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ABSTRACT 

Optical fiber interferometry holds many advantages for the online measurement of high 

precision surfaces. Here a fiber interferometer with a wavelength scanning probe is 

reported. Such an interferometer requires active stabilization against the effects of 

temperature drift and vibration. A method of multiplexing dual wavelengths into the same 

fiber, combined with rapid phase shifting and real time phase calculation is investigated. 

Experimental data show the successful stabilization of the interferometer regardless of 

environmental perturbation. 

OCIS codes: 120.0120, 120.3180, 120.5050. 

 Technological advances in fields such as optics, micro-molding and micro-machining 

have resulted in the increased use of nano-scale and ultra-precision surfaces. The current state of 

online surface metrology methods for the efficient characterization of these surfaces is severely 

limiting both development and manufacture. Current metrology instrumentation is either too 

bulky, slow or damaging (in the case of touch probe methods) [1]. 

 Our approach is to use interferometry combined with single-point scanning, the idea 

being analogous to a traditional contact stylus for surface profile measurement, but realized in 



 2 

the optical domain. By combining the probe with one arm of an optical fiber interferometer it is 

possible place the bulk of the other optical components and electronics remotely. In this way a 

compact probe may be realized which is suitable for remote mounting. 

 The concept of an optical stylus provides the advantages of speed and non-contact 

measurement. By tuning the wavelength of the source light and using a dispersive element it is 

possible to diffract a beam of light over a desired angular range. An objective lens is then used to 

collimate the beam onto the surface to be measured. In this way the beam may be swept along a 

profile of the surface in the manner of a stylus, the retro-reflected light may then be analyzed by 

an interferometer to determine the phase variation which relates directly to surface height. The 

apparatus investigated in this paper, including the optical probe, is illustrated in fig. 1. 

 A tunable laser source (TLS), swept between an optical wavelength of 

1560 1575 nmmλ≤ ≤ and provides the light source for enabling the optical stylus technique. The 

profile length and lateral resolution available is dependant on the objective lens and grating 

parameters which are selectable depending on the application. The wavelength is swept during 

measurement to interrogate the surface profile. 

 Unfortunately the use of optical fibers for nanometer scale surface measurement brings a 

specific set of challenges. It is well documented that fiber interferometers are extremely sensitive 

to environmental perturbation [2]. Temperature variations and vibration cause deformation and 

stresses in the fiber core which changes the optical path length. The magnitude of the path length 

change scales linearly with the length of fiber; with the approximately 20 meters of fiber used in 

this experimental setup, temperature drift alone can result in several microns of path change, 

completely obliterating any measurement at the nanometric scale. 
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 The same mechanisms also cause random evolution of the state of polarization (SOP) of 

the light carried in the fiber. Generally, a length of fiber may be modeled as an elliptical 

birefringence having random, time varying axis of orientation and rotational magnitude [3]. SOP 

variations have two primary effects on the output of an interferometer. First, the fringe visibility 

(or contrast) is dependant on the relative SOP in each interferometer arm as well as the SOP in 

the input fiber [4]. Second, any polarization dependence of components within the optical 

circuits results in intensity fluctuation. In our experimental set up described there are two main 

contributors; the blazed diffraction grating and the electro-optic phase modulator (EOPM), which 

has an integrated linear polariser.  

 The time varying quantities due to both the optical path length and SOP fluctuation may 

be incorporated into the basic interferometer response equation. Here, the intensity response, 

( )I t  of an interferometer is given by 

 [ ]( ) ( ) ( ) ( ) ( ) ( ) cos ( )ref sen ref senI t I t I t V t I t I t tϕ ε= + + ⋅ +  (1) 

where ( )refI t , ( )senI t  are the light intensities from the reference and sense arms respectively, the 

time dependence describes intensity fluctuation due to SOP change. 4 /hϕ π λ=  is the phase 

difference resulting from the variation in surface height, h  for a given source light wavelength, 

λ . ( )tε  is an error term describing the time varying phase difference induced by fiber path 

length drifting. ( )V t  is the fringe visibility term (between zero and unity), the value of which 

varies with SOP evolution. The equation assumes balanced operation of the interferometer i.e. 

the optical path lengths in each arm are equal. 

 In order to track the optical path length change, a separate reference wavelength is 

multiplexed into the fiber interferometer. This is sourced by a narrowband distributed feedback 
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laser diode operating at a wavelength, 1550 nmrλ = . As the wavelength remains static while the 

optical stylus is swept over the surface, it remains fixed upon one point of the surface. This static 

reference interferometer (as it shall now be referred to) shares a near-common path with the 

measurement interferometer. It may thus be used to track the unwanted phase disturbance caused 

by path length drift in the fiber as well as any vibration of the measurand (along the 

measurement axis).  

