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Abstract 

In this work, we explore two Monte-Carlo planning 
approaches: Upper Confidence Tree (UCT) and Rapidly-
exploring Random Tree (RRT). These Monte-Carlo 
planning approaches are applied in a real-time strategy 
game for solving the path finding problem. The planners are 
evaluated using a grid-based representation of our game 
world. The results show that the UCT planner solves the 
path planning problem with significantly less search effort 
than the RRT planner. The game playing performance of 
each planner is evaluated using the mean, maximum and 
minimum scores in the test games. With respect to the mean 
scores, the RRT planner shows better performance than the 
UCT planner. The RRT planner achieves more maximum 
scores than the UCT planner in the test games. 

Introduction 

Real-Time Strategy (RTS) games are the ideal platform to 
investigate state-of-the-art and sophisticated artificial 
intelligence techniques. Their suitability to AI research is 
because of the complex and challenging environment they 
offer to the players. The main challenging issues for the 
computer player are uncertainty, durative actions, tight 
time constraints and the dynamic gaming world. One of the 
few suitable approaches for such games is Monte-Carlo 
(MC) planning (Chung et al., 2005).  However, there are 
very few studies of MC planning in RTS games. In this 
paper, we provide an initial investigation of two MC 
planning approaches for solving the path finding problem 
in a RTS game called RC-RTS (details of the game are 
given in the next section).  These two approaches are UCT 
(Kocsis & Szepesvári, 2006) and RRT (LaValle, 2006). 
 
The other suitable planning approaches for RTS games are 
the real-time heuristic search and real-time dynamic 
programming (RTDP). Planners based on real-time 
heuristic search are popular for solving the path planning 
problems in dynamic environments due to their capability 
of interleaving both planning and action execution within a 
fixed time interval; for example, Learning Real-Time A* 
(Korf, 1990), Learning Real-Time Search (Bulitko and 
Lee, 2006) and hierarchical task-based real-time path 
planning (Naveed et al., 2010). However, these approaches 
suffer from two main problems: convergence to the local 

minima and a slow convergence rate if the gaming 
environment is largely populated by static obstacles. The 
RTDP planner (Barto et al., 1991) formulates a planning 
problem as a Markov Decision Process and tunes the utility 
function (a mapping from states to actions) during the 
online search. RTDP planner also suffers from the problem 
of slow convergence speed.    
   
The main motivation for using Monte-Carlo planning for 
solving the path finding problem in RC-RTS is due to the 
success of MC planning in Go (Lee et al., 2009), Solitaire 
(Bjarnason et al., 2009), sailing strategies (Kocsis & 
Szepesvári, 2006) and robot motion planning (LaValle, 
2006). Kocsis and Szepesvári applied UCT as a non-
deterministic path planner for the sailing strategies 
(Vanderbei, 1996) to find a path between two locations on 
a grid. Their results showed that UCT required fewer 
samples to generate near optimal path plans than the RTDP 
planner and a trajectory based online heuristic sampling 
technique (with control on the look-ahead depth) (Péret 
and Garcia, 2004). RRT-based path planning is particularly 
suitable in RTS games for the movements of characters 
with steering constraints, e.g. cars, tanks and airplanes. 
This suitability is due to the capability of RRTs to handle 
differential constraints.  
 
Kocsis and Szepesvári proposed UCT as a rollout Monte-
Carlo planner. In each rollout, a look-ahead tree is 
expanded to a certain depth with the current state always as 
a root node of the tree. The main contribution of Kocsis 
and Szepesvári is equation (1) which solves the trade-off 
between exploration and exploitation of the actions 
applicable in a state seen during the tree search. The leaf 
nodes of the look-ahead tree are evaluated using a random 
function. This search is performed for several rollouts 
(depending on the stopping condition) and then an 
applicable action (of the current state) which has the 
highest predicted reward is selected for execution.     

