
University of Huddersfield Repository

Naveed, Munir, Kitchin, Diane E. and Crampton, Andrew

Monte-Carlo Planning for Pathfinding in Real-Time Strategy Games

Original Citation

Naveed, Munir, Kitchin, Diane E. and Crampton, Andrew (2010) Monte-Carlo Planning for
Pathfinding in Real-Time Strategy Games. In: Proceedings of PlanSIG 2010. 28th Workshop of the
UK Special Interest Group on Planning and Scheduling joint meeting with the 4th Italian Workshop
on Planning and Scheduling. PlanSIG, Brescia, Italy, pp. 125-132.

This version is available at http://eprints.hud.ac.uk/id/eprint/9242/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Monte-Carlo Planning for Pathfinding in Real-Time Strategy Games

Munir Naveed, Diane Kitchin, Andrew Crampton

University of Huddersfield,

School of Computing & Engineering,

Huddersfield, HD1 3DH, United Kingdom

E-mail(s): {m.naveed, d.kitchin, a.crampton}@ hud.ac.uk

Abstract

In this work, we explore two Monte-Carlo planning
approaches: Upper Confidence Tree (UCT) and Rapidly-
exploring Random Tree (RRT). These Monte-Carlo
planning approaches are applied in a real-time strategy
game for solving the path finding problem. The planners are
evaluated using a grid-based representation of our game
world. The results show that the UCT planner solves the
path planning problem with significantly less search effort
than the RRT planner. The game playing performance of
each planner is evaluated using the mean, maximum and
minimum scores in the test games. With respect to the mean
scores, the RRT planner shows better performance than the
UCT planner. The RRT planner achieves more maximum
scores than the UCT planner in the test games.

Introduction

Real-Time Strategy (RTS) games are the ideal platform to
investigate state-of-the-art and sophisticated artificial
intelligence techniques. Their suitability to AI research is
because of the complex and challenging environment they
offer to the players. The main challenging issues for the
computer player are uncertainty, durative actions, tight
time constraints and the dynamic gaming world. One of the
few suitable approaches for such games is Monte-Carlo
(MC) planning (Chung et al., 2005). However, there are
very few studies of MC planning in RTS games. In this
paper, we provide an initial investigation of two MC
planning approaches for solving the path finding problem
in a RTS game called RC-RTS (details of the game are
given in the next section). These two approaches are UCT
(Kocsis & Szepesvári, 2006) and RRT (LaValle, 2006).

The other suitable planning approaches for RTS games are
the real-time heuristic search and real-time dynamic
programming (RTDP). Planners based on real-time
heuristic search are popular for solving the path planning
problems in dynamic environments due to their capability
of interleaving both planning and action execution within a
fixed time interval; for example, Learning Real-Time A*
(Korf, 1990), Learning Real-Time Search (Bulitko and
Lee, 2006) and hierarchical task-based real-time path
planning (Naveed et al., 2010). However, these approaches
suffer from two main problems: convergence to the local

minima and a slow convergence rate if the gaming
environment is largely populated by static obstacles. The
RTDP planner (Barto et al., 1991) formulates a planning
problem as a Markov Decision Process and tunes the utility
function (a mapping from states to actions) during the
online search. RTDP planner also suffers from the problem
of slow convergence speed.

The main motivation for using Monte-Carlo planning for
solving the path finding problem in RC-RTS is due to the
success of MC planning in Go (Lee et al., 2009), Solitaire
(Bjarnason et al., 2009), sailing strategies (Kocsis &
Szepesvári, 2006) and robot motion planning (LaValle,
2006). Kocsis and Szepesvári applied UCT as a non-
deterministic path planner for the sailing strategies
(Vanderbei, 1996) to find a path between two locations on
a grid. Their results showed that UCT required fewer
samples to generate near optimal path plans than the RTDP
planner and a trajectory based online heuristic sampling
technique (with control on the look-ahead depth) (Péret
and Garcia, 2004). RRT-based path planning is particularly
suitable in RTS games for the movements of characters
with steering constraints, e.g. cars, tanks and airplanes.
This suitability is due to the capability of RRTs to handle
differential constraints.

