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Abstract—Stemmed from classical computer graphics 
research, volume visualization has been steadily growing 
into an important research field in the last 2 decades. This 
paper presents a hybrid rendering framework which 
integrates volume and surface models for real-time 
simulation. It focuses on improving the flexibility of the 
classic Scene Graph structure and the interactive rate of the 
Direct Volume Rendering (DVR)-based programming 
paradigm to enable the visualization of different type of 
models and their interactions. It is envisaged that this 
innovative functionality will open up a gate for the wider 
applications of volume rendering and visualization 
techniques on consumer-grade graphics platforms. 
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I.  INTRODUCTION  
Over the last 2 decades, volume rendering and 

visualization technologies have attracted increasing 
attentions due to their potentials in revealing internal and 
hidden information from digitized computational 
geometric models for both academic research and 
industrial applications [1, 2].  Comparing with 
conventional 3D modeling and visualization techniques, 
volume rendering enables the direct access to the internal 
characteristics of a 3D object instead of merely focusing 
on the surface features alone inherited from a wireframe-
based surface model. Its applications can extend from 
rapid prototyping in virtual manufacturing and medical 
imaging, to even astronomical and atmospheric 
simulations. With the ever increasing capacity of modern 
graphics hardware and the maturing methods for 
accelerating volume-based operations, real-time human 
interactions with complex volume models on consumer 
grade PC hardware have becoming a research hot-spot in 
the last decade.  

As the demand increases for high-resolution results in 
visualization applications like medical imaging and design 
verifications, there also rises a need for improving the 
speed of online volume visualization and manipulation in 
a complex 3D scene. This trend has witnessed the ever 
growing data sizes to be processed by a rendering system 
in more tightly controlled time frame. In this research, a 
hybrid rendering framework has been devised and 
implemented for enhancing the accuracy and efficiency 
for various complex virtual environment (VE)-based 
applications. The project started from an investigation of 
volume and surface rendering mechanisms on PC 
platforms. A system structure and its corresponding 

software framework were developed to accommodate the 
fundamentally different data structures involved and their 
rendering strategies under a unified process stream. A 
degree of success has been observed in a number of 
evaluative tests.  

The paper is organized in the following order: Section 
II provides a brief review on various conventional 
rendering techniques. The scene graph of an innovative 
hybrid rendering framework is introduced in Section III.  
Section IV focuses on the results of various functional 
experiments carried out. Section V concludes the research 
with observations on the future works. 

II. RESEARCH BACKGROUND  
This section introduces the conventional surface and 

volume rendering approaches and their pros-and-cons.  

A. Surface Modeling and Visualization  
Surface models (sometime referred as solid models) 

provide visual representations of physical objects by 
“wrapping” up their underlying wireframe structures using 
specially calculated illumination or texturing information. 
The shape of a surface model is provided by edges which 
conjoin neighboring triangular (in rarer cases, 
quadrangular) polygons with their vertices (end points) 
defined in specified 3-Dimensional (3D) Cartesian 
coordinates systems [2]. Except simulation data-based 
surface models which are often generated from scientific 
computations, most surface model are “defined” by 
various geometric modeling tools such as Auto CAD, 
ProEngineer or the entertainment-oriented 3D Studio Max. 

The process for visualizing a 3D surface model using a 
2D displaying device has encompassed a wide area of 
research into computational geometry, computer graphics, 
displaying devices and so on over the last half-a-century. 
Figure 1 has given a grossly simplified diagram of the key 
processes involved. 

As indicated in the diagram, the key stage to turn 3D 
entities (vertices) into 2D ones (fragments) is the so-called 
“geometric processing”, which if divided further will see 
the linear algebra-based transformation from the single 
model-based “Model Space” to the multiple model-based 
“World Space” [3]. The intermediate results will then be 
transferred into the “Camera/View Space” for interactive 
applications; and finally to the “Projection Space” for 
casting the objects’ silhouettes in the form of the short 2D 
lines – rasterized fragments – which are yet to be 
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processed further before turning into visible images. As 
shown in Figure 1, from fragments to pixels, various 
fragment-based operations will apply, namely a few, 
texture mapping, occlusion testing, stencil testing. Those 
operations are vital for the ultimate quality of the final 
display.   

