
University of Huddersfield Repository

Richardson, N.E., McCluskey, T.L. and West, Margaret M.

Towards inducing HTN domain models from examples

Original Citation

Richardson, N.E., McCluskey, T.L. and West, Margaret M. (2006) Towards inducing HTN domain
models from examples. In: 25th Annual Workshop of the UK Planning and Scheduling Special
Interest Group (PlanSIG), 14th-15th December, 2006, Nottingham.

This version is available at http://eprints.hud.ac.uk/id/eprint/921/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Towards inducing HTN domain models from examples (short paper)

N. E. Richardson, T. L. McCluskey, M. M. West
Schoolof ComputingandEngineering

Departmentof Informatics
TheUniversityof Huddersfield,
Huddersfield,HD1 3DH, UK

n.e.richardson@hud.ac.uk, t.l.mccluskey@hud.ac.uk,m.m.west@hud.ac.uk

Abstract

Domainmodellingfor AI Planningcanbeacomplex process
especiallyif thereis a large numberof objectsor actionsor
both to be modelled. This task can be facilitatedby tools
which induceoperatorsor methodsfrom examples.Further,
largeandcomplex domainsaremoreeasilyconstructedif do-
mainlanguagesareusedwhichallow for hierarchicaldecom-
positionof domaincomponents.Examplesof suchadecom-
positionareobjectclasshierarchiesandmethodhierarchies.
This paperdescribesongoingwork which aims to produce
algorithmswhich learneffectivehierarchicaldecompositions
from examples.

Introduction
Domainmodellingis a complex, errorproneprocess,espe-
cially whenthemodelis complex. Capturingdynamicsand
behaviour usingoperatorstructures(or compositionsof op-
eratorscalledmethods) liesat theheartof constructingplan-
ning domains. Oneway to facilitate the processis to use
tools which induceoperatorsor methodsusing task solu-
tions as training examples. In our previous work we have
shown how ‘flat’ domain operatorscan be inducedfrom
examples. Operatorscanbe inducedusingopmaker (Mc-
Cluskey, Richardson,& Simpson2002)whichhasbeenem-
beddedinteractively in GIPO (Simpsonetal. 2001),(Simp-
son2005).GIPOaidsdomainconstruction,offeringeditors,
validationtools,a graphicallife-historyeditorandplanning
tools. Output from GIPO is the completedand validated
domainbeingmodelledin a variantof GIPO’s internallan-
guageOCL (Liu & McCluskey 2000)or PDDL.

Largeandcomplex domainsaremoreeasilyconstructed
if domainlanguagesareusedwhich allow for hierarchical
decompositionof domaincomponents.This makes for a
richer languagewhich morecloselycapturestherealworld
situations.Methodscomposedof hierarchicaltasknetworks
(HTN) make bettersenseof theseworldsbut are,however,
difficult to construct. We areworking on an extensionof
the inductionprocesswherebyoperatorsarecombinedinto
tasknetworks. To illustratethetechniqueswe areusingwe
have createda hierarchicalversionof thefamiliar briefcase
domain.Below webriefly describethiswork towardscreat-
ing procedureswhich input trainingsequencesanda partial
modelcontainingobjectandclassinformation,andoutputs
anHTN domainmodel.

Hierarchical Domains
To illustrate our methodwe have createda versionof the
familiar briecaseworld containinga simplestructuralhier-
archyof object”sorts” shown in figure1. Thetreeshowsthe
hierarchicalsortstructurewith predicatesattachedatappro-
priatelevels.For exampleinheritancein thesorttreemeans
thatthestateat carrierappliesnotonly to carrierbut to any
othersortbelow it on thetree. Theconversedoesnot work
so that goes in appliesto box, lunch box andpencil box
only, andnot to carrieror bag.

In theOCL languageplanningdomainsmaybehierarchi-
cal in two ways. The languagestructuresthe objectsto be
membersof certaintypescalled‘sorts’. For examplein the
hierarchicalbriefcasedomain(HBC)
sorts(carrier,[bag,box]).
sorts(bag,[briefcase,suitcase]).
objects(briefcase,[bc1]).
objects(suitcase,[sc1]).

describeshow bag (and box) are of sort ‘carrier’, whilst
briefcaseis of sort ‘bag’ and ‘bc1’ is a specificobject of
sort briefcase.The secondexampleof the hierarchicalna-
ture of domainsinvolves the methods. Methodsare con-
structedbecausethesequenceof actionsthey performneed
to bepackagedtogetherfor efficiency and/oreffectiveness,
andhencethey encapsulatedomainheuristics.They canbe
thoughtof as ‘mini-plans’ wherea plan is a sequenceof
actionsto achieve thestatechangesfrom a specifiedinitial
stateto somepredeterminedgoal state.Methodsarestruc-
turedinto hierarchiessothatsomemethodsdecomposeinto
othersor decomposeinto bothothermethodsandprimitives
in order to completetheir task. This structurein complex
domainscanbequiteextensive andit canbedifficult to see
theinterlacingof tasks.