Kocsis and Szepesvári proposed UCT as a rollout Monte-
Carlo planner. In each rollout, a look-ahead tree is
expanded to a certain depth with the current state always as
a root node of the tree. The main contribution of Kocsis
and Szepesvári is equation (1) which solves the trade-off
between exploration and exploitation of the actions
applicable in a state seen during the tree search. The leaf
nodes of the look-ahead tree are evaluated using a random
function. This search is performed for several rollouts
(depending on the stopping condition) and then an
applicable action (of the current state) which has the
highest predicted reward is selected for execution.

 (1)

),,(dasQ is the estimated reward of the action a at state s
and depth d of the look-ahead tree.),(dsN is the number
of times that state s has been visited since the first rollout,

),,(dasN is the number of times action a has been selected
at s since the first rollout. 0C p > is a constant value
which is tuned for every domain.

Rapidly-Exploring Random Tree (RRT) uses a sequence of
random samples (of states) to incrementally build a search
tree. However, RRT is not a planner itself. This is a data
structure and a random sampling technique. Therefore, it is
combined with a planner to solve the path finding problem
(LaValle, 2006). For example, RRT-Connect (Kuffner and
LaValle, 2000) builds two RRTs during the online search;
one tree with the start state as the root and the other with
the goal state as a root node. A heuristic planner tries to
connect both trees and if the trees are connected then a
path is returned for execution.

In this preliminary work, we combine the random sampling
technique of RRT with the UCT’s rollout Monte-Carlo
planning. We do not maintain the tree structure explicitly
in the memory (unlike the RRT-Connect) and only use
RRT as a replacement for the UCT’s selective action
sampling technique. We also describe an application of
UCT in our RTS game for solving the path finding
problem and an empirical comparison is made between
RRT and UCT planners. However, we use a heuristic
based evaluation function for the UCT planner. This is
because our RRT planner is using a local heuristic search
method for the action selection task at a given state during
the look-ahead search.

The rest of our paper is organised as follows. The next
section, “RC-RTS Game”, gives a brief definition of our
RTS game. “Path Planning Problem” describes the
formulation of the planning problem. In “UCT Planner”,
we provide details of the UCT planner as applied to the
path planning in RC-RTS. The next section “RRT Planner”
gives the description of the RRT based MC Planner.
Section “Experimental Design” provides the experimental
details of the research work. The results of the empirical
work are given in section “Results”. Finally, the
conclusions along with a description of future work are
given in section “Discussion”.

RC-RTS Game

RC-RTS is a resource collection RTS game that we have
devised and built in an open source RTS gaming platform
called Open Real Time Strategy Game Engine (ORTS)
(Buro, 2002). It is a single player game of imperfect
information. The player (which is an AI client) has three
workers and a control centre. Each worker can move to an
empty place on the game map if there is no static or
dynamic obstacle between both locations. RC-RTS has a
single location containing a cluster of minerals. The main
goal of the AI player is to collect as many of the minerals

from this location as possible and to store them at the
control centre within ten thousand game ticks. The player’s
score is increased by ten if a worker reaches the mineral
cluster and picks them up. When a worker returns the
minerals to the control centre then the AI player gets a
further twenty points. To achieve a maximum score, the AI
player is required to plan the shortest paths from the
control centre to the mineral cluster and vice versa.

The game also has other movable characters which are
used as the dynamic obstacles for the workers. These
characters include tanks and invicor (a bug that moves in a
frog like jumping style). Static obstacles are created using
immovable characters and ridges. The immovable
characters include nurseries, geysers, barracks and
comsats. A screenshot of a run of RC-RTS with the start
positions of the workers is shown in figure 1. This
screenshot shows only a part of the top left side of a game
map. The minerals and comsats are located near the bottom
right corner of the map. Therefore they are not visible in
the screenshot. The screenshot is processed to add labels
with some visible characters.

