
Improved Iso-surface Extraction for Hybrid
Rendering Application

Qian Xu, Marcus Holder, Jing Wang, Zhijie Xu
CGIV Research Group, University of Huddersfield

Huddersfield, West Yorkshire, United Kingdom
q.xu@hud.ac.uk, z.xu@hud.ac.uk

Abstract - Over the last 2 decades, constructing expert scene
graphs to integrate volume rendering with other modeling
techniques has attracted increasing attentions. This paper
represents design of a flexible conversion between volume
and wireframe models. It starts with classifying the volume
data sets for maintaining the accuracy of this conversion.
Two computer graphics algorithms, which work as
indispensable components of conversion, will be explained
subsequently. Based on this design, low interactive rate,
complicated data processing and lots of artifacts will be
abated. It is anticipated that this conversion will enhance
the advantages of implementing volume visualization on
consumer-grade platform.

Keywords-scene graph; volume model; wireframe model;
interaction; hybrid rendering

I. INTRODUCTION

Stemming from traditional computer graphics
researches, volume rendering and visualization have been
growing into an important research field since the 1980s.
Compared with conventional 3D modelling and
visualization techniques, Volume Rendering (VR) enables
a visual representation of data sets such as Computed
Tomography (CT) and Magnetic Resonance Imaging
(MRI) scans. VR allows for direct access to the internal
structure of a 3D object instead of only showing the
surface features.

 In existing three dimensional modeling programs,
most CAD tools such as Auto CAD and ProE are based on
wireframe (or surface) models, which provide the visual
representations of 3D objects using lines and vertices. The
applications of surface modeling techniques can extend
from rapid prototyping in virtual manufacturing and
medical imaging, to highly complex astronomical and
atmospheric simulations. With the ever increasing
capacity of modern graphics hardware and the maturing
methods for accelerating volume-based operations, real-
time human interactions with complex combinations of
different models on consumer grade PC hardware has
becoming a research hot-spot in the last decade.

As the demand increases for high-resolution results in
visualization applications like medical imaging and design
verifications, there are inevitable needs for obtaining more
original information and improving the speed of online
visualization and manipulation process in complex 3D
scenes. This trend has resulted in a rapid growth in the
size of data sets to be processed by rendering systems in a
more tightly controlled time frame.

In the existing VR-based applications, the lack of
robust innovations in volume rendering and visualization
makes users suffer from low interactive rate, complicated
data processing and visual artifacts. In order to solve
these problems, researchers construct new combinations to
cover the disadvantages of volume rendering and
visualization. For example, Natalya and Jeremy roughly
integrated Direct Volume Rendering (DVR) with Indirect
Volume Rendering (IDVR) to achieve the special medical
simulation [1]. The IDVR-based parts were pre-calculated
and stored. For the opaque surface of IDVR, they chose
volume raycasting (a type of DVR) to represent the
context and made IDVR parts overlap the same part
(DVR-based) directly. The use of storage processes and
the rough overlap are the two disadvantages of their
design. These problems will decrease the interactive rate
and bring artifacts.

The project started from an investigation of volume
and surface modeling mechanisms on PC platforms: this
work has already been carried out [2]. In this paper, the
main investigations are the construction of volume
segmentation, implementing a type of conversion of
voxels into vertices.

The paper is organized in the following order: Section
II provides a brief review of the research into various
applications which were based on voxels, vertices or
hybrid rendering modes. Section III presents the
application of a 2D clustering algorithm in a 3D scene.
The implementation of ‘Marching Cubes’ (MC), which is
a type of computer graphics algorithm, is introduced in
Section IV. Section V focuses on the results of various
functional experiments carried out. Section VI concludes
the research with evaluation of experiments and plans for
the future work.

II. LITERATURE REVIEW

A. Various Manipulations of Voxels and Vertices

In every polygon-based application, each object
consists of several primitives for representing freeform
figures and surfaces. In order to accomplish these
complicated constructions of primitives, the Constructive
Solid Geometry (CSG) method was invented to
implement these constructions by performing basic
Boolean operations [3, 4]. The development of CSG
models has been investigated by many researchers and
most developed methods provide the direct display of
CSG objects.

