
University of Huddersfield Repository

Xu, Qian and Xu, Zhijie

A Hybrid Rendering Framework for the Real-time Manipulation of Volume and Surface Models

Original Citation

Xu, Qian and Xu, Zhijie (2009) A Hybrid Rendering Framework for the Real-time Manipulation of
Volume and Surface Models. In: Proceedings of the 15th International Conference on Automation
and Computing. Pacilantic International, pp. 160-165. ISBN 9780955529344

This version is available at http://eprints.hud.ac.uk/id/eprint/7524/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

A Hybrid Rendering Framework for the Real-time
Manipulation of Volume and Surface Models

Qian Xu, Zhijie Xu
CGIV Research Group, University of Huddersfield

Huddersfield, West Yorkshire, United Kingdom
q.xu@hud.ac.uk, z.xu@hud.ac.uk

Abstract—Stemmed from classical computer graphics
research, volume visualization has been steadily growing
into an important research field in the last 2 decades. This
paper presents a hybrid rendering framework which
integrates volume and surface models for real-time
simulation. It focuses on improving the flexibility of the
classic Scene Graph structure and the interactive rate of the
Direct Volume Rendering (DVR)-based programming
paradigm to enable the visualization of different type of
models and their interactions. It is envisaged that this
innovative functionality will open up a gate for the wider
applications of volume rendering and visualization
techniques on consumer-grade graphics platforms.

Keywords-volume model; surface model; hybrid rendering;
volume visualization; virtual environment

I. INTRODUCTION
Over the last 2 decades, volume rendering and

visualization technologies have attracted increasing
attentions due to their potentials in revealing internal and
hidden information from digitized computational
geometric models for both academic research and
industrial applications [1, 2]. Comparing with
conventional 3D modeling and visualization techniques,
volume rendering enables the direct access to the internal
characteristics of a 3D object instead of merely focusing
on the surface features alone inherited from a wireframe-
based surface model. Its applications can extend from
rapid prototyping in virtual manufacturing and medical
imaging, to even astronomical and atmospheric
simulations. With the ever increasing capacity of modern
graphics hardware and the maturing methods for
accelerating volume-based operations, real-time human
interactions with complex volume models on consumer
grade PC hardware have becoming a research hot-spot in
the last decade.

As the demand increases for high-resolution results in
visualization applications like medical imaging and design
verifications, there also rises a need for improving the
speed of online volume visualization and manipulation in
a complex 3D scene. This trend has witnessed the ever
growing data sizes to be processed by a rendering system
in more tightly controlled time frame. In this research, a
hybrid rendering framework has been devised and
implemented for enhancing the accuracy and efficiency
for various complex virtual environment (VE)-based
applications. The project started from an investigation of
volume and surface rendering mechanisms on PC
platforms. A system structure and its corresponding

software framework were developed to accommodate the
fundamentally different data structures involved and their
rendering strategies under a unified process stream. A
degree of success has been observed in a number of
evaluative tests.

The paper is organized in the following order: Section
II provides a brief review on various conventional
rendering techniques. The scene graph of an innovative
hybrid rendering framework is introduced in Section III.
Section IV focuses on the results of various functional
experiments carried out. Section V concludes the research
with observations on the future works.

II. RESEARCH BACKGROUND
This section introduces the conventional surface and

volume rendering approaches and their pros-and-cons.

A. Surface Modeling and Visualization
Surface models (sometime referred as solid models)

provide visual representations of physical objects by
“wrapping” up their underlying wireframe structures using
specially calculated illumination or texturing information.
The shape of a surface model is provided by edges which
conjoin neighboring triangular (in rarer cases,
quadrangular) polygons with their vertices (end points)
defined in specified 3-Dimensional (3D) Cartesian
coordinates systems [2]. Except simulation data-based
surface models which are often generated from scientific
computations, most surface model are “defined” by
various geometric modeling tools such as Auto CAD,
ProEngineer or the entertainment-oriented 3D Studio Max.

The process for visualizing a 3D surface model using a
2D displaying device has encompassed a wide area of
research into computational geometry, computer graphics,
displaying devices and so on over the last half-a-century.
Figure 1 has given a grossly simplified diagram of the key
processes involved.