Figure 1: A screenshot of RC-RTS

Path Planning Problem

Path planning for RC-RTS is a non-deterministic planning
problem that can be addressed as a Markov Decision
Process (MDP). We formulate this MDP as a tuple

),,,,,(RGsTAS o=ψ where S is a finite state space, A is
the set of actions and T is the set of transition probabilities.
The transition probability),,(jia sasT represents the
probability of moving a character from is to js if an action
a is executed at is where)(isAa ∈ and Sss ji ∈, .)(isA is
a set of the applicable actions at state is and AsA i ⊆)(.

os is the initial state. G is a set of goal states. R is the
reward function for a state-action pair, i.e. →×as:R .

A path plan in this case is a total function that maps a state
into an action. For each planning problem at a state s , the
planner runs a finite number of Monte-Carlo simulations
and estimates the rewards for the applicable actions of s .
The applicable action of s which gains the highest

estimated reward (from the simulations) is selected for
execution. In this work, we study the UCT and RRT
planners to tune the reward function.

UCT Planner

We made the following modifications to Kocsis and
Szepesvári’s UCT work for its application in RC-RTS for
path planning.
1. The evaluation function, in our case, is the inverse of

the Euclidean distance between the leaf node and a
goal state (unlike the random evaluation function of
UCT).

2. To simulate an outcome of an action a at state s and
measure the reward for this transition during the look-
ahead search, we use the function SimulateAction
given in figure 2. A set of possible successor states Ss
is populated using the function ChildStates (line 1 of
figure 2). This function returns a list of successor
states of the current state s which are reachable from
s with the application of action a such that each
successor state sSs ∈' has 0)',,(>sasTa .

Function SimulateAction(State s, Action a)
1: Vector<State> Ss=ChildStates(s, a)

2: 's =SelectState(Ss)

3: reward=Metric('s , Ss)

4: return ['s , reward]

End Function

Figure 2: Action simulation

A transition probability)'s,a,s(Ta is always zero if 's is
occupied by a static obstacle. The function SelectState
(line 2) selects a state 's from sS randomly as an outcome
of action a at state s. The function Metric (line 3) is applied
on 's to measure the reward of the state-action pair
(i.e.)(as ×). In our case, the reward is measured using
equation (2).

 (2)

),'(Gsd is the Euclidean distance between 's and G . The
size of sS is used to estimate the collision with the static
obstacles. A small size of sS of action a in the look-ahead
tree means the application of this action may cause a
collision in future. Therefore, the reward is kept directly
proportional to the size of sS . The relationship between
the distance measure and the reward is set in an inversely
proportional manner. This is because the transition of a
path planning character from the current state to the next
state (due to an action a) should reduce the distance of the
character from the goal location.

RRT Planner

We apply the RRT planner as a rollout Monte-Carlo
planner. The RRT planner repeatedly searches for the best
neighbouring states of the current state during the Monte-
Carlo search - as shown in figure 3 (line 4). Once the
Monte-Carlo search is stopped, the neighbouring state with
the highest predicted reward is selected as the best state sb
(line 6). An action a is planned (line 7) to move the
character to the best neighbouring state sb. The planned
action a is executed (line 8) and the new state of the
character is observed (line 1). If the character is at the goal
state then stop path planning (line 2).

RRT planner’s look-ahead search expands in a UCT style
(as shown in figure 4). The look-ahead search grows up to
a fixed depth d. If the tree reaches the leaf nodes at depth d
then it evaluates the leaf node (line 1). The leaf nodes are
evaluated using the inverse of the Euclidean distance
between the leaf node and the goal state. If the look-ahead
tree encounters an invalid state then the tree expansion is
stopped (even before the leaf node is reached) and a zero
value is assigned as an evaluation to the invalid state (line
2). The invalid states are the states which are occupied by
static obstacles.