Work in Progress
Usingpartialdomainmodelswehave beenableto replicate
the GIPO-constructedoperatorsandmethodsby induction
asfollows. For eachmethodin the GIPO-constructeddo-
mainwehavecompiledafile of examplematerialincluding
thepartialdomain(containinganobjectclasshierarchy)but
excludingall theoperatorsandmethods.For eachnotional
taskthefiles eachcontaina solutionin theform of a named
operatorsequence,initial statesfor theobjectsinvolvedand
numberedexamplematerial indicating the statesafter the

[at_carrier] carrier thing [at_thing]

lunch_box pencil_box briefcase suitcase

[goes_in]

[box_outside]

[box_in_bag]

box bag

[safe_in]

[fits_in]

[in_box]

[in_bag]

 place

(sorts)

Figure1: TheSort-TreeShowing theLevelsatwhichPredicatesApply

applicationof eachoperator. We canthink of thisasusinga
linear plan to inducetheoperatorsandprovide thedecom-
positionfor themethod.At this stagewe arechoosingma-
terial for theexamplefiles carefullyso thatmethodsdo not
overlaptheir tasksbut with theaimof building methodhier-
archies.opmaker, describedin greaterdetailin (McCluskey,
Richardson,& Simpson2002), inducesoperatorheadings
from thoselisted in the operatorsequenceandforms state
transitions. The left hand side of any inducedtransition
comesfrom either the list of initial statesin the example
file or from the alteredstateof a previously inducedoper-
ator. The right handsidesof the inducedtransitionscome
from thenumberedexampleinputs. (Thesecanbenull and
inducea prevail transition.)

The induction algorithm outputs, for each example
file, a set of instantiatedoperatorsand an HTN method
induced from the sequence. In each case only those
operatorsrequired for the methodswe were replicating
wereinducedfrom eachfile. An exampleinducedoperator
put box in bagis asfollows.

operator(put_box_in_bag(Bag,Place,Box),
%prevail
[se(bag,Bag,[at_carrier(Bag,Place)])],
%necessary
[sc(box,Box,[box_outside(Box),
at_carrier(Box,Place)] =>
[box_in_bag(Box,Bag),
at_carrier(Box,Place),
goes_in(Box,Bag)])],
%conditional
[sc(thing,Thing,[in_box(Thing,Box),
at_thing(Thing,Place)] =>
[in_box(Thing,Box),
at_thing(Thing,Place),
safe_in(Thing,Box)])]).

Heretheoperatorheaderliststhesortsof objectsinvolved

in the action and the prevail transitionstatesthat the bag
remainsat the sameplace. The necessarytransitionstates
that the box changesstatefrom beingoutsidethe bagat a
placeto beinginsidethebagat thesameplace.Finally the
conditionaltransitionstatesthatif a thing is in thebox then
it alsoundergoesa statechange- in thiscaseit is still in the
boxbut thebox is now in thebag.

A simple method operator induced is shown below.
The task network is composedof two inducedoperators
put in boxandput box in bag.

method(pack_lunch(Sandwiches,Place,
Lunch_box,Bag),
% pre-condition
[],
% Index Transitions
[sc(thing,Sandwiches,
[outside(Sandwiches),
at_thing(Sandwiches,Place)]=>
[in_box(Sandwiches,Lunch_box),
at_thing(Sandwiches,Place)]),

sc(lunch_box,Lunch_box,
[box_outside(Lunch_box),
at_carrier(Lunch_box,Place)]=>
[box_in_bag(Lunch_box,Bag),
at_carrier(Lunch_box,Place)])],

% Static
[safe_in(Thing,Lunch_box),
goes_in(Lunch_box,Bag)],
% Temporal Constraints
[before(1,2)],
% Decomposition
[put_in_box(Box,Place,Thing),
put_box_in_bag(Bag,Place,Box)]).

This formatallows for any preconditionsto belistedand
the main transitionsfor the lunch box andsandwichesare
listed.Thedecompositionnamesthetwo operatorsof which
thismethodis composedandthetemporalconstraintsname

theorderin which they mustbeapplied.
The

�
new operatorsandmethodshave beencomparedto

the handconstructedset (usingGIPO). Our initial results
show that the inducedsetsare accurate:when usedwith
GIPO’s plannerandsteppertoolswe wereableto complete
all thetaskspreviouslydeclaredfor thedomain.Preliminary
tests(with GIPO’splannerHyHTN) show thatplansformed
usingjust inducedoperatorsrunfasterthanthoseformedus-
ing bothinducedmethodsandoperatorsbut thismaybebe-
causeof thesimplicity of thedomainsused.Furthertestsus-
ing morecomplex domainssuchastheTyre World indicate
that asthe tasksbecomemorecomplex, inducingmethods
aswell asoperatorsimprovesplanningefficiency.