 
 
     (1) 
 
 
 



),,( dasQ  is the estimated reward of the action a  at state s  
and depth d of the look-ahead tree. ),( dsN  is the number 
of times that state s  has been visited since the first rollout, 

),,( dasN is the number of times action a  has been selected 
at s  since the first rollout. 0C p > is a constant value 
which is tuned for every domain.   
 
Rapidly-Exploring Random Tree (RRT) uses a sequence of 
random samples (of states) to incrementally build a search 
tree. However, RRT is not a planner itself. This is a data 
structure and a random sampling technique. Therefore, it is 
combined with a planner to solve the path finding problem 
(LaValle, 2006). For example, RRT-Connect (Kuffner and 
LaValle, 2000) builds two RRTs during the online search; 
one tree with the start state as the root and the other with 
the goal state as a root node. A heuristic planner tries to 
connect both trees and if the trees are connected then a 
path is returned for execution. 
 
In this preliminary work, we combine the random sampling 
technique of RRT with the UCT’s rollout Monte-Carlo 
planning. We do not maintain the tree structure explicitly 
in the memory (unlike the RRT-Connect) and only use 
RRT as a replacement for the UCT’s selective action 
sampling technique. We also describe an application of 
UCT in our RTS game for solving the path finding 
problem and an empirical comparison is made between 
RRT and UCT planners. However, we use a heuristic 
based evaluation function for the UCT planner. This is 
because our RRT planner is using a local heuristic search 
method for the action selection task at a given state during 
the look-ahead search. 
 
The rest of our paper is organised as follows. The next 
section, “RC-RTS Game”, gives a brief definition of our 
RTS game. “Path Planning Problem” describes the 
formulation of the planning problem. In “UCT Planner”, 
we provide details of the UCT planner as applied to the 
path planning in RC-RTS. The next section “RRT Planner” 
gives the description of the RRT based MC Planner. 
Section “Experimental Design” provides the experimental 
details of the research work. The results of the empirical 
work are given in section “Results”. Finally, the 
conclusions along with a description of future work are 
given in section “Discussion”. 

RC-RTS Game 

RC-RTS is a resource collection RTS game that we have 
devised and built in an open source RTS gaming platform 
called Open Real Time Strategy Game Engine (ORTS) 
(Buro, 2002).  It is a single player game of imperfect 
information. The player (which is an AI client) has three 
workers and a control centre. Each worker can move to an 
empty place on the game map if there is no static or 
dynamic obstacle between both locations. RC-RTS has a 
single location containing a cluster of minerals. The main 
goal of the AI player is to collect as many of the minerals 

from this location as possible and to store them at the 
control centre within ten thousand game ticks. The player’s 
score is increased by ten if a worker reaches the mineral 
cluster and picks them up. When a worker returns the 
minerals to the control centre then the AI player gets a 
further twenty points. To achieve a maximum score, the AI 
player is required to plan the shortest paths from the 
control centre to the mineral cluster and vice versa.  
 
The game also has other movable characters which are 
used as the dynamic obstacles for the workers. These 
characters include tanks and invicor (a bug that moves in a 
frog like jumping style). Static obstacles are created using 
immovable characters and ridges. The immovable 
characters include nurseries, geysers, barracks and 
comsats. A screenshot of a run of RC-RTS with the start 
positions of the workers is shown in figure 1. This 
screenshot shows only a part of the top left side of a game 
map. The minerals and comsats are located near the bottom 
right corner of the map. Therefore they are not visible in 
the screenshot. The screenshot is processed to add labels 
with some visible characters. 
 

Figure 1: A screenshot of RC-RTS 

Path Planning Problem 

Path planning for RC-RTS is a non-deterministic planning 
problem that can be addressed as a Markov Decision 
Process (MDP). We formulate this MDP as a tuple 

),,,,,( RGsTAS o=ψ  where S is a finite state space, A is 
the set of actions and T is the set of transition probabilities. 
The transition probability ),,( jia sasT  represents the 
probability of moving a character from is  to js if an action 
a is executed at is where )( isAa ∈ and Sss ji ∈, . )( isA is 
a set of the applicable actions at state is  and AsA i ⊆)( . 

os  is the initial state. G is a set of goal states. R is the 
reward function for a state-action pair, i.e. →×as:R . 
 