Function RRT Planner
1: State si=GetCurrentState()

2: If si=GoalState return 0

3: While (stopping_condition)

4: Search(si , 0)

5: End while

6: State sb=FindBestNeighbourState(si)

7: Action a=PlanAction(si, sb)

8: Execute a

9: Go to step 1

End Function

Figure 3: RRT Planner

RRT planner’s tree is expanded using the valid
neighbouring states of a state s. The SelectNeighbourState
function (line 3) calculates a set of valid neighbouring
states (maximum possible neighbouring states are eight).
This function selects a neighbouring state randomly if the
neighbouring states are seen for the first time in the look-
ahead search since the first rollout. Otherwise it returns a
neighbouring state (nstate in figure 4) that has the highest
predicated reward (i.e. Qrrt). The function RandomState
(line 4) selects a random valid state rstate from the state
space S with the condition that rstate is not a part of the
neighbourhood of the current state.

Function Search(state s, depth d)
1: If Leaf(s,d) then return Evaluate(s)

2: if(invalid(s)) then return 0

3: nstate=SelectNeighbourState(s)

4: rstate=RandomState(nstate)

5: Action a=PlanAction(nstate, rstate)

6: [nextstate, reward]=SimulateAction(nstate, a)

7: nstate.Qrrt=reward+Search(nextstate, d+1)

8: return nstate.Qrrt

End Function

Figure 4: RRT Search

The function PlanAction (line 5) is in fact a local planning

method (LPM) which uses a heuristic search in the

immediate neighbourhood of the current state s to find an

action a (such that)(∈ sAa) to reach the given target. In

our current experiments, we use a real-time heuristic

search called real-time A* (Korf, 1990) as a LPM with no

modification of the heuristics (i.e. without learning). The

pseudo-code of SimulateAction is the same as used in UCT

(given in figure 2).

Related Work

A variation of UCT has been applied in a RTS game by
(Balla and Fern, 2009) for a tactical assault problem. Balla
and Fern used the concept of objective functions to
measure the reward of the state-action pair. For example, a
state-action pair is granted a high reward value if the leaf
node (of the current rollout) reduces the time to attack or
maximizes the player’s health. However, only one
objective (either minimum attack time or maximum health)
can be used in the UCT planner at a time. Balla and Fern
removed the Cp constant from the UCT exploration and
exploitation balancing equation (1) and use the number of
times an action is taken in a state to adjust the exploration
and exploitation trade-off. This is the main variation Balla
and Fern made in the UCT planner. This is also a
difference between our work and that of Balla and Fern.

The other path finding methods which have been
commonly used in computer games are A* (Hart et al.,
1968), Navigational Mesh (Tozour 2002 and Hamm, 2008)
and Waypoints (Rabin, 2000). Since A* searches for a full
path between two locations before executing the plan, it is
not suitable for real-time dynamic gaming environments.
The navigational mesh and waypoints based path finding is
also not suitable for the RTS games because the whole map
is not available to process before the start of the game and
also due to the frequent changes in the topography of the
game map. These frequent changes are made by the
construction of new buildings or when the dynamic
obstacles (e.g. tanks, trucks or ships) cease to move.

RRT has been extensively used in robot motion planning
problems where it is used to identify collision free parts of
the search space through a random sampling approach. The

main benefits of RRT based path planning in computer
games over commonly used path planning approaches (i.e.
A*, navigational mesh and waypoints) are i) RRT can be
used for path planning in high dimensional search spaces
(e.g. 3 degrees of freedom or higher) ii) RRT can handle
uncertainty and iii) RRT can be used to generate waypoints
dynamically in an online planning process. The
disadvantage of RRT path planning is its poor performance
in spaces with narrow passages (Zhang and Manocha,
2008).