Proceedings of the 16th International Conference on
Automation & Computing, University of Birmingham,
Birmingham, UK, 11 September 2010

The CSG method can also be extended to process
volumetric units as CSG primitives in the application of
volume visualization and rendering. These models are
named volumetric CSG (or VCSG) models, and are
potentially useful for managing the combinations of
multiple volumetric objects, or maintaining the accuracy
of the products of vertices-based operations [5,6]. In
addition, voxelization and volume rendering techniques
are also used for CSG or VCSG models [7]. These
techniques utilize the beam-oriented voxelization
algorithm, the volume sampling approach, the point
sampling algorithm, the octree-based rendering algorithm,
or the distance volume algorithm [8,9]. These algorithms
generally reconstruct a volume for the entire CSG or
VCSG model in several forms, which will be rendered by
a volume rendering algorithm. Since these volume
reconstruction algorithms for CSG or VCSG models
suffer from low interactive rates, the VCSG technique has
not yet provided effective support to interactive
volumetric modeling. In my research, a similar style of
VCSG models will be created with solving these problems.

B. Iso-surface Extraction

VR renders the 3D objects without an intermediate
boundary representation. In the related researches,
Westerman and Ertl implemented a method for texture-
based rendering of volume data sets defined on a uniform
regular grid [10]. They also proposed a generalized
method for rendering volumes defined over tetrahedral
grids [11].

While these techniques are limited to rendering
applications, an alternate class of methods extracts an
intermediate iso-surface (vertices-based) that can be used
for further manipulations and processing, such as collision
detection, shadow casting, and animation [1]. The most
commonly used algorithms for iso-surface extraction are
derivatives of the Marching Cubes algorithm [12, 13].
Most of these algorithms construct the iso-surface
following the ‘15 unique cube configurations’ [3].

Iso-surface extraction is a compute-intensive method
[1, 14]. For the increasing raw data size, it is hard to
maintain the interactive rate by implementing iso-surface
extraction on CPU platform. As a result, GPU-based iso-
surface extraction has been a research hotspot for the last
several years. The aim of these investigations is to
generate highly efficient visualization and rendering at
high frame rates. In the former generation of GPUs, the
lack of programmable primitives processing and the
inability to output geometric quantities for later operations
was a direct cause of low frame rates and the poor quality
of visualizations. As a result, previous GPUs lacked the
ability to generate a polygonal surface directly on the
GPU and use this for subsequent computation such as
collision detection or optimizing volumetric surrounding
organs. Most of the extraction work was redundantly
performed regardless of whether the iso-value was
dynamically changing or not, resulting in wasted
computation.

Figure 1. 15 unique cube configurations [3].

In order to improve the current problems, a partial
conversion between voxels and vertices is proposed to
increase the low interactive rate, minimizing the workload
of data processing in visualization or rendering loops in
the application. The aims of this design are:

 Applying clustering method for analyzing the
framework of volume data sets;

 Carrying out the partial iso-surface extraction and
converting the chosen clustered voxels into
vertices utilizing MC algorithm;

 Managing the groups of vertices for future
voxelization.

III. CLUSTERING-BASED VOLUME SEGMENTATION

Abstracting structures from measured volume data, i.e.
to separate the volumes into its component objects (or
regions), is one of the most essential goals in VR [15, 16].
When dealing with medical data, it can visually divide
and selectively extract the objects of interest in the
volume data sets. Explicit object membership information
will be captured by implementing volume segmentation.
Besides separating volumes, the processes of
segmentation assign one or several segmentation masks
to corresponding objects. By utilizing these masks, each
voxel can be determined and rendered according to
related optical properties.

The volume segmentation methods applied in this
project so far are all based on extending 2D
segmentation/clustering techniques into the 3D domain.
The clustering approaches are applied because of their
efficiency and robustness [17, 18]. In addition, the
Transfer Function (TF) is used to convert the meaningless
information into visible output for rendering the outcome
of segmentation. In this paper, all the results of volume
segmentation have been rendered by TF.

A. Applying Clustering Methods into 3D Applications

The clustering methods intend to sort the separated
elements according to predefined spectrums. In the case
of volume segmentation, voxels own similar signatures to
pixels which are the basic element of the image. As a
result, the volume segmentation can benefit from 2D-
based methods such as the K-Means (KM) clustering
approach without changes on the foundational
mathematic model. The main difference from pixel-based
operations is determining the extra dimension in the 3D
feature space. Image processing methods usually refer to

2D space coordinates and the colour value of pixels.
Consequently, the feature space generated is a 5D space
(x, y, r, g, b), in which (x, y) demotes the space
coordinates and (r, g, b) the colour of the pixel. These
five elements represent a single point xi in the feature
space. In the case of volume segmentation, the feature
will become a 6D space defined as (x, y, z, r, g, b), where
(x, y, z) demotes the space coordinates and (r, g, b) the
colour of the voxels. The pixel will be replaced by the
voxel as the discrete element. The identical clustering
methods can then follow suit.

