University of Huddersfield Repository

Lewington, Amy E.

An Investigation into Various Human-Computer Interfaces which may Enhance Communication for Students with Motor Impairments

Original Citation

This version is available at http://eprints.hud.ac.uk/8357/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
An Investigation into Various Human-Computer Interfaces which may Enhance Communication for Students with Motor Impairments

Presented by Amy E Lewington

Supervisor: Dr. Steve Woodhead
Overview

- Brief introduction
- Literature findings
- Technologies
- Results and conclusions
- References
- Further work
Introduction

• Background
 » Aim
 » Why?
• Technology aiding communication
• Ethics involved
• Current research explored
• Methodology
• Represent results
Literature

- Sources of information
- Current findings
- Engineering Rehabilitation
- Organisations
- Information on various technologies
Mouse Technology

- Head mice
- Three types explored:
 1. Standard mouse
 2. SmartNav
 3. QualiEye
Design

The image shows a computer interface for a mouse selection task. The interface includes options for different mouse selections such as 'WebCam (QualiEye)', 'SmartNav', and 'Standard Mouse'. There are buttons labeled 'Start', 'Stop', and 'Targets'. The screen shows the user name 'Amy Lewington'. The interface also displays a message from 'Datologger' stating that the task was completed in 51.7 seconds with 8 targets hit and 2 targets missed.
Results

A bar graph showing the mean time and percentage number of targets hit out of 30
Keyboard Technology

- Text entry
- Three types:
 1. Standard keyboard
 2. Penfriend word predictor
 3. Penfriend with on-screen keyboard
Results

Text Entry Trials

Total No. of words in 3 minutes

<table>
<thead>
<tr>
<th>User</th>
<th>Std. keyboard</th>
<th>penfriend</th>
<th>on-screen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

Shows the number of words users typed correctly using each text entry technology.
Speech Technology

- Speech recognition
- Training is required
- Any success rates?
- Valid Results?
Conclusions

• Opinions of participants
• Technology a valuable tool
• Disadvantages/Problems faced
• Some trials unsuccessful
• Time limited
REFERENCES

Further Work

• Undertake tests with new devices
 - regular periods
• Questionnaires for participants, support workers.
• Include "real work" examples
• Use a "control group"
• Design rigorous recruitment process
Thank you for listening

Amy E Lewington
la46@gre.ac.uk
01634 883534
Pembroke 069