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Abstract - Over the last 2 decades, constructing expert scene 
graphs to integrate volume rendering with other modeling 
techniques has attracted increasing attentions. This paper 
represents design of a flexible conversion between volume 
and wireframe models. It starts with classifying the volume 
data sets for maintaining the accuracy of this conversion. 
Two computer graphics algorithms, which work as 
indispensable components of conversion, will be explained 
subsequently. Based on this design, low interactive rate, 
complicated data processing and lots of artifacts will be 
abated.  It is anticipated that this conversion will enhance 
the advantages of implementing volume visualization on 
consumer-grade platform. 
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I.  INTRODUCTION 

Stemming from traditional computer graphics 
researches, volume rendering and visualization have been 
growing into an important research field since the 1980s. 
Compared with conventional 3D modelling and 
visualization techniques, Volume Rendering (VR) enables 
a visual representation of data sets such as Computed 
Tomography (CT) and Magnetic Resonance Imaging 
(MRI) scans. VR allows for direct access to the internal 
structure of a 3D object instead of only showing the 
surface features.  

 In existing three dimensional modeling programs, 
most CAD tools such as Auto CAD and ProE are based on 
wireframe (or surface) models, which provide the visual 
representations of 3D objects using lines and vertices. The 
applications of surface modeling techniques can extend 
from rapid prototyping in virtual manufacturing and 
medical imaging, to highly complex astronomical and 
atmospheric simulations. With the ever increasing 
capacity of modern graphics hardware and the maturing 
methods for accelerating volume-based operations, real-
time human interactions with complex combinations of 
different models on consumer grade PC hardware has 
becoming a research hot-spot in the last decade.  

As the demand increases for high-resolution results in 
visualization applications like medical imaging and design 
verifications, there are inevitable needs for obtaining more 
original information and improving the speed of online 
visualization and manipulation process in complex 3D 
scenes. This trend has resulted in a rapid growth in the 
size of data sets to be processed by rendering systems in a 
more tightly controlled time frame.  

In the existing VR-based applications, the lack of 
robust innovations in volume rendering and visualization 
makes users suffer from low interactive rate, complicated 
data processing and visual artifacts.  In order to solve 
these problems, researchers construct new combinations to 
cover the disadvantages of volume rendering and 
visualization. For example, Natalya and Jeremy roughly 
integrated Direct Volume Rendering (DVR) with Indirect 
Volume Rendering (IDVR) to achieve the special medical 
simulation [1]. The IDVR-based parts were pre-calculated 
and stored. For the opaque surface of IDVR, they chose 
volume raycasting (a type of DVR) to represent the 
context and made IDVR parts overlap the same part 
(DVR-based) directly. The use of storage processes and 
the rough overlap are the two disadvantages of their 
design. These problems will decrease the interactive rate 
and bring artifacts. 

The project started from an investigation of volume 
and surface modeling mechanisms on PC platforms: this 
work has already been carried out [2]. In this paper, the 
main investigations are the construction of volume 
segmentation, implementing a type of conversion of 
voxels into vertices. 

The paper is organized in the following order: Section 
II provides a brief review of the research into various 
applications which were based on voxels, vertices or 
hybrid rendering modes. Section III presents the 
application of a 2D clustering algorithm in a 3D scene. 
The implementation of ‘Marching Cubes’ (MC), which is 
a type of computer graphics algorithm, is introduced in 
Section IV.  Section V focuses on the results of various 
functional experiments carried out. Section VI concludes 
the research with evaluation of experiments and plans for 
the future work. 