As shown in Fig. 2, the pipeline of clustering method-
based volume segmentation includes three processes:
Data Input, Data Clustering and Judgment. The
introduction of clustering mainly consists of the related
explanations of these three processes. However, the
clustering methods only take charge of clustering the
volume data sets. As a result of this, the outcome of
segmentation is colourless. In order to exhibit the effects
of the clustering method, the dedicated TF was designed
to variegate the results.

Figure 2. The framework of data clustering process in KM clustering

method.

B. KM Clustering-based Volume Segmentation

a) Data Input: Besides the volume data set (x1, x2,
x3,…xn), the predefined parameters contains “K” which
represents the number of clustered data sets (K<n) and
the fixed value Vk (used in the Judgment Process).

b) Data Clustering: This process is an iteration
which contains three sub-processes: Clustering,
Calculation and Comparison (as shown in Fig. 3). In the
data sampling process, the values of all volume data will
be obtained and form a threshold. The volume data set
will be firstly clustered by dividing the whole threshold
into K equal parts. The second process is to calculate the
respective mean value for each part, which can be
expressed as:

    kinjx
s

m
jj sx

j
i

i ,1,,1,
1

 


 (1)

where mi denotes the mean value and Si represents the
clustered data set. According to the calculated mean
values (mi), all elements will be clustered again, i.e. the
constructions of classification will be rebuilt. In the
comparison process, the new clustered data sets strictly
contain the elements which own the closest value to the
associated mean values (mi). This clustering work can be
expressed as:

   klilmxmxxs ljijji ,1,,:  (2)

Figure 3. The framework of data clustering process in KM clustering

method.

c) Judgement: The Judgement process acts as an
indicator for managing the iteration in each clustering
method. It is implemented to determine the iteration by
comparing Vk with the real-time second derivative of
unfixed mean values (vm) [19]. For the condition (Vk <
vm), the iteration will be carried on. On the contrary, the
latest clustered data sets is the outcome of the KM
clustering-based segmentation.

IV. IMPLEMENTATION OF MARCHING CUBES

A. Marching Cubes

Marching Cubes traverses all cubes in one grid (one
voxel or several voxels) and checks whether the
corresponding eight vertices are equal in sign [20, 21]. If
not, the iso-surface intersects the voxel (or voxels) and
the algorithm generates a patch which consists of four
triangles. The triangle configuration is indexed in a
lookup table, which this time contains 28 = 256 entries (as
shown in Fig.1). It is difficult to make a definite
description of some cases within the 15 configurations
without labelling the eight vertices [3]. As a result,
checking the sign inside the cube (tri-linear interpolation)
is used to avoid scenarios of ambiguous description [22].

“One of the advantages of Marching Cubes is that it is
local: cubes are processed one-by-one based on local
information only (function values at cube corners)” [23].
Therefore, the processes in marching cubes can be
processed parallelized. Implementing marching cubes on
the GPU can provide a faster iso-surface extraction than
CPU-based implementation. The results are shown in
Fig.4

Figure 4. The outcomes of CUDA-based Marching Cubes (Top right is
iso-surface-based skull model, Top left is wireframe-based skull model,

and the others reveal the details of wireframe-based skull model).

B. GPU-based Marching Cubes

In marching cubes, the domain in IR3 over which F is
defined is tessellated into a grid at an arbitrary sampling
density [24]. For each edge e = (x0, x1) in the tessellation,
F (x0) and F (x1) will be evaluated according to the
intermediate value theorem, e.g. if the signs of F (x0) and
F (x1) differ, an iso-surface vertex must intersect e.

The edge lookup tables are typically stored in SIMD-
specific memory for efficient and coherent access by each
shader program instance [25, 26]. On the CPU,
constructing large tables can lead to additional register
pressure. This problem would be solved by reducing the
number of parallel threads simultaneously running on the
GPU. Smaller lookup tables ensure a higher order of
parallelization because the GPUs are able to schedule a
higher number of threads due to a higher number of
available registers [27, 28].

V. PROTOTYPE IMPLEMENTATION

The program devised in this research has been
implemented using OpenGL and CUDA APIs in a VC++
programming environment. The host PC is an Intel Core2
2.40GHz CPU, NVIDIA GeForce GTX260 with 2G RAM.