Experimental Design

Experiments are performed on a desktop computer with 3.0
GHz computing speed and 1.0 GB RAM. We use three
maps of 50x50 tiles for the experiments. We use simulation
length (number of rollouts) as the stopping condition for
the UCT and RRT planners. We use five different
simulation lengths which are 30, 60, 90, 120 and 200. The
UCT parameter Cp is set to 0.1 and the look-ahead depth is
set to 4 for all experiments. A state in S is represented by
(x, y) coordinates. The actions in the Action set are the
pairs (dx, dy) where dx = {-1, 0, 1} and dy = {-1, 0, 1}. The
action (0, 0) is excluded from the action set because path
planning is always initiated when a character is in a stop
state. An action does not bring a change in the state of a
character if it is in front of a dynamic or static obstacle. A
tank also becomes a static obstacle when it ceases to move.
The unseen dynamic and static obstacles introduce
uncertainty into the planning domain. A map is studied
with three problems, where each problem has different
coordinates (in terms of control centre and mineral cluster)
to the others. In each map, the numbers of dynamic and
static obstacles, and their placement coordinates, are kept
different to other maps.

The performance of UCT and RRT planners is measured
using four evaluation parameters: Score, Time, Planning
cost and Convergence cost. Time is measured in the
number of seconds that a method takes to play a game of
10K frames. The Scoring mechanism has already been
described in section “RC-RTS Game” and it represents the
total number of times the targets are achieved. Planning
cost is the number of states seen during the online planning
episodes. Convergence cost is the number of actions
sampled during the online planning work.

Results

The results presented in this section are the average of the
15 runs for each simulation length and map. These average
values are presented with the standard error of the means.
A comparison of the UCT and RRT planners, with respect
to convergence cost, is given in figure 5.

Figure 5: Convergence cost versus simulation length

UCT performs significantly better than RRT in terms of
convergence cost. This is due to UCT’s selective action
sampling scheme (the balance between exploration and
exploitation). The RRT planner’s scheme of action
selection, at a state, depends on the neighbours of that state
and a random state (part of the state space but not in the
look-ahead tree). Therefore, it explores a large number of
actions for all simulation lengths. The convergence cost in
RRT planner increases exponentially with the increase in
the simulation length.

The planning cost for all five simulation lengths is shown
in figure 6. These results show a huge difference between
the UCT and RRT planners with respect to the length of
the exploration of the state space. UCT looks at
significantly fewer states to find the solution when
compared to the RRT planner. This huge gap is mainly due
to the difference in the schemes of action selection. RRT
planner’s rollout search focuses on finding a new
neighbouring state of a given state in each rollout (i.e.
exploration); therefore, it expands the state space search to
a very large extent while UCT’s lower searching efforts
than RRT are due to its ability to adjust the trade-off
between exploration and exploitation.

Figure 6: Planning cost versus simulation length

Figure 7 gives a graphical view of the performance of both
planners with respect to the mean score. These results
show that RRT performs better than UCT in terms of game
playing intelligence. The better performance of RRT shows

the importance of its random sampling based exploration
capabilities. The common feature between both planners
is a decrease in average score with higher simulation
lengths; i.e. 120 and 200. A visual display of these games
shows that the workers mostly do the searching for the
paths in the areas of the map with no obstacles, even when
these areas are very far from the target location. This is due
to the collision avoidance factor sS . With the large
number of rollouts, the reward function becomes biased
towards sS and ignores the distance heuristics.

The game play performance shown in figure 7 can also be
discussed using the minimum and maximum scores
achieved by both planners in each simulation length. These
scores are shown in figure 8. RRT planner achieved higher
maximum scores than UCT planner with every simulation
length. The best score (the highest maximum score) of
UCT planner in all simulation lengths is 320 which is
approximately 30% smaller than the best for the RRT
planner. There is no major change in the RRT planner’s
minimum score with respect to the change in simulation
length. The UCT planner’s minimum depends on the
simulation length and it has higher minimum scores with
higher simulation lengths than that of smaller simulation
lengths.