A path plan in this case is a total function that maps a state 
into an action. For each planning problem at a state s , the 
planner runs a finite number of Monte-Carlo simulations 
and estimates the rewards for the applicable actions of s . 
The applicable action of s  which gains the highest 



estimated reward (from the simulations) is selected for 
execution. In this work, we study the UCT and RRT 
planners to tune the reward function. 

UCT Planner 

We made the following modifications to Kocsis and 
Szepesvári’s UCT work for its application in RC-RTS for 
path planning. 
1.  The evaluation function, in our case, is the inverse of 

the Euclidean distance between the leaf node and a 
goal state (unlike the random evaluation function of 
UCT).  

2.  To simulate an outcome of an action a at state s and 
measure the reward for this transition during the look-
ahead search, we use the function SimulateAction 
given in figure 2. A set of possible successor states Ss 
is populated using the function ChildStates (line 1 of 
figure 2). This function returns a list of successor 
states of the current state s  which are reachable from 
s with the application of action a  such that each 
successor state sSs ∈' has 0)',,( >sasTa . 
 

Function SimulateAction(State s, Action a) 
1: Vector<State> Ss=ChildStates(s, a) 

2: 's =SelectState(Ss) 

3: reward=Metric( 's , Ss)  

4: return [ 's , reward] 

End Function 

Figure 2: Action simulation  
 
A transition probability )'s,a,s(Ta  is always zero if 's  is 
occupied by a static obstacle.  The function SelectState 
(line 2) selects a state 's  from sS  randomly as an outcome 
of action a at state s. The function Metric (line 3) is applied 
on 's  to measure the reward of the state-action pair 
(i.e. )( as × ). In our case, the reward is measured using 
equation (2). 

 
 
                                                               
                      (2) 
 
 
 

),'( Gsd  is the Euclidean distance between 's  and G . The 
size of sS  is used to estimate the collision with the static 
obstacles. A small size of sS of action a in the look-ahead 
tree means the application of this action may cause a 
collision in future.  Therefore, the reward is kept directly 
proportional to the size of sS . The relationship between 
the distance measure and the reward is set in an inversely 
proportional manner. This is because the transition of a 
path planning character from the current state to the next 
state (due to an action a) should reduce the distance of the 
character from the goal location. 

RRT Planner 

We apply the RRT planner as a rollout Monte-Carlo 
planner. The RRT planner repeatedly searches for the best 
neighbouring states of the current state during the Monte-
Carlo search - as shown in figure 3 (line 4). Once the 
Monte-Carlo search is stopped, the neighbouring state with 
the highest predicted reward is selected as the best state sb 
(line 6). An action a is planned (line 7) to move the 
character to the best neighbouring state sb. The planned 
action a is executed (line 8) and the new state of the 
character is observed (line 1). If the character is at the goal 
state then stop path planning (line 2). 
 
RRT planner’s look-ahead search expands in a UCT style 
(as shown in figure 4).  The look-ahead search grows up to 
a fixed depth d. If the tree reaches the leaf nodes at depth d 
then it evaluates the leaf node (line 1). The leaf nodes are 
evaluated using the inverse of the Euclidean distance 
between the leaf node and the goal state. If the look-ahead 
tree encounters an invalid state then the tree expansion is 
stopped (even before the leaf node is reached) and a zero 
value is assigned as an evaluation to the invalid state (line 
2). The invalid states are the states which are occupied by 
static obstacles.  
 

