University of Huddersfield Repository

Gao, F., Jiang, Xiang, Muhamedsalih, Hussam and Martin, Haydn

Wavelength Scanning Interferometry for Thin Film Analysis of Fusion Target

Original Citation

This version is available at http://eprints.hud.ac.uk/9072/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Wavelength Scanning Interferometry for Thin Film Analysis of Fusion Targets

F. Gao, X. Jiang, H. Muhamedsalih and H. Martin
Centre for precision technologies
University of Huddersfield
Huddersfield, UK

3rd European Target Fabrication Workshop, 20th September - 1st October 2010 Oxford, UK
Outline

- Review on thin film measurement
- Introduction to Scanning Wavelength Interferometry (SWI)
- Scanning Wavelength Interferometry for thin film measurement
- Experiments on films of fusion target
- Measurement results comparison
- Looking forward
Methods and instruments used for thin film measurements

Established methods
- Spectrophotometry
- Ellipsometry
- Scanning White Light Interferometry

Methods used in research
- Wavelength Scanning Interferometry
- Thermal-wave detection with laser beam deflection
- Prism coupler
- SEM for measuring metal film
Wavelength scanning interferometry

\[\lambda = \Delta n \alpha \frac{v_a}{f_a} \]
1. Linnik interferometer was used for the measurement.

2. AOTF has been employed to shift the wavelength from 680.8nm to 529.8nm. A series of interferograms were obtained.

Intensity Pattern at each pixel in the CCD
- DC component
- Cosine term
- High frequency Noise

\[I(i) = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(\varphi(i)) \]

where \[\varphi(i) = \frac{2\pi}{\lambda(i)} \times 2 \times t \]

Analyze the intensity interferograms
- Convolution
- FFT
Calculation of the OPD

\[I(x, y, k) = A(x, y, k) + B(x, y, k) \cos(\varphi(x, y, k)) \]

\[\varphi(x, y, k) = kh(x, y) = \frac{4\pi}{\lambda} h(x, y) \]

\[\Delta \varphi(x, y, \Delta k) = \Delta kh(x, y) \]

\[h(x, y) = \frac{\Delta \varphi(x, y, \Delta k)}{\Delta k} \]
Experimental set up
Measurements on step height standards

A 2.970 μm step height standard with uncertainty 1nm National Physical Laboratory (NPL)

A 292 nm step height standard with uncertainty 0.9nm Physikalisch-Technische Bundesanstalt (PTB)
Stabilise Linnik Interferometer

The PZT has been attached to the reference mirror to compensate for the environmental disturbances.

The environmental vibration is fed back to servo electronics that contains PI controller to control PZT movement.

The noise effect on the interferometer has been reduced 13.4dB.

Before stabilization

After stabilization

2V peak to peak and random frequency < 1KHz
A semiconductor chip sample was measured without inducing mechanical disturbance. The measured surface step height is **4.7564 \(\mu m \)**.

A 40 Hz and 400 nm peak-to-peak sinusoidal mechanical disturbance using a PZT was applied to the reference mirror. During the disturbance, the measured surface step height is **11.711 \(\mu m \)**.

The measured step height is **4.7429 \(\mu m \)** when the vibration compensation system is on and 40 Hz 400 nm disturbance is applied.
Imaging processing using GPU

- A distinct advantage of the GPU technology compared to the CPU is that the GPU can process the images frame by frame while the CPU processes the images pixel by pixel.

- The GeForce GTX 280 with 240 cores has been used.

- The computing time has been reduced from 31.4 seconds to below a second.
The SWI was designed for Structured surfaces Measurement

<table>
<thead>
<tr>
<th>Typical structured elements</th>
<th>Pitch lengths (µm)</th>
<th>Depths (µm)</th>
<th>Angles (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-grooves/Pyramid</td>
<td>14-141 (most 35-106)</td>
<td>10-100 (most 25-75)</td>
<td>45</td>
</tr>
<tr>
<td>Micro lens</td>
<td>30-100</td>
<td>3-20</td>
<td></td>
</tr>
<tr>
<td>Diffractive lens</td>
<td>25-180</td>
<td>1-60</td>
<td>A=70-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B =0 –10</td>
</tr>
</tbody>
</table>
SWI for thin film measurement

- SWI can be used for thin film measurement.
- The two surfaces of the film can be used as the two mirrors of an interferometer to measure the thickness of the film.
- Using the configuration of our SWI system the surface information of both top surface of the film and the surface of substrate maybe extracted from the interference signals.
The flow chart of the analysis

Measurement data → FFT

Filter 1 → FFT or Convolution → Surface 1

Filter 2 → FFT or Convolution → Surface 2
Simulation study of the measurement on a 10um film surfaces

- Bottom left - Three simulated interference signals generated between the reference mirror and the top surface, the reference mirror and bottom surface and between the two film surfaces

- Bottom right - Simulated combined signal on CCD camera
FFT analysis on the simulated signals

- Apply FFT analysis to find out the frequency components of the measured signal (top right)
- Construct filters according to the FFT analyse result
- Re-construct the two film surfaces (middle right and bottom right)
Real measurement signals on 10um film

- Top right - Measured interference fringe
- Middle right - measured interferogram signal on film coated area
- Bottom right – Measured interferogram of glass substrate
Two surfaces of the films

- Top Right - Reconstructed top surface and the glass substrate of the measured sample
- Bottom right - Reconstructed bottom surface of the film and the glass substrate
The top surface of the film

A cross section of the measurement shows the measured step height at the section is 11.0um

Sq=1.29um

Sq=81.7nm

Step height = 11.0um

Top film surface

Glass surface
The bottom surface of the film

A cross section of the measurement shows the measured step height at the section is -6.66um

Sq=56.9nm

Step height = -6.66um

Glass surface

Bottom film surface

Sq=29.2nm
Measurement on the same samples using CCI

- Right - Measured image on the edge of the 10 um film on microscopic glass substrate
- Bottom - Profile of a cross section of measurement

Step height = 10.23um

Sq=1.98nm
Sq=187nm
Proposed full field scanning wavelength interferometry system

A full field scanning wavelength interferometry system has the potential for imaging most of the pellet by arranging an array comprising several wavelength scanning interferometers to image a larger area. Advanced 3D data-stitching and fitting techniques would then need to be applied to provide a more complete surface model.
The study shows the scanning wavelength interferometry is able to measure both the top and the bottom surfaces as well as the thickness of Parylene N film.

It is possible to measure multi-layer films.

Improvements are needed to achieve a reliable measurement

- A better light source for longer coherence length and intensity
- A none 50:50 ration beam splitter to improve interference signals
- Improvement on characterisation algorithms
Thanks!