This paper mainly focuses on the implementation of
volume segmentation and marching cubes. As shown in
Fig. 5, the input of the system is raw volume data sets
without any data preprocessing. The data sets will be
clustered by implementing 3D KM clustering methods.
Then, the clustered data sets are respectively processed in
the iso-surface extraction function module and converted
into groups of vertices. The generated vertices will be
used to form rapid CSG operations with other wireframe
models for special simulations, such as clipping, forging
and bending processes. This design will avoid calculating
and processing the whole data sets for save the processing
time, i.e. increasing the interactive rate.

In Fig. 6, various volume data sets were represented in
IDVR and converted into vertices-based models. Fig. 8
shows the different outcome of KM clustering-based
volume segmentation. By setting the TF, the colorless
results of volume segmentation are colorized with
different K. In Fig. 7, image (A) is similar to image (B)
which demonstrates that the maximum number of
clustered regions is fixed with predefined properties in the
clustering methods.

Figure 5. The framework of hybrid rendering system.

Figure 6. Various results of iso-surface exraction.

Figure 7. The outcomes of clustering-based segmentation (colored by

TF).

Figure 8. Partial iso-surface extractions.

Fig. 8 shows the outcomes of the implemented system.
The opaque and white parts are IDVR-based and represent
the regions which have different intensity or density
values. The semi-transparent parts belong to DVR and
represent the voxels which have the same intensity of
density values.

VI. EVALUATION AND FUTURE WORK

By using clustering method to classify the volume data
sets and implementing the iso-surface extraction, the
polygonization of partial volume data sets and GPU-based
implementations for future complicated operations (CSG
and voxelization) have been accomplished.

However, the manual input of K in the KM clustering
method will have a bad influence on the interactive rate of
real-time operations. The inherent problems in clustering
methods (over/insufficient segmentation) still cause
artifacts in the final output.

These problems will be fixed by modifying the
buffering area (e.g. ignoring some regions which contain a
fixed number of vertices/voxels). After completing this
step; advanced operations on generated vertices will be
carried out. For the capability of rapid prototyping, a
common vertex-based operation will be constructed
between generated vertices and other surface models to
implement fast CSG operations between volume and
surface models. In future work, an improved volume
deformation will also be constructed based on this
conversion between voxels and vertices.

ACKNOWLEDGMENT

I would firstly like to thank my first supervisor Dr
Zhijie Xu for his great supervision and guidance during
this research. I am deeply impressed by his erudition, and
knowledge and attitude to science which inspired me to
keep on going. I would also like to show my grateful
appreciation to Mr. Jing Wang and Mr. Marcus Holder for
their great helps to me.

REFERENCES

[1] N.Tatarchuk, J.Shopf, and C.Decoro, “Advanced Interactive

Medical visualization on the GPU”, Journal. Parallel
Distribub.Comput, Vol.68, pp.1319-1328, 2008.

[2] Q.Xu, and Z. Xu, “A Hybrid Rendering Framework for Real-time
Manipulation of Volume and Surface models ”, Proceedings of the
15th International Conference on Automation & Computing,
pp.161-167,2009.

[3] A.Requicha, “A Representation for Rigid Solids: Theory, Methods
and Systems”, Computing Surveys 1980, vol.12, pp.437-464.

[4] A.Rappoport, S. Spitz, “Interactive Boolean Operations for
Conceptual Design of 3D Solids”, SIGGRAPH ’97, pp.267-278.

[5] S.Fang, and R.Srinivasan, “Volumetric VSG: A Model-based
Volume Visualization Approach”, Proceedings of the Sixth
International Conference in Central Europe on Computer Graphics
and Visualization, 1998, pp.88-95.

[6] N.Shareef, and R.Yagel, “Rapid Previewing via Volume-based
Solid modeling”, Proceedings of the Solid Modeling ‘ 95, pp.281-
292.

[7] S.Wang, and A.Kaufman, “Volume-sampled 3D Modeling”, IEEE
Computer Graphics and Applications, 1994, vol.14, pp.26-32.

[8] D.Breen, “Constructive Cubes: CSG Evaluation for Display using
Discrete 3D scalar Data Sets”, Proceedings of the Eurographics,
1991, pp.127-142.

[9] D.Breen, S.Mauch, and RT.Whitaker, “3D Scan Conversion of
CSG Models into Distance Volumes”, Proceedings of the 1998
IEEE/ACm Symposium on Volume Visualization, 1998, pp.7-17.