Function RRT Planner 
1: State si=GetCurrentState() 

2: If si=GoalState return 0 

3: While (stopping_condition) 

4:       Search(si  , 0) 

5: End while 

6: State sb=FindBestNeighbourState(si) 

7: Action a=PlanAction(si, sb) 

8: Execute a 

9: Go to step 1 

End Function 

Figure 3: RRT Planner 

 

RRT planner’s tree is expanded using the valid 
neighbouring states of a state s. The SelectNeighbourState 
function (line 3) calculates a set of valid neighbouring 
states (maximum possible neighbouring states are eight). 
This function selects a neighbouring state randomly if the 
neighbouring states are seen for the first time in the look-
ahead search since the first rollout. Otherwise it returns a 
neighbouring state (nstate in figure 4) that has the highest 
predicated reward (i.e. Qrrt).  The function RandomState 
(line 4) selects a random valid state rstate from the state 
space S  with the condition that rstate is not a part of the 
neighbourhood of the current state.  
 
 
 
 
 
 
 
 



Function Search(state s, depth d) 
1: If Leaf(s,d) then return Evaluate(s) 

2: if(invalid(s))  then return 0 

3: nstate=SelectNeighbourState(s) 

4: rstate=RandomState(nstate) 

5: Action a=PlanAction(nstate, rstate) 

6: [nextstate, reward]=SimulateAction(nstate, a) 

7: nstate.Qrrt=reward+Search(nextstate, d+1) 

8: return nstate.Qrrt 

End Function 

Figure 4: RRT Search 

 

The function PlanAction (line 5) is in fact a local planning 

method (LPM) which uses a heuristic search in the 

immediate neighbourhood of the current state s to find an 

action a (such that )(∈ sAa ) to reach the given target. In 

our current experiments, we use a real-time heuristic 

search called real-time A* (Korf, 1990) as a LPM with no 

modification of the heuristics (i.e. without learning).  The 

pseudo-code of SimulateAction is the same as used in UCT 

(given in figure 2). 

Related Work 

A variation of UCT has been applied in a RTS game by 
(Balla and Fern, 2009) for a tactical assault problem. Balla 
and Fern used the concept of objective functions to 
measure the reward of the state-action pair. For example, a 
state-action pair is granted a high reward value if the leaf 
node (of the current rollout) reduces the time to attack or 
maximizes the player’s health. However, only one 
objective (either minimum attack time or maximum health) 
can be used in the UCT planner at a time. Balla and Fern 
removed the Cp constant from the UCT exploration and 
exploitation balancing equation (1) and use the number of 
times an action is taken in a state to adjust the exploration 
and exploitation trade-off. This is the main variation Balla 
and Fern made in the UCT planner. This is also a 
difference between our work and that of Balla and Fern. 
 
The other path finding methods which have been 
commonly used in computer games are A* (Hart et al., 
1968), Navigational Mesh (Tozour 2002 and Hamm, 2008) 
and Waypoints (Rabin, 2000). Since A* searches for a full 
path between two locations before executing the plan, it is 
not suitable for real-time dynamic gaming environments. 
The navigational mesh and waypoints based path finding is 
also not suitable for the RTS games because the whole map 
is not available to process before the start of the game and 
also due to the frequent changes in the topography of the 
game map. These frequent changes are made by the 
construction of new buildings or when the dynamic 
obstacles (e.g. tanks, trucks or ships) cease to move.  
 
RRT has been extensively used in robot motion planning 
problems where it is used to identify collision free parts of 
the search space through a random sampling approach. The 

main benefits of RRT based path planning in computer 
games over commonly used path planning approaches (i.e. 
A*, navigational mesh and waypoints) are i) RRT can be 
used for path planning in high dimensional search spaces 
(e.g. 3 degrees of freedom or higher) ii) RRT can handle 
uncertainty and iii) RRT can be used to generate waypoints 
dynamically in an online planning process. The 
disadvantage of RRT path planning is its poor performance 
in spaces with narrow passages (Zhang and Manocha, 
2008).          

