Al-Hinai, Sulaiyam (2010) *Non-invasive velocity and volume fraction profile measurement in multiphase flows.* Doctoral thesis, University of Huddersfield.

| PDF - Accepted Version Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (16MB) | Preview |

## Abstract

Multiphase flow is the simultaneous flow of two or more phases, in direct contact, and is important in the oil industry, e.g. in production wells, in sub-sea pipelines and during the drilling of wells. The behaviour of the flow will depend on the properties of the constituent phases, the flow velocities and volume fractions of the phases and the geometry of the system. In solids-in-liquid flows, measurement of the local solids volume fraction distribution and the local axial solids velocity distribution in the flow cross section is important for many reasons including health and safety and economic reasons, particularly in oil well drilling operations. However upward inclined solidsliquid flows which are frequently encountered during oil well drilling operations are not well understood. Inclined solids-liquid flows result in non- uniform profiles of the solids volume fraction and axial solids velocity in the flow cross- section. In order to measure the solids volumetric flow rate in these situations it is necessary to measure the distributions of the local solids volume fraction and the local axial solids velocity and then to integrate the product of these local properties in the flow cross section.

This thesis describes the development of a non-intrusive Impedance Cross-Correlation (ICC) device to measure the local solids volume fraction distribution and the local solids axial solids velocity distribution in upward inclined solids-water flows in which these distributions are highly non-uniform. The ICC device comprises a non-conductive pipe section of 80mm internal diameter fitted with two arrays of electrodes, denoted „array A‟ and „array B‟, separated by an axial distance of 50mm. At each array, eight electrodes are equispaced over the internal circumference of the pipe. A control system consisting of a microcontroller and analogue switches is used such that, for arrays A and B, any of the eight electrodes can be configured as an "excitation electrode" (V+), a "virtual earth measurement electrode" (Ve) or an "earth electrode" (E) thus enabling the local mixture conductance in different regions of the flow cross-section to be measured and thereby allowing the local solids volume fraction in each region to be deduced. The conductance signals from arrays A and B are also cross-correlated to yield the local solids axial velocity in the regions of flow under interrogation.

A number of experiments were carried out in solids-in-water flows in a flow loop with an 80 mm inner diameter, 1.68m long Perspex test section which was inclined at three different inclination angle to the vertical ( o 0 , o 15 and o 30 ). The obtained results show good quantitative agreement with previous work carried out using intrusive local probes. Integration of the flow profiles in the cross section also yielded excellent quantitative agreement with reference measurements of the mean solids volume fraction, the mean solids velocity and the solids volumetric flow rate. Furthermore, this study also showed good qualitative agreement with high speed film of the flow. It is believed that the method of velocity and volume fraction profile measurement described in this thesis is much simpler to implement, more accurate and less expensive than the currently very popular technique of dual-plane Electrical Resistance Tomography (ERT).

Finally, the thesis describes a mathematical model for predicting the axial velocity distribution of inclined solids-water flows using the solids volume fraction profiles measured by the ICC device. Good agreement was obtained between the predicted velocity profiles and the velocity profiles measured using the ICC device.

Item Type: | Thesis (Doctoral) |
---|---|

Subjects: | T Technology > T Technology (General) T Technology > TA Engineering (General). Civil engineering (General) T Technology > TC Hydraulic engineering. Ocean engineering T Technology > TD Environmental technology. Sanitary engineering |

Schools: | School of Computing and Engineering |

Depositing User: | Joanna Mahoney |

Date Deposited: | 23 Nov 2010 11:02 |

Last Modified: | 01 Jun 2012 01:38 |

URI: | http://eprints.hud.ac.uk/id/eprint/9094 |

### Item control for Repository Staff only:

View Item |