Figure 7: Mean score versus simulation length

Figure 8: Min and max scores versus simulation length

Time durations spent by both planners to play games with
different simulation lengths are given in figure 9. The UCT
planner plans paths significantly quicker than the RRT

100

120

140

160

180

200

220

240

30 60 90 120 200

Simulation Length

S
c

o
r

e

UCT Planner

RRT Planner

0

50

100

150

200

250

300

350

400

450

500

30 60 90 120 200

Simulation Length

 S
c
o

re UCT Min

UCT Max

RRT Min

RRT Max

0

500

1000

1500

2000

2500

30 60 90 120 200

Simulation Length

P
la

n
n

in
g

 C
o

st

UCT Planner

RRT Planner

0

200000

400000

600000

800000

1000000

1200000

30 60 90 120 200

Simulation Length

C
o

n
v

e
rg

e
n

c
e
 C

o
st

UCT Planner

RRT Planner

planner with a simulation length 60; otherwise there is no
significant difference between the planners with respect to
the time usage. However, the time usage profile falls at the
simulations lengths 120 and 200. This is a result of the
workers’ movements in the obstacle free areas due to the
reward function’s convergence into the space of high sS .
In the obstacle-free area, the workers do not demand
replanning frequently and as such saves planning time.

Figure 9: Time versus simulation length

Discussion

The performance of two Monte-Carlo planners, UCT and
RRT, is evaluated in a RTS game for solving the path
finding problem. Both planners are run within a RTS game
with a fixed number of game ticks. The results show that
UCT finds solutions with less search effort than the RRT
planner. The RRT planner performs better than UCT in
terms of game play when run with a specific simulation
length. The results also provide a potentially useful insight
into the application of Monte-Carlo planning in a RTS
game for solving the path planning problem.

As this is a preliminary work, there are several promising
directions which are possible for future work. One of them
is the modification of the reward function to adjust the
parameters: distance to goal and collision estimation. We
plan to use a weighted scheme to avoid the possible biasing
in the reward function towards one parameter when the
rollouts are increased. We also aim to modify the reward
function by adding an estimation of the collision with
dynamic obstacles.

The UCT parameter Cp also needs more investigation. In
the current set of experiments, we arbitrarily selected a
small value of this parameter. We plan to study the impact
of Cp on the performance of UCT if its value is increased
from a small amount to a larger amount (i.e., Cp = 1). We
also aim to investigate the possible relationship between Cp
and the domain.

The RRT planner will be extended to generate and
maintain an explicit tree of collision free nodes. This tree
can be used as a set of way points. The random sampling
scheme of RRT planner can be modified to generate

random samples according to the goal locations. This can
reduce the searching efforts of the planner. We also aim to
extend path planning in RC-RTS for the tanks. We plan to
modify the definition of the game to include the enemy
units. The higher values of the standard errors of the means
in the results of both planners also suggest running large
numbers of test games for each parameter (i.e.
considerably larger than 15).

Since the game world is represented as the 2D grid, it is
also interesting to apply the graph search techniques in
RC-RTS for the path planning. These techniques include
the variations of A* (which are suitable for the real-time
systems) and Bellman equation based asynchronous
dynamic programming (e.g. Barto et al., 1991).

Acknowledgements

This research is in part supported by the University of
Huddersfield, School of Computing and Engineering. We
are thankful to the ORTS development team for providing
a free tool for researching the RTS games. We borrow
some pieces of code given in ORTS example projects.
These include an event handler from “SampleAI” project,
ridge creation from “Game-1” and the game map
representation scheme from “Simple Pathfinding” project.