As indicated in the diagram, the key stage to turn 3D
entities (vertices) into 2D ones (fragments) is the so-called
“geometric processing”, which if divided further will see
the linear algebra-based transformation from the single
model-based “Model Space” to the multiple model-based
“World Space” [3]. The intermediate results will then be
transferred into the “Camera/View Space” for interactive
applications; and finally to the “Projection Space” for
casting the objects’ silhouettes in the form of the short 2D
lines – rasterized fragments – which are yet to be

Proceedings of the 15th International Conference
on Automation & Computing, University of

Bedfordshire, Luton, UK, 19 September 2009

mailto:q.xu@hud.ac.uk�
mailto:z.xu@hud.ac.uk�

processed further before turning into visible images. As
shown in Figure 1, from fragments to pixels, various
fragment-based operations will apply, namely a few,
texture mapping, occlusion testing, stencil testing. Those
operations are vital for the ultimate quality of the final
display.

Figure 1. The surface model rendering pipeline

B. Volume Model and Rendering
Compared with surface model and its visualization

approach, volume rendering has more complex tasks in
hand. It involves the configuration of volume models and
the selection of their processing tactics. There are several
common volume model data formats such as “raw”, “img”
and “hdr” for storing volume data. They are often
obtained by specially designed industrial cameras, medical
scanners, and even astronomical telescopes. Among those
formats, the most popular one is the “raw”, which fulfill
the same role as film negatives in traditional chemical
photography.

The essential and basic element of volume models is
the so-called voxel – the acronym for volume pixel.
According to the choice of different optical models for
filtering and integrating voxel information, a volume
model can be rendered in various modes [4]. The basic
theory of it is to calculate each voxel’s color and
transparency impacts on the final image.

In Direct Volume Rendering (DVR), voxel is used to
store the discrete volume data and arrange it in the so-
called proxy geometries [3]. Depending on the type of the
proxy geometries used, the volume model can either be
presented in a single 3D block referred as view-aligned
slices or being split up into three stacks of 2D slices
named as object-aligned slices [3, 5, 6 and 7]. In contrast
to DVR, Indirect Volume Rendering (IDVR) which is
another branch of volume rendering strategies focuses on
creating optical models by combining many iso-surfaces
extracted from the volume data set to form the outer shape
of the volume.

In DVR, after establishing the optical model, each
voxel involved in calculation will be converted into color
and translucent entities through classification. The theory
of classification is to transform scalar voxel values into
color indices through pre-defined look-up tables [8].
Although the original voxel scalar values might stand for
density, temperature or intensity, they will all be
converted into corresponding color and translucent values
and to be integrated through specified process.

Different from the projection process in surface
rendering, volume rendering utilizes the ray casting

technique (an image-order direct volume rendering
algorithm) to “fill” the pixels on the image plane. Ray
casting casts a configurable number of parallel rays across
through the optical model in its model space [4] in one of
two viable directions. One is the so-called back-to-front
(from object space to image space) process; another
follows the front-to-back order (from image space to
object space). As indicated in Figure 3, each ray is casted
into the model space and intersects with a group of voxels
along the line. The corresponding optical properties
obtained from the encountered voxels will be integrated
along the ray to be projected to the image.

The pixel-based operation on image plane in volume
rendering is similar to the surface pipeline, which will be
discussed in detail in Section III. A simple illustration of
the volume rendering pipeline is shown in Figure 3.

Figure 2. Ray casting (Forward-Mapping: from object space to image
space)

Figure 3. Volume rendering pipeline

C. Current Difficulties
Although surface models are widely used in design

and entertainment industries and are generally quick to
render, they are inherently restricted for mainly
visualization purposes due to lacking capacities in
revealing internal and hidden information without any pre-
definitions. For its modeling mechanism, surface models
are mainly “defined” and rather difficult to be modified at
application runtime, although Constructive Solid
Modeling (CSG) techniques have provided limited
Boolean-style operations at the model design time. In
addition, surface model-based applications are often too
relaxed on accuracy. The planar polygon-formed shapes
are often rigid and incapable of representing organic
objects. Therefore it is hard to maintain the accuracy of
using surface model to simulate objects such as human
brain and organs.