Experimental Design 

Experiments are performed on a desktop computer with 3.0 
GHz computing speed and 1.0 GB RAM. We use three 
maps of 50x50 tiles for the experiments. We use simulation 
length (number of rollouts) as the stopping condition for 
the UCT and RRT planners. We use five different 
simulation lengths which are 30, 60, 90, 120 and 200. The 
UCT parameter Cp is set to 0.1 and the look-ahead depth is 
set to 4 for all experiments. A state in S  is represented by 
(x, y) coordinates. The actions in the Action set are the 
pairs (dx, dy) where dx = {-1, 0, 1} and dy = {-1, 0, 1}. The 
action (0, 0) is excluded from the action set because path 
planning is always initiated when a character is in a stop 
state. An action does not bring a change in the state of a 
character if it is in front of a dynamic or static obstacle. A 
tank also becomes a static obstacle when it ceases to move. 
The unseen dynamic and static obstacles introduce 
uncertainty into the planning domain. A map is studied 
with three problems, where each problem has different 
coordinates (in terms of control centre and mineral cluster) 
to the others. In each map, the numbers of dynamic and 
static obstacles, and their placement coordinates, are kept 
different to other maps.  
 
The performance of UCT and RRT planners is measured 
using four evaluation parameters: Score, Time, Planning 
cost and Convergence cost. Time is measured in the 
number of seconds that a method takes to play a game of 
10K frames. The Scoring mechanism has already been 
described in section “RC-RTS Game” and it represents the 
total number of times the targets are achieved. Planning 
cost is the number of states seen during the online planning 
episodes. Convergence cost is the number of actions 
sampled during the online planning work. 

Results 

The results presented in this section are the average of the 
15 runs for each simulation length and map. These average 
values are presented with the standard error of the means. 
A comparison of the UCT and RRT planners, with respect 
to convergence cost, is given in figure 5.   
 
 
 



Figure 5: Convergence cost versus simulation length 
 
UCT performs significantly better than RRT in terms of 
convergence cost. This is due to UCT’s selective action 
sampling scheme (the balance between exploration and 
exploitation). The RRT planner’s scheme of action 
selection, at a state, depends on the neighbours of that state 
and a random state (part of the state space but not in the 
look-ahead tree). Therefore, it explores a large number of 
actions for all simulation lengths. The convergence cost in 
RRT planner increases exponentially with the increase in 
the simulation length. 
 
The planning cost for all five simulation lengths is shown 
in figure 6.  These results show a huge difference between 
the UCT and RRT planners with respect to the length of 
the exploration of the state space. UCT looks at 
significantly fewer states to find the solution when 
compared to the RRT planner. This huge gap is mainly due 
to the difference in the schemes of action selection. RRT 
planner’s rollout search focuses on finding a new 
neighbouring state of a given state in each rollout (i.e. 
exploration); therefore, it expands the state space search to 
a very large extent while UCT’s lower searching efforts 
than RRT are due to its ability to adjust the trade-off 
between exploration and exploitation. 
 

Figure 6: Planning cost versus simulation length 
 
Figure 7 gives a graphical view of the performance of both 
planners with respect to the mean score.  These results 
show that RRT performs better than UCT in terms of game 
playing intelligence. The better performance of RRT shows 

the importance of its random sampling based exploration 
capabilities.   The common feature between both planners 
is a decrease in average score with higher simulation 
lengths; i.e. 120 and 200. A visual display of these games 
shows that the workers mostly do the searching for the 
paths in the areas of the map with no obstacles, even when 
these areas are very far from the target location. This is due 
to the collision avoidance factor sS . With the large 
number of rollouts, the reward function becomes biased 
towards sS  and ignores the distance heuristics. 
 