[10] R.Westermann, and T.Ertl, “Efficiently Using Graphics Hardware
in Volume Rendering Applications”, SIGGARPH ’98,
Proceedings of the 25th Annual Conference on Computer Graphics
and Interactive Techniques, ACM Press, pp.169-177.

[11] S.Rottger, M.Kraus, and T.Ertl, “Hardware-accelerated Volume
and Iso-surface Rendering based on the Cell-projection”, VIS ’00,
Proceedings or the Conference on Visualization ’00, IEEE
Computer Society Press, pp.109-116.

[12] W.E.Lorensen, and H.E.Cline, “Marching Cubes: A High
Resolution 3D Surface Construction Algorithm”, Computer
Graphics, Proceeding of SIGGARPH 87, 1987, vol.21, pp.163-169.

[13] P.Shirley, and A.Tuchman, “A Polygonal Approximation to Direct
Scalar Volume Rendering”, SIGGARPH Comput.Graph, 1990,
Vol.24, pp.63-70.

[14] V.Pascucci, “Iso-surface Compution Made Simple: Hardware
Acceleration, Adaptive Refinement and Tetrahedral Stripping”,
Proceedings of VisSym, 2004.

[15] T.Ertl, and S.Fery, “Accelerating Raycasting Utilizing Volume
Segmentation of Industrial CT Data”, EG UK Theory and Practice
of Computer Graphics, 2009, pp. 1-9.

[16] D.S.Ebert, C.J.Morris, P.Rheingans, and T.S.Yoo, “Designing
Effective Transfer Functions for Volume Rendering from
Photographic Volumes”, IEEE Transactions on Visualization and
Computer Graphics, 2002, vol. 8, pp. 183-197.

[17] A.Ahmad, and L.Dey., “A k-mean clustering algorithm for mixed
numeric and categorical data”, Data Knowl. Eng., 2007, vol.6, pp.
503-527.

[18] K.L.Wu, and M.S.Yang, “Mean shift-based clustering”. Pattern
Recogn., 2007, vol.40, p. 3035-3052.

[19] S.Ben-David, D.Pal, and H.U.Simon, “Stability of K-means
Clustering”, Proceedings of te 20th Annual Conference on Learing
Theory, 2007, pp.20-34.

[20] K.Engel, H.M., J.M.Kniss, A.E.Lefohn, C.R.Salama, and
D.Weiskopf, “Course Notes 28 II: Real-Time Volume Graphics.
Special Interest Group on Graphics and Interactive Techniques”,
2004.

[21] M.Botsch, and S.-D.S.A., The lecture notes on “Computer
Graphics I" held by Prof. Dr. Leif Kobbelt at RWTH Aachen.
2003.

[22] A.Lopes, and K.Brodlie, “Improving the Robustness and Accuracy
of the Marching Cubes Algorithm for Isosurfacing”, IEEE
Transactions on Visualization and Computer Graphics, 2003, vol.9,
pp.1077-2626.

[23] E.Andres, P.Hehlig, and J.Francon, “Tunnel-free Supercover 3D
Polygons and Polyhedra”, Computer Graphics Forum, 1997.

[24] B.Cabral, N. Cam, and J.Foran, “Accelerated Volume Rendering
and Tomographic Reconstruction Using Texture Mapping
Hardware”, Proceeding of the 1994 IEEE Symposium on Volume
Visualization, 1994, pp.91-98

[25] S.Gibson, “Using Distance Maps for Accurate Surface
Representation in Sampled Volumes”, Proceedings of the 1998
IEEE/ACM Symposium on Volume visualization, pp. 23-30.

[26] D.Banks, and S.Linton, “Counting Cases in Marching
Cubes: Toward a Generic Algorithm for Producing Substitopes”,
Proceedings of the 14th IEEE Visualization 2003, pp.8

[27] Z.L.Wang, J.C.M.Teo, C.K.Chui, S.H.Ong, C.H.Yan, S.C.Wang,
H.K.Wong, and S.H.Teoh, “Computational biomechanical
modelling of the lumbar spine using marching-cubes surface
smoothened finite element voxel meshing”, Computer Methods
and Programs in Biomedicine, 2005, vol.8, pp.25-35.

[28] F.Goetz, T.Junklewitz, and G.Domik, “Real-time Marching Cubes
on the Vertex Shader”, Proceedings of Eurographics, 2005.

[29] F.R.A.Hogood, R.J.Hubbold, and D.A.Duce, “Advances in
computer graphics II”, 1986, pp.0-186.