Although with the rapid development of personal-
grade computer hardware such as dedicated graphics cards,
the heave demands on processing capacity for interactive
volume rendering are still to be met. The increasing

volume model data sizes due to higher frequency of initial
sampling for better accuracy and visual quality had further
deteriorated the situation. For example, the size of a
volume model is often at the scale of GB (giga-byte) for
an ordinary daily item, which can quickly accumulate to
TB (tera-byte), in the case of multi-object 3D scenes with
complex organic.

In this project, the main research objectives can be
divided into two tiers. The first tier is to integrate surface
and volume visualizations into a unified rendering
framework to facilitate hybrid virtual environment
operations. The second tier is to accelerate the rendering
on consumer-grade PC hardware by introducing data and
even task parallelism. This paper will focus on works
carried out to tackle the first task. Progress concerning
task 2 has been published in separate articles [9, 10].

III. HYBRID RENDERING FRAMEWORK DESIGN

A. Hybrid Scene Graph Design
As Discussed in Section II, volume and surface

rendering approaches are quite distinctive from each other;
however, both the final results are turned into color values
in the frame buffer which exposes the potentials for their
integration. Based on this, an innovative scene graph
structure is proposed which can handle both surface and
volume models in a unified 3D space with their depth
information correctly sorted for occlusion calculation as
illustrated in Figure 4.

Figure 4. Volume and surface models

An intelligent “switch” mechanism is the key to the
hybrid rendering framework design. By checking
indicative parameter values and setting up thresholds
carefully, appropriate rendering strategies and techniques
can be applied according to the specific application
requirements at runtime. For example, a virtual Flexible
Manufacturing Cell (FMS) might consist of an assembling
robot and a CNC station. The object of interest in this
virtual environment (VE) for process planning is the
workpiece. In this case, it can be exhibited in the volume
style for operation simulation. The robot in this
application can be simply represented by a surface model
to demonstrate its movement range. A prototype system
has been built in this project for deploying and testing the
hybrid rendering framework design. The framework of the
system is illustrated in Figure 5.

Figure 5. The framework of hybrid rendering application

B. Framework Implementation
Except the classical surface model based acyclic scene

graph components (nodes), this framework has introduced

a number of new node types, such as volume LOD,
Segmental Replacer, Multi-Volume, and Clipping node to
accommodate and utilize volume models and their
distinctive features.

1) Level-of-Detail Node
The Level-of-Detail (LOD) node aims at switching in

between surface models and their corresponding volume
ones for controlling the visualization workload. Benefiting
from the idea of the traditional polygonal LOD node in
large-scale and complex 3D scene management [11], a
volume LOD is switching mechanism that provides
object-level optimization in between volume and surface
models. The key of this effort is to thresholding the
special “indicators” for replacement, i.e. based on the
distance between the viewpoint and the object, or based
on the interaction type deployed in the simulation. Figure
6 shows the LOD conceptual process flow.

Figure 6. Volume Level-of-Detail (LOD) node.

2) Segmental Replacer Node
Comparing with the LOD, using a surface model to

partially replace a volume one is another visualization
strategy explored in this framework. As shown in Figure 7,
about a quarter of an engine surface box model is of the
volume type to exhibit internal information of the model.
The volumetric section is obtained by clipping the Engine
model along the vertical and horizontal planes and to
generate quadruple sub-parts of the original model. The
darker area is the surface counterparts for filling the
original volume space in the VE. The size and proportion
of these two parts can be customized for different
applications in this framework design. In this design, the
rendering of an entire volume model can be avoided for
facilitating real-time simulations.

Figure 7. The segmental replacer node and its application.

3) Multi-Volume Node
In addition to being integrated into a surface model-

dominant 3D scene, volume models sometimes coexist
with each other for certain applications. Figure 8 shows a
snapshot of a multi-volume node at runtime with the two
clones of a volume model sorted by distances from the
viewpoint.

Figure 8. A multiple volume node application.