 

Figure 1.  The surface model rendering pipeline  

B. Volume Model and Rendering 
Compared with surface model and its visualization 

approach, volume rendering has more complex tasks in 
hand. It involves the configuration of volume models and 
the selection of their processing tactics. There are several 
common volume model data formats such as “raw”, “img” 
and “hdr” for storing volume data. They are often 
obtained by specially designed industrial cameras, medical 
scanners, and even astronomical telescopes. Among those 
formats, the most popular one is the “raw”, which fulfill 
the same role as film negatives in traditional chemical 
photography.  

The essential and basic element of volume models is 
the so-called voxel – the acronym for volume pixel. 
According to the choice of different optical models for 
filtering and integrating voxel information, a volume 
model can be rendered in various modes [4]. The basic 
theory of it is to calculate each voxel’s color and 
transparency impacts on the final image. 

In Direct Volume Rendering (DVR), voxel is used to 
store the discrete volume data and arrange it in the so-
called proxy geometries [3]. Depending on the type of the 
proxy geometries used, the volume model can either be 
presented in a single 3D block referred as view-aligned 
slices or being split up into three stacks of 2D slices 
named as object-aligned slices [3, 5, 6 and 7]. In contrast 
to DVR, Indirect Volume Rendering (IDVR) which is 
another branch of volume rendering strategies focuses on 
creating optical models by combining many iso-surfaces 
extracted from the volume data set to form the outer shape 
of the volume. 

In DVR, after establishing the optical model, each 
voxel involved in calculation will be converted into color 
and translucent entities through classification. The theory 
of classification is to transform scalar voxel values into 
color indices through pre-defined look-up tables [8]. 
Although the original voxel scalar values might stand for 
density, temperature or intensity, they will all be 
converted into corresponding color and translucent values 
and to be integrated through specified process.  

Different from the projection process in surface 
rendering, volume rendering utilizes the ray casting 

technique (an image-order direct volume rendering 
algorithm) to “fill” the pixels on the image plane. Ray 
casting casts a configurable number of parallel rays across 
through the optical model in its model space [4] in one of 
two viable directions. One is the so-called back-to-front 
(from object space to image space) process; another 
follows the front-to-back order (from image space to 
object space). As indicated in Figure 3, each ray is casted 
into the model space and intersects with a group of voxels 
along the line. The corresponding optical properties 
obtained from the encountered voxels will be integrated 
along the ray to be projected to the image.  

The pixel-based operation on image plane in volume 
rendering is similar to the surface pipeline, which will be 
discussed in detail in Section III. A simple illustration of 
the volume rendering pipeline is shown in Figure 3.  

 

Figure 2.  Ray casting (Forward-Mapping: from object space to image 
space) 

 

Figure 3.  Volume rendering pipeline 

C. Current Difficulties 
Although surface models are widely used in design 

and entertainment industries and are generally quick to 
render, they are inherently restricted for mainly 
visualization purposes due to lacking capacities in 
revealing internal and hidden information without any pre-
definitions. For its modeling mechanism, surface models 
are mainly “defined” and rather difficult to be modified at 
application runtime, although Constructive Solid 
Modeling (CSG) techniques have provided limited 
Boolean-style operations at the model design time. In 
addition, surface model-based applications are often too 
relaxed on accuracy. The planar polygon-formed shapes 
are often rigid and incapable of representing organic 
objects. Therefore it is hard to maintain the accuracy of 
using surface model to simulate objects such as human 
brain and organs. 

Although with the rapid development of personal-
grade computer hardware such as dedicated graphics cards, 
the heave demands on processing capacity for interactive 
volume rendering are still to be met. The increasing 

 

 

 



volume model data sizes due to higher frequency of initial 
sampling for better accuracy and visual quality had further 
deteriorated the situation. For example, the size of a 
volume model is often at the scale of GB (giga-byte) for 
an ordinary daily item, which can quickly accumulate to 
TB (tera-byte), in the case of multi-object 3D scenes with 
complex organic.  