II. LITERATURE REVIEW 

A. Various Manipulations of Voxels and Vertices 

In every polygon-based application, each object 
consists of several primitives for representing freeform 
figures and surfaces. In order to accomplish these 
complicated constructions of primitives, the Constructive 
Solid Geometry (CSG) method was invented to 
implement these constructions by performing basic 
Boolean operations [3, 4].  The development of CSG 
models has been investigated by many researchers and 
most developed methods provide the direct display of 
CSG objects.  
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The CSG method can also be extended to process 
volumetric units as CSG primitives in the application of 
volume visualization and rendering. These models are 
named volumetric CSG (or VCSG) models, and are 
potentially useful for managing the combinations of 
multiple volumetric objects, or maintaining the accuracy 
of the products of vertices-based operations [5,6]. In 
addition, voxelization and volume rendering techniques 
are also used for CSG or VCSG models [7]. These 
techniques utilize the beam-oriented voxelization 
algorithm, the volume sampling approach, the point 
sampling algorithm, the octree-based rendering algorithm, 
or the distance volume algorithm [8,9]. These algorithms 
generally reconstruct a volume for the entire CSG or 
VCSG model in several forms, which will be rendered by 
a volume rendering algorithm. Since these volume 
reconstruction algorithms for CSG or VCSG models 
suffer from low interactive rates, the VCSG technique has 
not yet provided effective support to interactive 
volumetric modeling. In my research, a similar style of 
VCSG models will be created with solving these problems.   

B. Iso-surface Extraction 

VR renders the 3D objects without an intermediate 
boundary representation. In the related researches, 
Westerman and Ertl implemented a method for texture-
based rendering of volume data sets defined on a uniform 
regular grid [10]. They also proposed a generalized 
method for rendering volumes defined over tetrahedral 
grids [11]. 

While these techniques are limited to rendering 
applications, an alternate class of methods extracts an 
intermediate iso-surface (vertices-based) that can be used 
for further manipulations and processing, such as collision 
detection, shadow casting, and animation [1]. The most 
commonly used algorithms for iso-surface extraction are 
derivatives of the Marching Cubes algorithm [12, 13]. 
Most of these algorithms construct the iso-surface 
following the ‘15 unique cube configurations’ [3]. 

Iso-surface extraction is a compute-intensive method 
[1, 14]. For the increasing raw data size, it is hard to 
maintain the interactive rate by implementing iso-surface 
extraction on CPU platform. As a result, GPU-based iso-
surface extraction has been a research hotspot for the last 
several years. The aim of these investigations is to 
generate highly efficient visualization and rendering at 
high frame rates. In the former generation of GPUs, the 
lack of programmable primitives processing and the 
inability to output geometric quantities for later operations 
was a direct cause of low frame rates and the poor quality 
of visualizations. As a result, previous GPUs lacked the 
ability to generate a polygonal surface directly on the 
GPU and use this for subsequent computation such as 
collision detection or optimizing volumetric surrounding 
organs. Most of the extraction work was redundantly 
performed regardless of whether the iso-value was 
dynamically changing or not, resulting in wasted 
computation.  

 
Figure 1.  15 unique cube configurations [3].  

In order to improve the current problems, a partial 
conversion between voxels and vertices is proposed to 
increase the low interactive rate, minimizing the workload 
of data processing in visualization or rendering loops in 
the application. The aims of this design are: 

 Applying clustering method for analyzing the 
framework of volume data sets; 

 Carrying out the partial iso-surface extraction and 
converting the chosen clustered voxels into 
vertices utilizing MC algorithm; 

 Managing the groups of vertices for future 
voxelization. 

III. CLUSTERING-BASED VOLUME SEGMENTATION 

Abstracting structures from measured volume data, i.e. 
to separate the volumes into its component objects (or 
regions), is one of the most essential goals in VR [15, 16]. 
When dealing with medical data, it can visually divide 
and selectively extract the objects of interest in the 
volume data sets. Explicit object membership information 
will be captured by implementing volume segmentation. 
Besides separating volumes, the processes of 
segmentation assign one or several segmentation masks 
to corresponding objects.  By utilizing these masks, each 
voxel can be determined and rendered according to 
related optical properties.  

The volume segmentation methods applied in this 
project so far are all based on extending 2D 
segmentation/clustering techniques into the 3D domain. 
The clustering approaches are applied because of their 
efficiency and robustness [17, 18]. In addition, the 
Transfer Function (TF) is used to convert the meaningless 
information into visible output for rendering the outcome 
of segmentation. In this paper, all the results of volume 
segmentation have been rendered by TF. 