References

Balla, R-K., and Fern, A. 2009. UCT for Tactical Assault
Planning in Real-Time Strategy Games. In Proceedings of

the 21
st
 International Joint Conference on Artificial

Intelligence, 40-45.

Barto, A.G., Bradtke, S.J., and Singh, S.P. 1991. Real-time
Learning and control using Asynchronous Dynamic
Programming. Technical Report 91-57, Computer Science
Department, University of Massachusetts.

Bjarnason, R., Fern, A., and Tadepalli, P. 2009. Lower
Bounding Klondike Solitaire with Monte-Carlo Planning.
In proceedings of the ICAPS-2009, 26-33.

Bulitko, V., and Lee, G. 2006. Learning in Real-Time
Search: a Unifying Framework. Journal of Artificial
Intelligence Research (JAIR), 25(1): 119-157.

Buro, M. 2002. ORTS: A Hack-free RTS Game
Environment. In proceedings of the International

Computers and Games Conference, 280-291.

Chung, M., Buro, M., and Shaeffer, J. 2005. Monte-Carlo
Planning in RTS games. In proceedings of the
Computational Intelligence and Games 2005, UK.

Hamm, D. 2008. Navigational Mesh Generation: An
empirical Approach. In S. Rabin (Ed.), AI Game

1260

1280

1300

1320

1340

1360

1380

1400

30 60 90 120 200

Simulation Length

T
im

e
 (

se
c

)

UCT Planner

RRT Planner

Programming Wisdom 4, Hingham, MA: Charles River
Media Publisher, 113-114.

Hart, P.E., Nilsson, N.J., and Raphael, B. 1968. A Formal
Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions of Systems Science and
Cybernetics, 4(2): 100-107.

Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo Planning. In proceedings of 15th European

Conference on Machine Learning, 282-293.

Korf, R. 1990. Real-Time Heuristic Search. Artificial
Intelligence, 42(2-3): 189-211.

Kuffner, J.J. and LaValle, S.M. 2000. RRT-Connect: An
Efficient Approach to Single-Query Path Planning. In
proceedings of IEEE International Conference on Robotics
and Automation (ICRA 2000), 995-1001.

Lee, C-S., Wang, M-H., Chaslot, G., Hoock, J-B., Rimmel,
A., Teytaud, O., Tsai, S-R., Hsu, S-C., and Hong, T-P.
2009. The Computational Intelligence of MoGo Revealed
in Taiwan’s Computer Go Tournaments. IEEE
Transactions on Computational Intelligence and AI in

Games, 1(1): 73-89.

LaValle, S.M. 2006. Planning Algorithms. New York:
Cambridge University Press.

Naveed, M., Kitchin, D., and Crampton, A. 2010. A
Hierarchical Task Network Planner for Pathfinding in
Real-Time Strategy Games. In Proceedings of the Third
International Symposium on AI & Games, Daniela M.

Romano and David C. Moffat (Eds.), AISB 2010, 1-7.

Péret, L., and Garcia, F. 2004 . On-line search for solving
Markov Decision Processes via heuristic sampling. In
proceedings of the 16

th
 European Conference on Artificial

Intelligence, 530-534.

Rabin, S. 2000. A* speed optimizations. In M. Deloura
(Ed.), Game Programming Gems, Hingham, MA: Charles
River Media Publisher.

Tozour, P. 2002. Building a near-optimal navigational
mesh. In S. Rabin (Ed.), AI Game Programming Wisdom,
Hingham, MA: Charles River Media Publisher, 171-185.

Vanderbei, R. 1996. Sailing Strategies: An Application
involving stochastics, Optimization, and Statistics (SOS).
http://orfe.princeton.edu/~rvdb/sail/sail.html,
AccessDate:13 Sept 2010.

Zhang, L., and Manocha, D. 2008. An Efficient Retraction-
based RRT Planner. In proceedings of the IEEE
International Conference on Robotics and Automation

(ICRA 2008), 3743 - 3750.