4) Volume Clipping Node
Volume clipping provides effective assistance in

understanding 3D volumes through revealing the internal

Hybrid
models
coexist

V=100%?LOD

V resents percentage
 of volume model

Yes

Segmental
Replacement

No

View
point

Zoom out

Zoom in

Volume
Model

Surface
Model

Hybrid
models
coexist

V=100%?LOD

V resents percentage
 of volume model

Yes

Segmental
Replacement

No

Volume
Clipping

Surface
Clipping

Hybrid
Result

Clipped
Volume
Model

Clipped
Surface
Model

Single/Multi
- Clipping

Clipping
Mode

Compounding

structures of a volume model. It is considered a
complement to the specification of the transfer functions
[5]. As shown in Figure 6, the voxel inside the clip
geometry has been initialized to 0 with remaining voxels
set as 1 to set the unwanted part to be transparent. In
volume clipping literatures, unwanted part is often called
the clipping object and the remainder is named as the
clipped object.

Figure 9. Volume clipping graph.

Figure 10. A Clipped engine box.

As a part of the framework, the clipping node can be
modified and transformed readily. There are three clipping
modes: mode 1 means the part inside the clipping
geometry is the clipped object; mode 2 means the part
outside the clipping geometry is the clipped object; and
mode 3 initializes the clipped volume model and attaches
it to the clipping geometry. However, multi-volume
clipping cannot be realized directly by issuing the same
clipping operation twice. The solution is through creating
a clipping-geometry-list to arrange these different clipping
geometries. The multiple clipping method has also been
utilized in the design segmental replacer node.

As shown in Figure 11, the Engine box was clipped in
the 2nd clipping mode explained above and the clipping
geometries consist of a cylinder and a box shape.

Figure 11. Multiple clipping image.

C. User Interface Design
As an important part of the system, the user interface

requires an intuitive and interactive display mode that can
enhance users’ visual awareness when carrying out an
application task [12]. Some HCI researchers reported that
intuitive data exploration can be treated as an extra
dimension of information [13, 14 and 15]. Many poorly
designed applications interfaces suffer from lost tracks
when changes being applied to the settings of one or more
of the flow parameters in the system. A multiple viewport
user interface design has been adopted in this project
which is capable of showing the entire 3D scene, any
highlighted models, and corresponding rendering
information in 3 separate viewports. By interactively
(drag-and-drop style) changing the rendering settings in
the coding viewport, the changes on the model and scene
can be automatically updated at real-time.

IV. PROTOTYPE IMPLEMENTATION
This hybrid rendering system devised in this research

has been implemented using OpenGL and OpenSG APIs
in a VC++ programming environment. The host PC is an
Intel Core2 2.40GHz CPU with 2G RAM.

As shown in Figure 8 and Figure 11, multi-volume
coexistence and segmental replacer are the two key
innovative elements in the system. In the meantime, the
LOD and the clipping nodes are the “cheaper” solutions
for some visualization-oriented (non-simulation-intensive)
operations. Tests have been carried out on the
performance of the LOD node. The result is shown in
Table I, when the actual operations can be simplified as
the pseudocode below:

Volume
Clipping

Volume
Model

Clipped
Volume
Model

Single/Multi
- Clipping

Motive
Clipping

As clearly shown in Table I, the result of the frame

rate comparison proves that using surface models to
replace volume ones at a carefully chosen threshold can
effectively improve the interactive rate without losing too
much visual qualities. Experiments on other devised
modes and more complex 3D VE will be discussed in
separate articles.

TABLE I. FRAME RATE COMPARISON 1

 LOD-based volume
rendering

volume rendering

Interactive rate
(FPS)

55.3 33.3
57.6 37.6
55.0 39.1

V. CONCLUSION AND FUTURE WORKS
The LOD, segmental replacer, multi-volume and

clipping nodes are the essential functional modules of the
devised hybrid rendering framework that had been
implemented and tested in this project. The evaluation of
the framework and tests on the prototype detailed in
Section III and Section IV have demonstrated the
feasibility and flexibility of the design. Further
improvements and tests on accelerating the systems using
hardware-driven data parallelism will be carried out in the
next phase of this project.

In addition, there are some derived problems from
classical volume rendering, e.g. the problem of multi-
model clipping will seriously affect the interactive rate at
runtime if not being used properly. Another prominent
problem is the unavailability of volume-based depth
buffering. The final rendered frame with multiple volume
models cannot always show the correct occlusions like the
wireframe ones. Problems also rise in this framework
when applying certain illumination terms for complex VE
applications. These problems will be addressed in the
future works of the project.