A. Applying Clustering Methods into 3D Applications 

The clustering methods intend to sort the separated 
elements according to predefined spectrums. In the case 
of volume segmentation, voxels own similar signatures to 
pixels which are the basic element of the image. As a 
result, the volume segmentation can benefit from 2D-
based methods such as the K-Means (KM) clustering 
approach without changes on the foundational 
mathematic model. The main difference from pixel-based 
operations is determining the extra dimension in the 3D 
feature space. Image processing methods usually refer to 



2D space coordinates and the colour value of pixels. 
Consequently, the feature space generated is a 5D space 
(x, y, r, g, b), in which (x, y) demotes the space 
coordinates and (r, g, b) the colour of the pixel. These 
five elements represent a single point xi in the feature 
space. In the case of volume segmentation, the feature 
will become a 6D space defined as (x, y, z, r, g, b), where 
(x, y, z) demotes the space coordinates and (r, g, b) the 
colour of the voxels. The pixel will be replaced by the 
voxel as the discrete element. The identical clustering 
methods can then follow suit. 

As shown in Fig. 2, the pipeline of clustering method-
based volume segmentation includes three processes: 
Data Input, Data Clustering and Judgment. The 
introduction of clustering mainly consists of the related 
explanations of these three processes. However, the 
clustering methods only take charge of clustering the 
volume data sets. As a result of this, the outcome of 
segmentation is colourless. In order to exhibit the effects 
of the clustering method, the dedicated TF was designed 
to variegate the results. 

 
Figure 2.  The framework of data clustering process in KM clustering 

method.  

B. KM Clustering-based Volume Segmentation 

a) Data Input: Besides the volume data set (x1, x2, 
x3,…xn), the predefined parameters contains “K”  which 
represents the number of clustered data sets (K<n) and 
the fixed value Vk (used in the Judgment Process). 

b) Data Clustering: This process is an iteration 
which contains three sub-processes: Clustering, 
Calculation and Comparison (as shown in Fig. 3). In the 
data sampling process, the values of all volume data will 
be obtained and form a threshold. The volume data set 
will be firstly clustered by dividing the whole threshold 
into K equal parts. The second process is to calculate the 
respective mean value for each part, which can be 
expressed as: 

    kinjx
s

m
jj sx

j
i

i ,1,,1,
1

 


            (1) 

where mi denotes the mean value and Si represents the 
clustered data set. According to the calculated mean 
values (mi), all elements will be clustered again, i.e. the 
constructions of classification will be rebuilt. In the 
comparison process, the new clustered data sets strictly 
contain the elements which own the closest value to the 
associated mean values (mi). This clustering work can be 
expressed as: 
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Figure 3.  The framework of data clustering process in KM clustering 

method.  

c) Judgement: The Judgement process acts as an 
indicator for managing the iteration in each clustering 
method. It is implemented to determine the iteration by 
comparing Vk with the real-time second derivative of 
unfixed mean values (vm) [19]. For the condition (Vk < 
vm), the iteration will be carried on. On the contrary, the 
latest clustered data sets is the outcome of the KM 
clustering-based segmentation. 

IV. IMPLEMENTATION OF MARCHING CUBES 

A. Marching Cubes 

Marching Cubes traverses all cubes in one grid (one 
voxel or several voxels) and checks whether the 
corresponding eight vertices are equal in sign [20, 21]. If 
not, the iso-surface intersects the voxel (or voxels) and 
the algorithm generates a patch which consists of four 
triangles. The triangle configuration is indexed in a 
lookup table, which this time contains 28 = 256 entries (as 
shown in Fig.1). It is difficult to make a definite 
description of some cases within the 15 configurations 
without labelling the eight vertices [3]. As a result, 
checking the sign inside the cube (tri-linear interpolation) 
is used to avoid scenarios of ambiguous description [22].  