The game play performance shown in figure 7 can also be 
discussed using the minimum and maximum scores 
achieved by both planners in each simulation length. These 
scores are shown in figure 8. RRT planner achieved higher 
maximum scores than UCT planner with every simulation 
length. The best score (the highest maximum score) of 
UCT planner in all simulation lengths is 320 which is  
approximately 30% smaller than the best for the RRT 
planner. There is no major change in the RRT planner’s 
minimum score with respect to the change in simulation 
length. The UCT planner’s minimum depends on the 
simulation length and it has higher minimum scores with 
higher simulation lengths than that of smaller simulation 
lengths. 

Figure 7: Mean score versus simulation length 
 
   

Figure 8: Min and max scores versus simulation length 
 
Time durations spent by both planners to play games with 
different simulation lengths are given in figure 9. The UCT 
planner plans paths significantly quicker than the RRT 
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planner with a simulation length 60; otherwise there is no 
significant difference between the planners with respect to 
the time usage.  However, the time usage profile falls at the 
simulations lengths 120 and 200.  This is a result of the 
workers’ movements in the obstacle free areas due to the 
reward function’s convergence into the space of high sS . 
In the obstacle-free area, the workers do not demand 
replanning frequently and as such saves planning time. 
 

Figure 9: Time versus simulation length 

Discussion 

The performance of two Monte-Carlo planners, UCT and 
RRT, is evaluated in a RTS game for solving the path 
finding problem. Both planners are run within a RTS game 
with a fixed number of game ticks. The results show that 
UCT finds solutions with less search effort than the RRT 
planner. The RRT planner performs better than UCT in 
terms of game play when run with a specific simulation 
length. The results also provide a potentially useful insight 
into the application of Monte-Carlo planning in a RTS 
game for solving the path planning problem.  
 
As this is a preliminary work, there are several promising 
directions which are possible for future work. One of them 
is the modification of the reward function to adjust the 
parameters: distance to goal and collision estimation. We 
plan to use a weighted scheme to avoid the possible biasing 
in the reward function towards one parameter when the 
rollouts are increased. We also aim to modify the reward 
function by adding an estimation of the collision with 
dynamic obstacles.  
 
The UCT parameter Cp also needs more investigation. In 
the current set of experiments, we arbitrarily selected a 
small value of this parameter.  We plan to study the impact 
of Cp on the performance of UCT if its value is increased 
from a small amount to a larger amount (i.e., Cp = 1).  We 
also aim to investigate the possible relationship between Cp 
and the domain.  
 
The RRT planner will be extended to generate and 
maintain an explicit tree of collision free nodes. This tree 
can be used as a set of way points. The random sampling 
scheme of RRT planner can be modified to generate 

random samples according to the goal locations. This can 
reduce the searching efforts of the planner. We also aim to 
extend path planning in RC-RTS for the tanks. We plan to 
modify the definition of the game to include the enemy 
units. The higher values of the standard errors of the means 
in the results of both planners also suggest running large 
numbers of test games for each parameter (i.e. 
considerably larger than 15). 
 
Since the game world is represented as the 2D grid, it is 
also interesting to apply the graph search techniques in 
RC-RTS for the path planning. These techniques include 
the variations of A* (which are suitable for the real-time 
systems) and Bellman equation based asynchronous 
dynamic programming (e.g. Barto et al., 1991). 

Acknowledgements 

This research is in part supported by the University of 
Huddersfield, School of Computing and Engineering. We 
are thankful to the ORTS development team for providing 
a free tool for researching the RTS games. We borrow 
some pieces of code given in ORTS example projects. 
These include an event handler from “SampleAI” project, 
ridge creation from “Game-1” and the game map 
representation scheme from “Simple Pathfinding” project.   

References 

Balla, R-K., and Fern, A. 2009. UCT for Tactical Assault 
Planning in Real-Time Strategy Games. In Proceedings of 

the 21
st
 International Joint Conference on Artificial 

Intelligence, 40-45. 
 

Barto, A.G., Bradtke, S.J., and Singh, S.P. 1991. Real-time 
Learning and control using Asynchronous Dynamic 
Programming. Technical Report 91-57, Computer Science 
Department, University of Massachusetts. 
 

