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Abstract—This paper highlights the progress of the research 
programme for investigating spatio-temporal volume based 
video event detection. The main research aim is to devise 
innovative and efficient volume-based video content analysis 
techniques and systems.  To tackle this challenge, this paper 
fouces on the subjects of volume based feature analysis and 
event template matching. Corresponding system prototype 
design and experimental result analysis have also been 
presented in this report. The experiment result has clearly 
demonstrated the advantages of the volume based event 
detection methodology in terms of its richness of temporal-
related information and the potentials for identifying 
complex activities. As an important application, the 
difficulties in representing/extracting dynamic features from 
randomly ordered stacks of 2D snapshots can now be 
readily denoted as voxels for analysis in a 3D volumetric 
space. 

Keywords-event detection; volume processing; video 
processing; feature extraction 

I.  INTRODUCTION 

Spatio-Temporal Volume (STV) data structure was 
firstly introduced by Aldelson and Bergen [1] in 1985, to 
emphasize the temporal-related features embedded in 
video data. This research has adopted the STV idealism 
for video-based dynamic event detection. To facilitate the 
quick comprehension of basic concepts of STV-based 
processing and the motivation of this project, Fig.1 shows 
an STV model being represented as a volumetric object in 
a 3D coordinate system denoted by x, y and t (time-
dimension) axes. The STV model is composed of a stack 
of video frames assembled by 2D arrays of pixels in the 
time order. In this structure, an individual frame is 
represented by the pixel values corresponding to the x-y 
coordinate, while the dynamic information mainly 
preserved and represented by the segmentation and the 
navigation path of certain sets of pixels. To integrate the 
spatial and temporal information in a unified data structure 
for processing and analysis, each fundamental element 
inside of a STV model is referred at here as a voxel 
(volume pixel), a concept inherited from computer 
graphics and visualization research. 

Compared with the traditional frame-by-frame-based 
video analysis, a significant advantage of STV is its 
distinct ability to provide direct mathematical descriptions 
for dynamic features extracted from a section of video 
footage. The information can then be further processed to 
identify a pre-defined video event. In this research, the 

feature collections - known as “stick-model” - are 
highlighted as human-like shapes, composing head, arms 
and legs as, illustrated in Fig.2. The coordinates of those 
voxels are considered essential features that need to be 
extracted from each frame. The trajectories and envelopes 
of those voxels can then be used to form the slimmed 
version of the STV models to represent dynamics and 
movement of a human body. The result of this process can 
then be used for matching against the pre-constructed 
event templates in the 3D volumetric space. 

This project has also built upon the famous Rogez’s 
stick model [2] for constructing event templates in the 
STV feature space, which, in direct observation, are 
similar to different forms of 3D curves as shown in the 
Fig.3. Dynamic events and human actions can be modeled 
this way and being represented by various geometrical and 
topological structures. 

After establishing event feature points in a 3D volume 
space, the task of event detection problem is converted 
into matching the pre-determined event templates with the 
extracted curve patterns. However, preliminary 
experiments performed in this research show that curves 
may share identical geometrical features and are difficult 
to separate using conventional methods. To solve this 
pattern analysis problem, research has also been carried 
out to devise a more robust method in two inter-related 
steps: curve geometries analysis and “String”-based 3D 
curve matching. Fig.4 illustrates the entire operational 
pipeline of this improved method. 
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Figure 3. Waving event 
curve in STV feature space

 
Figure 2. Human stick-model 

Figure 1. STV structure 
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This paper is organized in the following order: Section 
II highlights the curve geometry analysis methods 
employed in this research. Section III provides details on 
3D curve matching algorithms. Section IV forced on the 
development operations and the final experiment result 
analysis. Summaries and future works are discussed in 
section V. 

II. CURVE PARAMETERS ANALYSIS 

In an STV space, different feature curves display 
distinctive geometric distributions. For example, static 
features are often shown as straight lines which might be 
perpendicular to the XY plan in the volume coordinate 
system shown in Fig.5.A. Through investigating the 
alignment and slope angles of those lines and the 
periodical characteristics of different waves, the category 
of a human event can be identified. 

