
	Communication Protocols

	Categorization

	Own Preliminary Work
	Query Language
	Grammar
	Plug-Ins

	Identification of Problems
	Browsing
	Query Language
	Relevance Feedback in Search Results
	Features and Similarity Measures
	Annotation
	Evaluation of Retrieval Systems
	Retrieval Frameworks
	Categorization

	Aims and Objectives

	Methods Employed
	Browsing
	Query Language
	Query Language Requirements
	Query Composing
	Query Language Principles

	Relevance Feedback
	Features and Similarity Measures
	Feature Evaluation
	Feature Normalization
	Similarity Profiles
	Determining a Normalization Function

	Evaluation of Retrieval Systems
	Framework
	Similarity Search
	Merging/Fusion

	Categorization
	Unsupervised Learning
	Supervised Learning
	Semi-Supervised Learning
	Definitions
	Example
	Interpretation as Decision Tree
	Nodes
	Node Splitting
	Root Node
	Null Query

	Learning Algorithm
	Complexity
	Query Descriptors
	Pre-Classification Fusion
	Post-Classification Fusion

	Design
	Retrieval Framework Design
	Main Components
	Speed & Quality

	Query Language
	Wildcards and Ranges
	Parse Trees
	Browsing

	Learning Algorithm
	Multi Threaded Processing

	Implementation
	Query Language
	XML
	Visual Query

	Algorithms
	Normalization Algorithm
	Learning Algorithm
	Multi Threaded Processing

	Case Studies
	Impact of Query Image Size on Features and Similarity Measures
	Requirements
	Testing
	Results
	Discussion
	Summary

	Feature Normalization
	Requirements
	Testing
	Results
	Original Profiles
	Normalized by ETH-80
	Normalized by Caltech 101

	Analysis
	Original Profiles
	Normalized by ETH-80
	Normalized by Caltech 101
	Summary

	Discussion
	Summary

	Estimating the Improvement Capabilities of Different Features
	Requirements
	Data Preparation
	Data Collection
	Data Normalization
	Results
	Analysis
	Limitations
	Discussion
	Summary

	Supervised Learning
	Requirements
	Preparation & Implementation
	Testing
	Results
	Effect of Single Clauses
	Effect of Additional Clauses and Tolerance
	Effect of Boost Parameter
	Constructed Category Queries

	Analysis
	Discussion
	Summary

	Query Descriptors
	Requirements
	Testing
	Results
	Analysis
	Discussion
	Summary

	Semi-Supervised Learning
	Requirements
	Testing
	Results
	Impact of removed MUST_NOT
	Reference System

	Analysis
	Discussion
	Summary

	Discussion

	Conclusion
	Achieved
	Future Work

	Bibliography
	Definitions
	Descriptors
	Glossary
	Acronyms
	Copyright Statement