ACKNOWLEDGMENT
I would firstly like to thank my first supervisor Dr

Zhijie Xu for his great supervision and guidance during
this research. I am deeply impressed on his erudition in
knowledge and attitude in science which promote me to

keep on going. I would like to show my grateful
appreciation to Mr. Jing Wang, Mr. Yang Su for their
great helps to me.

REFERENCES

[1] S. Zhang, C. Demiralp, D. F. Keefe, P. J. Basser, and E. A.
Chiocca, “An Immersive Virtual Environment for DT-MRI
Volume Visualizations: A Case Study,” 2001.

[2] F. Romeiro, L. Velho, and De. F. l. Henrique, “Hardware-
assisted Rendering of CSG Models,” In SIBGRAPI, 2006

[3] S. Sar-Dessai, and M. Botsch, “The lecture notes on
“Computer Graphics I" held by Prof. Dr. Leif Kobbelt at
RWTH Aachen,” In summer term 2003.

[4] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl, “A
Simple and Flexible Volume Rendering Framework for
Graphics-Hardware-based Raycasting,” In Proceedings of
Volume Graphics 2005, Stony Brook, New York, USA,
2005, pp.187-195.

[5] D. Weiskopf, K. Engel, and T. Ertl, “Interactive Clipping
Techniques for Texture-Based Volume Visualization and
Volume Shading,” In IEEE Transactions on Visualization
and Computer Graphics, 2003.

[6] M. Weiler, R. Westermann, C. Hansen, K. Zimmerman,
and T. Ertl, “Level-Of-Detail Volume Rendering via 3D
Textures,” In Proc. IEEE Volume Visualization and
Graphics Sympsium 2000.

[7] K. Engel, M. Kraus, and T. Ertl, “High-Quality Pre-
Integrated Volume Rendering Using Hardware-
Accelerated Pixel Shading,” In Proc.
Eurographics/SIGGRAPH Workshop on Graphics
Hardware, 2001.

[8] K. Engel, M. Hadwiger, J. M. Kniss, A. E. Lefohn, C. R.
Salama, and D. Weiskopf, “Course Notes 28: Real-Time
Volume Graphics,” In SIGGRAPH 2004.

[9] Y.Su, Z.Xu, X.Jiang, and P.Jonathan, “Discrete Wavelet
Transform on Consumer-level Graphics Processing Unit.”
In: Processing of Computing and Engineering Annual
Researchers’ Conference 2008: CEARC’ 08, University of
Huddersfield, Huddersfield, pp.40-47.

[10] Y.Su, Z.Xu, and X.Jiang, “GPGPU-based Gaussian
Filtering for Surface Metrological Data Processing,” In:
Information Visualization, 2008 IV apos; 08. 12th
International Conference. Information Visualization, 2008.
IV apos;08. 12th international conference, pp.94-99.

[11] J. H. Clark, “Hierarchical Geometric Models for Visible
Surface Algorithms. Communications of ACM,” Vol.19,
No.10, 1976, pp. 547-554.

[12] A. Cooper, and R. Reimann, “About Face 2.0: The
Essentials of Interaction Design,” Wiley, New York, 2003.

[13] M. Tory, S. Potts, and T. Moller, “A Parallel Coordinates
Style Interface for Exploratory Volume Visualization,” In
IEEE Transactions on Visualization and Computer
Graphics, vol.11, no.1, 2005 pp.71-80.

[14] T. J. Jankun-Kelly, and K. L. Ma, “A Spreadsheet Interface
for Volume Visualization,” In Proceedings of IEEE
Visualization 2000 Conference, 2000.

[15] K. L. Ma, “Image Graph: A Novel Approach to Visual
Data Exploration,” In Proceedings of IEEE
Visualization ’99 Conference, 1999, pp.81-88.

Per-frame Operations:

Loading model

Thresholding model types

Loading corresponding rendering core

Interaction transformations

Rendering loops

	Introduction
	Research Background
	Surface Modeling and Visualization
	Volume Model and Rendering
	Current Difficulties

	Hybrid Rendering Framework Design
	Hybrid Scene Graph Design
	Framework Implementation
	Level-of-Detail Node
	Segmental Replacer Node
	Multi-Volume Node
	Volume Clipping Node

	User Interface Design

	Prototype Implementation
	Conclusion and future works
	Acknowledgment
	References