 The feedback from the reference interferometer is used in a servo loop, with a path length 

actuator in the reference arm, to simultaneously stabilize both the phase change occurring due to 

the fiber and vibration of the measurand. An electro-optic phase modulator (EOPM) is employed 

as the path length actuator. The EOPM provides a high frequency response (>1 GHz) and very 

good linearity. 

 It is clear from equation 1 that the output intensity is not purely a function of phase, thus 

in order to calculate track the error term, ( )tε  the phase of the interferometer must be derived 

directly. 

 The method employed is to use a digital signal processor (DSP) in order to calculate the 

reference interferometer phase in realtime. This is done by shifting the phase of the 

interferometer stepwise and then sampling the resulting intensity values. The method is a 

variation on common phase shifting interferometry, however in this case it is carried out very 

quickly by virtue of the EOPM response [5]. In essence the EOPM allows the possibility of 

deriving phase in realtime. 

 The Schwider-Hariharan 5-step phase shifting algorithm is executed on the DSP to 

calculate the phase value [6]. The algorithm was chosen because it is reasonably efficient in 
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calculation assuming a phase shift of π/2 is adopted. Using this algorithm the phase is calculated 

as, 

 
( )2 41
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− +
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where 1I , 2I , 3I , 4I  and 5I  are the intensities at phase shifts of 0, π/2, π, 3 π/4 and 2π radians 

respectively.  

 The principle relies on the fact that SOP and optical path length drift occur at low 

frequencies (<1 kHz). By carrying out phase shifting at a much higher frequency, the intensity 

error imposed by SOP and optical path length drift are negligible between shifts. In this way a 

stable and accurate phase result may be retrieved even in the face of low frequency intensity 

variations. 

 The realtime calculated phase values are used as the feedback element to a digital 

proportional-integral (PI) controller. The controller then adjusts an offset voltage on the EOPM 

output in order to keep the calculated phase value stable. In this way the EOPM provides both 

the phase stepping required to retrieve the phase and also operates on the optical path length to 

keep the interferometer stable. The overall execution time for the phase calculation and control 

algorithm is approximately 27 µs, yielding an overall control loop rate of 37 kHz. 

 Fig. 2 shows the output of the reference interferometer sampled at 100 Hz over a 2 

second period. The drift experienced in the free running mode is substantial and covers several 

hundred nanometers, even though the apparatus was mounted on a vibration isolated optical 

table. The improvement seen when the feedback loop is activated is substantial. 

 In order to gain a more quantitative analysis of the stabilized interferometer performance, 

the output of the measurement interferometer was sampled. Fig. 3 shows the collected 
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measurement interferometer data for a period of 10 seconds at a sample rate of 100 Hz. The data 

was collected at 4 different wavelengths, which correspond to four different points along the 

profile of the surface. This was done to check there was a consistent level over stabilization over 

the full scan profile. The target surface was a low quality mirror having 4λ/inch surface 

deviation, so the obtained height information was somewhat arbitrary. Since aim of this 

experiment was to compare the stability across the profile, the results were all centered about 

their means to simplify comparison. The peak-to-peak variation is seen to be ± 11nm and the 

overall noise level does not appear to change significantly along the scanned profile. 

 Fig. 4(a) shows the profile measurement of a step height sample as taken with a Taylor 

Hobson CCI 6000 white light interferometer. Fig 4(b) shows the profile of the step height in 

approximately the same area using our fiber interferometer. The calculated heights and overall 

profile show good correlation, although there is clearly a higher level of noise present on the 

fiber interferometer output however. This step is not resolved as sharply with the fiber 

interferometer, this is anticipated to be because of currently non-optimized optics. For this reason 

a longer sampling period is apparent in fig. 4(b) as lowering it did not improve the lateral 

resolution. 

 The overall noise magnitudes were found to be consistent with the quantization noise that 

might be expected to occur from the 12 bit analog to digital converter used to sample the 

intensity values. It is anticipated that by swapping this device for a higher resolution ADC the 

noise results may be improved substantially. 

 To conclude, a fiber interferometer, designed for surface metrology applications and 

featuring a non-contact optical stylus, was built and investigated. In order for such an apparatus 

to be feasible for nanoscale measurement the optical path lengths of the fiber must be stabilized 
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against temperature drifts and mechanical disturbance. A rapid phase shifting technique utilizing 

wavelength multiplexed interferometers was employed in order to do this effectively.  The 

stability is currently limited by the quantization noise imparted by the analog to digital converter 

used. 
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Fig. 1 Experimental Apparatus 

Fig. 2 Drift seen in the stabilized/free running reference interferometer 

Fig. 3 Histograms of stabilized measurement interferometer values 
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Fig. 3 Histograms of stabilized measurement interferometer values 
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Fig. 4 Profile measurement of a step height from (a) Taylor Hobson CCI (b) Multiplexed Fiber 

Interferometer 

 

 