In this project, the main research objectives can be 
divided into two tiers. The first tier is to integrate surface 
and volume visualizations into a unified rendering 
framework to facilitate hybrid virtual environment 
operations. The second tier is to accelerate the rendering 
on consumer-grade PC hardware by introducing data and 
even task parallelism. This paper will focus on works 
carried out to tackle the first task. Progress concerning 
task 2 has been published in separate articles [9, 10].  

III.  HYBRID RENDERING FRAMEWORK DESIGN 

A. Hybrid Scene Graph Design 
As Discussed in Section II, volume and surface 

rendering approaches are quite distinctive from each other; 
however, both the final results are turned into color values 
in the frame buffer which exposes the potentials for their 
integration. Based on this, an innovative scene graph 
structure is proposed which can handle both surface and 
volume models in a unified 3D space with their depth 
information correctly sorted for occlusion calculation as 
illustrated in Figure 4.  

 

Figure 4.  Volume and surface models 

An intelligent “switch” mechanism is the key to the 
hybrid rendering framework design. By checking 
indicative parameter values and setting up thresholds 
carefully, appropriate rendering strategies and techniques 
can be applied according to the specific application 
requirements at runtime. For example, a virtual Flexible 
Manufacturing Cell (FMS) might consist of an assembling 
robot and a CNC station. The object of interest in this 
virtual environment (VE) for process planning is the 
workpiece. In this case, it can be exhibited in the volume 
style for operation simulation. The robot in this 
application can be simply represented by a surface model 
to demonstrate its movement range. A prototype system 
has been built in this project for deploying and testing the 
hybrid rendering framework design. The framework of the 
system is illustrated in Figure 5.  

Figure 5.  The framework of hybrid rendering application 

B. Framework Implementation 
Except the classical surface model based acyclic scene 

graph components (nodes), this framework has introduced 

  

  



a number of new node types, such as volume LOD, 
Segmental Replacer, Multi-Volume, and Clipping node to 
accommodate and utilize volume models and their 
distinctive features. 

1) Level-of-Detail Node 
The Level-of-Detail (LOD) node aims at switching in 

between surface models and their corresponding volume 
ones for controlling the visualization workload. Benefiting 
from the idea of the traditional polygonal LOD node in 
large-scale and complex 3D scene management [11], a 
volume LOD is switching mechanism that provides 
object-level optimization in between volume and surface 
models. The key of this effort is to thresholding the 
special “indicators” for replacement, i.e. based on the 
distance between the viewpoint and the object, or based 
on the interaction type deployed in the simulation. Figure 
6 shows the LOD conceptual process flow. 

 

 

Figure 6.  Volume Level-of-Detail (LOD) node.  

2) Segmental Replacer Node 
Comparing with the LOD, using a surface model to 

partially replace a volume one is another visualization 
strategy explored in this framework. As shown in Figure 7, 
about a quarter of an engine surface box model is of the 
volume type to exhibit internal information of the model. 
The volumetric section is obtained by clipping the Engine 
model along the vertical and horizontal planes and to 
generate quadruple sub-parts of the original model. The 
darker area is the surface counterparts for filling the 
original volume space in the VE. The size and proportion 
of these two parts can be customized for different 
applications in this framework design. In this design, the 
rendering of an entire volume model can be avoided for 
facilitating real-time simulations. 

 

 

Figure 7.  The segmental replacer node and its application. 

3) Multi-Volume Node  
In addition to being integrated into a surface model-

dominant 3D scene, volume models sometimes coexist 
with each other for certain applications. Figure 8 shows a 
snapshot of a multi-volume node at runtime with the two 
clones of a volume model sorted by distances from the 
viewpoint.  

 

Figure 8.  A multiple volume node application.  

4) Volume Clipping Node 
Volume clipping provides effective assistance in 

understanding 3D volumes through revealing the internal 
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structures of a volume model. It is considered a 
complement to the specification of the transfer functions 
[5]. As shown in Figure 6, the voxel inside the clip 
geometry has been initialized to 0 with remaining voxels 
set as 1 to set the unwanted part to be transparent. In 
volume clipping literatures, unwanted part is often called 
the clipping object and the remainder is named as the 
clipped object.  