By introducing the Least Absolute Residual [3] (LAR) 
linear fitting methods and Mean Absolute Error [4] (MAE) 
statistical operations, it is clear only still or uniform 
motion of the target object will show the distribution of 
feature points as straight lines. This inherent feature can 
facilitate the separation of liner and non-linear movements 
from dynamic “points”. For example, as shown in the 
Fig.5.B and 5.D, the walking and bending events can be 
readily separated by analyzing the linearity of the head 
movement. The slope angle of a straight line against the 
XY plan in the 3D volume space reflects the speed of a 
linear motion, which can be calculated by using the linear 
fitting algorithm. This parameter can be used for setting 
up thresholds for differentiating linear movements such as 
stand still, walking and running. Fig.5.A, B and C show 
the feature curves for different head states.  

Some events such as waving and walking are 
repetitive human events, which are represented as periodic 
waves in a 3D space. A periodic event is more difficult to 
model in the feature space since the unknown factors for 
template matching because of periodicity and frequency. 
Based on the autocorrelation method by Parr [5], the 
periodic parameters can be approximated by evaluating 
curves and peak values as shown in the example 
illustrated in Fig.6. 

 

 

 

 

To speed up the event detection process, in this 
research, template curves for periodic events have covered 
only a single periodical cycle, which can be readily 
expended for any particular application requirements. The 
periodical characteristics can be normalized in the 
Euclidean space by controlling the location of the start 
point and the span of a period. Fig.7 shows one 
normalized waving event. 

III. 3D CURVE MATCHING FOR VOLUME-BASED 

EVENT DETECTION 

In the 3D feature volume space, event templates and 
patterns are defined as 3D curves. Classification and 
recognition of these human events required curve-based 
template matching. During this research, the pattern 
recognition is mainly achieved by measuring the 
difference between the filtered and constructed event 
patterns and the pre-defined event templates. This section 
discusses an innovative 3D curve matching approach 
developed in the program. 

 
Figure 5. Head curves of the stand still, walking, running and 

bending event 

 
Figure 7. Normalized curve of the same waving event 

 
Figure 6. The curve of a waving event 

 
Figure 4. STV curve-based video event detection system pipeline 



In 1993, Bunke [6] devised a “Strings Edit” operation 
for 2D shape recognition based on Wagner and Fischer’s 
earlier work [7]. The method accumulates differences of 
two 2D curves by matching each element of the two 
converted strings. The total difference is generated by 
counting the cost on relevant editing operations which 
change the unknown string into the template string. The 
“edit complexity” and “cost” can be quantified by a non-
negative function c(e), where e denotes three basic String 
Edit operations, known as insert, delete and substitute. 
Given two strings X=x1, x2, …, xn and Y=y1, y2, …, ym, the 
non-negative differences d(X,Y) is defined by the 
minimum cost of editing X into Y. if d(X,Y)=0, it means 
the two strings are exactly the same. More differences 
between two strings means bigger d(X,Y). Thresholding 
this value can control the matching outcome. 

This string-based sequencing and editing operations 
can be adopted for any pattern matching problems if (and 
only if) the pattern can be completely mapped as a series 
of feature. For example, a closed shape can be described 
by coordinates of its contour in Euclidean space. The 
serial features of these coordinates denote a distinctive 
curve in pattern space. Following subsections provide 
details on the investigation into extending the technique 
for 3D open curve matching. 

A. Curvature and Torsion of Curve 

Dynamic human features are represented by feature 
curves in the STV structure. This simplification enables 
the conversion of video events into STV feature volumes 
for matching and analysis. Comparing the coordinates 
between the template curve and an unknown pattern curve 
is the most popular method. However, in human event 
detection applications, it is difficult to compares two 
curves without taking into account their 3D natures [8]. 
This problem has been overcome in this project by 
introducing the curvature and torsion parameters which 
are often related to analytical geometry. Movement events 
can be categorized by comparison of their curvature and 
torsion pair values with those from the template. 

 

For example, if a defined curve, r, in the Euclidean 
space  can be defined as, 
         tztytxt r , (1) 
which represents a series of positions (vectors) by the 
changes of t. Moreover, it can represent a curve with arc 
length s which is defined as, 
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This equation can be rewritten as the curve as 

r(s)=r(t(s)), based on the arc length description, curvature 
к and torsion τ can be defined by Frenet-Serret formulas 
[9]: 
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where T, N, B denotes unit tangent, normal and bi-normal 
respectively. The apostrophe means derivative with arc 
length. Relationship between each vector can also be 
described as Frenet-Serret frame (Also known as TNB 
frame), shows in Fig.8: 
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B. 2D Open Curve Matching 

The equations described in Section III.A are applicable 
for any dimension. As a special case, 2D open curve can 
be calculated by (3) and (4) without torsion and bi-normal 
description. After defining the start point of a 2D curve, 
the curvature parameter sequence can be realized as a 
string which denotes the specific 2D curve in the feature 
space. As shown in the Fig.9, the graph on the top is the 
geometrical distribution of a simple curve starts from the 
round dot and the plot below the curve shows the absolute 
values of the curvature.  