“One of the advantages of Marching Cubes is that it is 
local: cubes are processed one-by-one based on local 
information only (function values at cube corners)” [23]. 
Therefore, the processes in marching cubes can be 
processed parallelized. Implementing marching cubes on 
the GPU can provide a faster iso-surface extraction than 
CPU-based implementation.  The results are shown in 
Fig.4 

 
Figure 4.  The outcomes of CUDA-based Marching Cubes (Top right is 
iso-surface-based skull model, Top left is wireframe-based skull model, 

and the others reveal the details of wireframe-based skull model).  

 



B. GPU-based Marching Cubes 

In marching cubes, the domain in IR3 over which F is 
defined is tessellated into a grid at an arbitrary sampling 
density [24]. For each edge e = (x0, x1) in the tessellation, 
F (x0) and F (x1) will be evaluated according to the 
intermediate value theorem, e.g. if the signs of F (x0) and 
F (x1) differ, an iso-surface vertex must intersect e. 

The edge lookup tables are typically stored in SIMD-
specific memory for efficient and coherent access by each 
shader program instance [25, 26]. On the CPU, 
constructing large tables can lead to additional register 
pressure. This problem would be solved by reducing the 
number of parallel threads simultaneously running on the 
GPU. Smaller lookup tables ensure a higher order of 
parallelization because the GPUs are able to schedule a 
higher number of threads due to a higher number of 
available registers [27, 28]. 

V. PROTOTYPE IMPLEMENTATION 

The program devised in this research has been 
implemented using OpenGL and CUDA APIs in a VC++ 
programming environment. The host PC is an Intel Core2 
2.40GHz CPU, NVIDIA GeForce GTX260 with 2G RAM.  

This paper mainly focuses on the implementation of 
volume segmentation and marching cubes. As shown in 
Fig. 5, the input of the system is raw volume data sets 
without any data preprocessing. The data sets will be 
clustered by implementing 3D KM clustering methods. 
Then, the clustered data sets are respectively processed in 
the iso-surface extraction function module and converted 
into groups of vertices. The generated vertices will be 
used to form rapid CSG operations with other wireframe 
models for special simulations, such as clipping, forging 
and bending processes. This design will avoid calculating 
and processing the whole data sets for save the processing 
time, i.e. increasing the interactive rate. 

In Fig. 6, various volume data sets were represented in 
IDVR and converted into vertices-based models. Fig. 8 
shows the different outcome of KM clustering-based 
volume segmentation. By setting the TF, the colorless 
results of volume segmentation are colorized with 
different K. In Fig. 7, image (A) is similar to image (B) 
which demonstrates that the maximum number of 
clustered regions is fixed with predefined properties in the 
clustering methods. 

 
Figure 5.  The framework of hybrid rendering system.  

 
Figure 6.  Various results of iso-surface exraction.  



 
Figure 7.  The outcomes of clustering-based segmentation (colored by 

TF).  

 
Figure 8.  Partial iso-surface extractions.  

Fig. 8 shows the outcomes of the implemented system. 
The opaque and white parts are IDVR-based and represent 
the regions which have different intensity or density 
values. The semi-transparent parts belong to DVR and 
represent the voxels which have the same intensity of 
density values. 

VI. EVALUATION AND FUTURE WORK 

By using clustering method to classify the volume data 
sets and implementing the iso-surface extraction, the 
polygonization of partial volume data sets and GPU-based 
implementations for future complicated operations (CSG 
and voxelization) have been accomplished. 

However, the manual input of K in the KM clustering 
method will have a bad influence on the interactive rate of 
real-time operations. The inherent problems in clustering 
methods (over/insufficient segmentation) still cause 
artifacts in the final output.  

These problems will be fixed by modifying the 
buffering area (e.g. ignoring some regions which contain a 
fixed number of vertices/voxels). After completing this 
step; advanced operations on generated vertices will be 
carried out. For the capability of rapid prototyping, a 
common vertex-based operation will be constructed 
between generated vertices and other surface models to 
implement fast CSG operations between volume and 
surface models. In future work, an improved volume 
deformation will also be constructed based on this 
conversion between voxels and vertices. 
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