Bjarnason, R., Fern, A., and Tadepalli, P. 2009. Lower 
Bounding Klondike Solitaire with Monte-Carlo Planning. 
In proceedings of the ICAPS-2009,  26-33. 
 
Bulitko, V., and Lee, G. 2006. Learning in Real-Time 
Search: a Unifying Framework. Journal of Artificial 
Intelligence Research (JAIR), 25(1): 119-157. 
 

Buro, M. 2002. ORTS: A Hack-free RTS Game 
Environment. In proceedings of the International 

Computers and Games Conference, 280-291. 
 

Chung, M., Buro, M., and Shaeffer, J. 2005. Monte-Carlo 
Planning in RTS games. In proceedings of the 
Computational Intelligence and Games 2005, UK. 
 
Hamm, D. 2008. Navigational Mesh Generation: An 
empirical Approach. In S. Rabin (Ed.), AI Game 

1260

1280

1300

1320

1340

1360

1380

1400

30 60 90 120 200

Simulation Length

T
im

e
 (

se
c

)

UCT Planner

RRT Planner



Programming Wisdom 4, Hingham, MA: Charles River 
Media Publisher, 113-114. 
 

Hart, P.E., Nilsson, N.J., and Raphael, B. 1968. A Formal 
Basis for the Heuristic Determination of Minimum Cost 
Paths. IEEE Transactions of Systems Science and 
Cybernetics, 4(2): 100-107. 
 

Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo Planning. In proceedings of 15th European 

Conference on Machine Learning, 282-293. 
 

Korf, R. 1990. Real-Time Heuristic Search. Artificial 
Intelligence, 42(2-3): 189-211. 
 

Kuffner, J.J. and LaValle, S.M. 2000. RRT-Connect: An 
Efficient Approach to Single-Query Path Planning. In  
proceedings of IEEE International Conference on Robotics 
and Automation (ICRA 2000), 995-1001. 
 

Lee, C-S., Wang, M-H., Chaslot, G., Hoock, J-B., Rimmel, 
A., Teytaud, O., Tsai, S-R., Hsu, S-C., and Hong, T-P. 
2009. The Computational Intelligence of MoGo Revealed 
in Taiwan’s Computer Go Tournaments. IEEE 
Transactions on Computational Intelligence and AI in 

Games, 1(1): 73-89. 
 

LaValle, S.M. 2006. Planning Algorithms. New York: 
Cambridge University Press. 
 
Naveed, M., Kitchin, D., and Crampton, A. 2010. A 
Hierarchical Task Network Planner for Pathfinding in 
Real-Time Strategy Games. In Proceedings of the Third 
International Symposium on AI & Games, Daniela M. 

Romano and David C. Moffat (Eds.), AISB 2010, 1-7.  
 

Péret, L., and Garcia, F. 2004 . On-line search for solving 
Markov Decision Processes via heuristic sampling. In 
proceedings of the 16

th
 European Conference on Artificial 

Intelligence, 530-534. 
 
Rabin, S. 2000. A* speed optimizations. In M. Deloura 
(Ed.), Game Programming Gems, Hingham, MA: Charles 
River Media Publisher.  
 

Tozour, P. 2002. Building a near-optimal navigational 
mesh. In S. Rabin (Ed.), AI Game Programming Wisdom, 
Hingham, MA: Charles River Media Publisher, 171-185.    
 

Vanderbei, R. 1996. Sailing Strategies: An Application 
involving stochastics, Optimization, and Statistics (SOS). 
http://orfe.princeton.edu/~rvdb/sail/sail.html, 
AccessDate:13 Sept 2010.   
 
Zhang, L., and Manocha, D. 2008. An Efficient Retraction-
based RRT Planner. In proceedings of the IEEE 
International Conference on Robotics and Automation 

(ICRA 2008), 3743 - 3750. 

 

 

 

 

 

 

 

 

 

 