The 2D open curve matching can be represented by 
following algorithm: 

Given two curves C1={(x11,y11),(x12,y12),…,(x1n,y1n)} 
and C2={(x21,y21),(x22,y22),…,(x2m,y2m)} in an Euclidean 
space, each one can be denoted by its 
curvature:C1={к11,к12,…,к1n} and C2={к21,к22,…,к2n}. 
Initialize a distance matrix D(i,j) with (n+1)×(m+1) 
elements, this string edit operation computes each element 
of D(i,j) by the edit algorithm. Shown as (5), (6) and (7) 

 
Figure 8. TNB frame 

 

 
Figure 9. 2D curve and absolute curvature 
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The lower right corner value of the matrix records the 
difference of the two curves. Each element of this matrix 
is calculated based on a previous iteration operation. As 
shown in the Fig.10, there are three probable predecessors, 
each one denoting one specific string operation: D(i-1,j-
1)-substitute, D(i-1,j)-delete, and D(i,j-1)-insert. In 
addition, it can also be used to trace the changes from one 
curve into another one based on the three string edit 
operations. The complexity of this algorithm is of O(nm). 

Pseudocode for implementing the algorithm in the 
experiment is shown below: 

 
In the pseudocode, a function of operation cost 

c(operation)  is introduced. It defines the cost of the three 
edit operations. The rules can be changed based on 
different applications. For this 2D curve matching 
problem, the cost functions are defined as: 

       jiijijij subsitudecinsertcdeletec   ,1.0 ,(6) 

 

 

C. 3D Open Curve Matching 

“String Edit” operations have been introduced into this 
research for 3D curve matching. In Euclidian space, a 3D 
curve can be described by absolute coordinate values or 
by curvatures and torsions along the curves. An example 
of 3D curve and its corresponding curvatures and torsions 
is shown in Fig.11 and 12. 

For example, given two 3D curves: 

C1={(x11,y11,z11),(x12,y12,z12),…,(x1n,y1n,z1n)} 

and 

C2={(x21,y21,z21),(x22,y22,z22),…,(x2m,y2m,z2m)} 

in the Euclidian space, the curves can be described by the 
curvature and torsion vector series, denoted as 

C1={(к11,τ11),(к12,τ12),…,(к1n,τ1n)} 

and  

C2={(к21,τ21),(к22,τ22),…,(к2m,τ2m)}. 

These two strings are used to calculate the distance 
matrix. This differs from the 2D approach as costs 
functions are changed to reflect the curvature and torsion 
pairs’ vector nature in the forms of: 

 

   
   
     jjiiij

jjij

iiij

subsitudec

insertc

deletec







,,

;,

;,







, (8) 

 

 
Figure.12.  Absolute curvature and torsion 

 
Figure.11. 3D curve example 

 
Figure.10 “String Edit” operation 

Pseudocode stringEdit (C1,C2) 
START： 
//Initialization 
int n = length of C1; 

int m = length of C2; 
array D[n+1][m+1] = 0; 
//Initialization first row and column of D 
For i = 1 to n  
 D[i][0] = D[i-1][0] + c(deletei0); 
For j = 1 to n 
 D [0][j] = D[0][j-1] + c(insert0j); 
//Distance iterative calculation 
For i = 1 to n 
 For j = 1 to m 
 { 
  m1 = D[i-1][j-1] + c(substituteij); 
  m2 = D[i-1][j] + c(deleteij); 
  m3 = D [i][j-1] + c(insertij); 
  D [i][j] = min (m1, m2 , m3); 
 } 
//Output result 
float difference = D [n][m] 
END Pseudocode 



D. High-dimensional String Edit Operation Extension 

The string edit operation can be extended to other high 
dimensional pattern matching applications. The only 
prerequisite is that a pattern to be described (if viable) as a 
series of parameters can be composed into a “vector 
string”. The distance matrix can then be modified to suit 
for the specific high dimensional parameters vectors 
through redefining the cost functions as illustrated in (8). 