We hopeto be able to demonstratethat planningis en-
hancedby theuseof inducedmethodhierarchiesin our fu-
turework. We aim to show thatasmethodsarelearnedand
new methodsareinducedthatutilise them,wecanbuild in-
ducedmethodhierarchiesfor morecomplex realworld situ-
ations.

Related Work
In (Ilghami, Nau, & Munoz-Avila 2006) the hierarchical
domainlearner(HDL) begins with an emptysetof known
methods.By examiningplan tracesandforming theseinto
methoddecompositionsHDL incrementallyaddsmethods
on the basisthat a new methodis createdfrom the plan
traceif its decompositionis different from thoseof other
methodspreviously added.Inputsto HDL includea setof
primitive operatorsand the plan traces. This differs from
our work which inducesbothoperatorsanda methodfrom
the examplematerial,wherethe methoddecompositionis
theorderedsetof primitivesinduced.

In the work of (Nejati, Langley, & Konik 2006)hierar-
chical tasknetworksarelearnedby analysingexperttraces.
They startfrom having a setof operatorsanda worked-out
problem solution which includesa specifiedsequenceof
operatorsand thus differs from our systemin having an
originaloperatorset.

Theargumentfor morecomplex, structuredoperatorsto
be usedto model the difficulties facedwhenin real world
situationsis well put by Levine and DeJong(Levine &
DeJong2006). Their solution to the problem is similar
to ours and they introduce a system of automatically
constructingplanningoperators.Thedifferenceis that they
shieldtheplannerfrom all but thenecessaryelementswhich
arevisible to theplanner.

In (Garland,Ryall, & Rich2001)GarlandRyall andRich
show, in their Collagensystem,that learningtask models
can be achieved by training examplesand supportfrom a
domainexpert. Their work is similar to our approachin the
following ways:

� their ‘taskmodels’aresimilar to ourHTN methods
� they show a completerecipeto achievesometask
� they show orderingsof thestepsto achievethetask

� they aredevelopinga graphicaluserinterfaceto aid con-
struction

� the orderingsof the stepscontain primitive and non-
primitivestages

� they list constraintsthatapplyto thevarioussteps
� user/expertguidanceis requiredfor thedetail.

A morerecentsystemthatlearnsoperatorsfrom examples
is ARMS (Wu, Yang, & Jiang2005). This systemlearns
operatorspecificationswithouttheneedfor userintervention
or apartialdomainspecification.However, it requiresmany
trainingexamplescontainingvalid solutionsequences,and
presentlyit is only capableof inducing”flat” operators.

References
Garland;Ryall; andRich. 2001.Learninghierarchicaltask
modelsby definingandrefiningexamples.In Proceedings
of theFirst InternationalConferenceon Knowledge Cap-
ture.
Ilghami, O.; Nau, D. S.; and Munoz-Avila, H. 2006.
Learningto do htn planning. In Proceedingsof the Six-
teenthInternational Conferenceon AutomatedPlanning
andScheduling, 390– 393.
Levine, G., andDeJong,G. 2006. Explanation-basedac-
quisitionof planningoperators.In Proceedingsof theSix-
teenthInternational Conferenceon AutomatedPlanning
andScheduling, 152– 161.
Liu, D., and McCluskey, T. L. 2000. The OCL Lan-
guageManual,Version1.2. Technicalreport,Department
of Computingand MathematicalSciences,University of
Huddersfield.
McCluskey, T. L.; Richardson,N. E.; andSimpson,R. M.
2002. An Interactive Methodfor InducingOperatorDe-
scriptions.In TheSixthInternationalConferenceonArtifi-
cial IntelligencePlanningSystems.
Nejati,N.; Langley, P.; andKonik, T. 2006.Learninghier-
archicaltasknetworksby observation. In ICML ’06: Pro-
ceedingsof the23rd internationalconferenceon Machine
learning, 665–672.New York, NY, USA: ACM Press.
Simpson,R. M.; McCluskey, T. L.; Zhao,W.; Aylett, R. S.;
andDoniat,C. 2001.GIPO:An IntegratedGraphicalTool
to supportKnowledgeEngineeringin AI Planning.In Pro-
ceedingsof the6thEuropeanConferenceonPlanning.
Simpson,R. M. 2005. Gipo graphicalinterfacefor plan-
ning with objects. In Proceedingsof the International
Conferencefor Knowledge Engineeringin Planning and
Scheduling.
Wu, K.; Yang, Q.; and Jiang,Y. 2005. Arms: Action-
relationmodellingsystemfor learningacquisitionmodels.
In Proceedingsof the First InternationalCompetitionon
KnowledgeEngineeringfor AI Planning.