 

Figure 9.  Volume clipping graph. 

 

 

Figure 10.  A Clipped engine box. 

As a part of the framework, the clipping node can be 
modified and transformed readily. There are three clipping 
modes: mode 1 means the part inside the clipping 
geometry is the clipped object; mode 2 means the part 
outside the clipping geometry is the clipped object; and 
mode 3 initializes the clipped volume model and attaches 
it to the clipping geometry. However, multi-volume 
clipping cannot be realized directly by issuing the same 
clipping operation twice. The solution is through creating 
a clipping-geometry-list to arrange these different clipping 
geometries. The multiple clipping method has also been 
utilized in the design segmental replacer node.  

As shown in Figure 11, the Engine box was clipped in 
the 2nd clipping mode explained above and the clipping 
geometries consist of a cylinder and a box shape. 

 

Figure 11.  Multiple clipping image. 

C. User Interface Design 
As an important part of the system, the user interface 

requires an intuitive and interactive display mode that can 
enhance users’ visual awareness when carrying out an 
application task [12]. Some HCI researchers reported that 
intuitive data exploration can be treated as an extra 
dimension of information [13, 14 and 15]. Many poorly 
designed applications interfaces suffer from lost tracks 
when changes being applied to the settings of one or more 
of the flow parameters in the system. A multiple viewport 
user interface design has been adopted in this project 
which is capable of showing the entire 3D scene, any 
highlighted models, and corresponding rendering 
information in 3 separate viewports. By interactively 
(drag-and-drop style) changing the rendering settings in 
the coding viewport, the changes on the model and scene 
can be automatically updated at real-time. 

IV. PROTOTYPE IMPLEMENTATION 
This hybrid rendering system devised in this research 

has been implemented using OpenGL and OpenSG APIs 
in a VC++ programming environment. The host PC is an 
Intel Core2 2.40GHz CPU with 2G RAM.  

As shown in Figure 8 and Figure 11, multi-volume 
coexistence and segmental replacer are the two key 
innovative elements in the system. In the meantime, the 
LOD and the clipping nodes are the “cheaper” solutions 
for some visualization-oriented (non-simulation-intensive) 
operations. Tests have been carried out on the 
performance of the LOD node. The result is shown in 
Table I, when the actual operations can be simplified as 
the pseudocode below: 

Volume 
Clipping

Volume 
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Volume 
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As clearly shown in Table I, the result of the frame 

rate comparison proves that using surface models to 
replace volume ones at a carefully chosen threshold can 
effectively improve the interactive rate without losing too 
much visual qualities. Experiments on other devised 
modes and more complex 3D VE will be discussed in 
separate articles. 

TABLE I.  FRAME RATE COMPARISON 1 

 LOD-based volume 
rendering  

volume rendering 

Interactive rate 
(FPS) 

55.3 33.3 
57.6 37.6 
55.0 39.1 

V. CONCLUSION AND FUTURE WORKS 
The LOD, segmental replacer, multi-volume and 

clipping nodes are the essential functional modules of the 
devised hybrid rendering framework that had been 
implemented and tested in this project. The evaluation of 
the framework and tests on the prototype detailed in 
Section III and Section IV have demonstrated the 
feasibility and flexibility of the design. Further 
improvements and tests on accelerating the systems using 
hardware-driven data parallelism will be carried out in the 
next phase of this project. 

In addition, there are some derived problems from 
classical volume rendering, e.g. the problem of multi-
model clipping will seriously affect the interactive rate at 
runtime if not being used properly. Another prominent 
problem is the unavailability of volume-based depth 
buffering. The final rendered frame with multiple volume 
models cannot always show the correct occlusions like the 
wireframe ones. Problems also rise in this framework 
when applying certain illumination terms for complex VE 
applications. These problems will be addressed in the 
future works of the project. 
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Per-frame Operations: 

Loading model 

Thresholding model types 

Loading corresponding rendering core 

Interaction transformations 

Rendering loops 
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