IV. EXPERIMENT DESIGN AND RESULT ANALYSIS 

The volume-based event detection algorithms 
introduced in Section 2 and 3 are developed and tested on 
simulation platforms MATLAB and LabVIEW running on 
a PC equipped with an AMD Athlon 2.62GHz CPU and 
2G RAM. Experimental video samples were downloaded 
from the Weizmann video library database published by 
Lena Gorelick [10]. Event curve templates were manually 
plotted for exploring 3D open curve matching techniques 
on a frame-by-frame basis. Fig.13 shows various event 
templates and related geometry features, which are 
represented by ordered feature points from key parts of the 
human stick model. 

To assess the effectiveness and efficiency of the sting-
based 3D curve matching approach, the experiments for 
matching have been firstly tested on a number of artificial 

3D curve templates as shown in Fig.14. The curve sets 
contain four similar curves and four random curves. The 
matching results between each curve pair are listed in the 
Table.1. The results clearly indicate that the curves 1 to 4 
are identical, which can be verified by visual inspection. 
Time consumptions listed in the table reflect the 
relationship between the curve length and algorithm Time-
and-Space-Complexity.  

It was concluded during the preliminary experiments 
that the 3D curve matching approach possesses the 
potential for predicting human movements or actions by 
simply tracking the head trajectory. Events such as waving, 
walking, jumping and bending can all be represented by 
distinctive head trajectories. 

By careful adjusting the threshold, an approximate 
66.8% of template autocorrelation will see the successful 
separation of the positively and negatively matched curves. 
In the Table.2, event patterns listed in the Fig.13 are 
compared with the “wave two hands” template. The five 
feature curves (head, left and right hands/feet), all match 
the event template separately. After template matching 
operation, if the five curves match the template, the event 
can be recognized from the pattern video 

 

 Figure 13. Volume-based event feature points and curves on selected Weizmann video library data 



 

 

 

V. CONCLUSION AND FUTURE WORK 

After the human stick-model generated, the event 
detection process is transformed into a series of operations 
on feature-based entities within the 3D spatio-temporal 
volume space. For example, human gestures and actions 
can be transformed into spatial curves with distinctive 
analytical geometrical characteristics and probabilistic 
distributions. Or in other words, event detection problems 
can be “simplified” into 3D curve analysis tasks. In the 
early trials, the geometrical analysis and template 
matching for the curves have been treated as two inter-
related steps. As the result demonstrated, event curves - 
especially the head curves - provide key information on 
the primary human motions. Detailed analysis has been 
performed regarding the 3D curve matching algorithms 
developed from the so-called “String Edit” method 
denoted by the “cost function” and “distance matrix”, 
which is an extension of the popular 2D contour matching 

solution for script matching. Test results show that the 
“String Edit” approach can distinguish different curves by 
matching the distance and the curvature-torsion 
parameters, which can be readily introduced into other 
high-dimension vector-based matching problems. 

There are a number of promising directions for future 
works based on this project. Firstly, it is understood that 
the curvature-torsion-pairs-based event (curve) matching 
is a pattern analysis process which might need an 
automated learning system as a common practice depends 
on application scenarios. Future work will assess and 
benchmark the proposed matching technique for its 
automation potentials.  

As evident in the experiments, the STV volume data 
structure adopted in this research introduces substantial 
work load and time-consumption to the computing 
platform. Although this work is not focusing on the real-
time performance of the devised event detection method, 
operation efficiency still plays an important role in many 
real-world applications. One of the potential methods for 
solving this problem is through employing hardware 
acceleration on modern PC equipment. For example, to 
employ the Graphics Processing Unit (GPU) for 
accelerating the computation [11], and using OpenCL for 
more efficient CPU/GPU workload distribution.  
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 Head 
Left 
foot 

Right 
foot 

Left 
hand 

Right 
hand 

Wave two 
hand 

90.3% 82.7% 91.1% 87.1% 82.9%

Wave one 
hand 

92.7% 81.5% 82.3% 78.2% 20.2%

Walk 12.3% 7.8% 10.6% 9.4% 8.1& 

Jump 60.4% 54.8% 45.6% 70.7% 61.5%

Bend 5.2% 86.2% 89.6 33.7% 41.5%

Table 2. “Wave two hand” template compared with pattern curves on 
selected Weizmann video library data 

 
Table 1. “String Edit” 3D open curve matching 

 
Figure 14. Artificial 3D open curves 


